amd_iommu.c 96.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35 36 37 38 39
#include <linux/irq.h>
#include <linux/msi.h>
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
40
#include <asm/msidef.h>
41
#include <asm/proto.h>
42
#include <asm/iommu.h>
43
#include <asm/gart.h>
44
#include <asm/dma.h>
45 46 47

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
48
#include "irq_remapping.h"
49 50 51

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

52
#define LOOP_TIMEOUT	100000
53

54 55 56 57 58 59
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
60
 * 512GB Pages are not supported due to a hardware bug
61
 */
J
Joerg Roedel 已提交
62
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
63

64 65
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

66 67 68 69
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

70 71 72 73
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

74 75 76
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

77 78 79 80 81 82
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

83 84
static struct iommu_ops amd_iommu_ops;

85
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
86
int amd_iommu_max_glx_val = -1;
87

88 89
static struct dma_map_ops amd_iommu_dma_ops;

90 91 92
/*
 * general struct to manage commands send to an IOMMU
 */
93
struct iommu_cmd {
94 95 96
	u32 data[4];
};

97 98
struct kmem_cache *amd_iommu_irq_cache;

99
static void update_domain(struct protection_domain *domain);
100
static int __init alloc_passthrough_domain(void);
101

102 103 104 105 106 107
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

108
static struct iommu_dev_data *alloc_dev_data(u16 devid)
109 110 111 112 113 114 115 116
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

117
	dev_data->devid = devid;
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

135 136 137
	if (dev_data->group)
		iommu_group_put(dev_data->group);

138 139 140
	kfree(dev_data);
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

172 173 174 175 176 177 178
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

179 180 181 182 183
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

184 185 186 187
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
188 189
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
190 191 192 193 194 195 196 197 198 199 200 201
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

202 203 204 205 206 207 208 209 210
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

239 240 241 242 243 244 245 246 247 248 249 250
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
251
	if (dev->bus != &pci_bus_type)
252 253 254 255 256 257 258 259 260 261 262 263 264 265
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

266 267 268 269 270 271
static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
{
	pci_dev_put(*from);
	*from = to;
}

272 273 274 275 276 277 278 279 280 281 282 283
static struct pci_bus *find_hosted_bus(struct pci_bus *bus)
{
	while (!bus->self) {
		if (!pci_is_root_bus(bus))
			bus = bus->parent;
		else
			return ERR_PTR(-ENODEV);
	}

	return bus;
}

284 285
#define REQ_ACS_FLAGS	(PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)

286
static struct pci_dev *get_isolation_root(struct pci_dev *pdev)
287
{
288
	struct pci_dev *dma_pdev = pdev;
289

290
	/* Account for quirked devices */
291 292
	swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));

293 294 295 296
	/*
	 * If it's a multifunction device that does not support our
	 * required ACS flags, add to the same group as function 0.
	 */
297 298 299 300 301 302 303
	if (dma_pdev->multifunction &&
	    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
		swap_pci_ref(&dma_pdev,
			     pci_get_slot(dma_pdev->bus,
					  PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
					  0)));

304 305 306 307 308
	/*
	 * Devices on the root bus go through the iommu.  If that's not us,
	 * find the next upstream device and test ACS up to the root bus.
	 * Finding the next device may require skipping virtual buses.
	 */
309
	while (!pci_is_root_bus(dma_pdev->bus)) {
310 311 312
		struct pci_bus *bus = find_hosted_bus(dma_pdev->bus);
		if (IS_ERR(bus))
			break;
313 314

		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
315 316
			break;

317
		swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
318 319
	}

320 321 322
	return dma_pdev;
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev)
{
	struct iommu_group *group = iommu_group_get(&pdev->dev);
	int ret;

	if (!group) {
		group = iommu_group_alloc();
		if (IS_ERR(group))
			return PTR_ERR(group);

		WARN_ON(&pdev->dev != dev);
	}

	ret = iommu_group_add_device(group, dev);
	iommu_group_put(group);
	return ret;
}

341 342 343 344 345 346 347 348 349 350 351 352 353 354
static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data,
				    struct device *dev)
{
	if (!dev_data->group) {
		struct iommu_group *group = iommu_group_alloc();
		if (IS_ERR(group))
			return PTR_ERR(group);

		dev_data->group = group;
	}

	return iommu_group_add_device(dev_data->group, dev);
}

355 356 357 358
static int init_iommu_group(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct iommu_group *group;
359
	struct pci_dev *dma_pdev;
360 361 362 363 364 365 366 367 368 369 370 371 372 373
	int ret;

	group = iommu_group_get(dev);
	if (group) {
		iommu_group_put(group);
		return 0;
	}

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

	if (dev_data->alias_data) {
		u16 alias;
374 375 376 377
		struct pci_bus *bus;

		if (dev_data->alias_data->group)
			goto use_group;
378

379 380 381 382
		/*
		 * If the alias device exists, it's effectively just a first
		 * level quirk for finding the DMA source.
		 */
383 384
		alias = amd_iommu_alias_table[dev_data->devid];
		dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
385 386 387 388
		if (dma_pdev) {
			dma_pdev = get_isolation_root(dma_pdev);
			goto use_pdev;
		}
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
		/*
		 * If the alias is virtual, try to find a parent device
		 * and test whether the IOMMU group is actualy rooted above
		 * the alias.  Be careful to also test the parent device if
		 * we think the alias is the root of the group.
		 */
		bus = pci_find_bus(0, alias >> 8);
		if (!bus)
			goto use_group;

		bus = find_hosted_bus(bus);
		if (IS_ERR(bus) || !bus->self)
			goto use_group;

		dma_pdev = get_isolation_root(pci_dev_get(bus->self));
		if (dma_pdev != bus->self || (dma_pdev->multifunction &&
		    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)))
			goto use_pdev;

		pci_dev_put(dma_pdev);
		goto use_group;
	}
412

413 414
	dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev)));
use_pdev:
415
	ret = use_pdev_iommu_group(dma_pdev, dev);
416
	pci_dev_put(dma_pdev);
417
	return ret;
418 419
use_group:
	return use_dev_data_iommu_group(dev_data->alias_data, dev);
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
}

static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;
	int ret;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

	alias = amd_iommu_alias_table[dev_data->devid];
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;
	}

	ret = init_iommu_group(dev);
451 452 453
	if (ret)
		return ret;

454 455 456 457 458 459 460
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

461 462 463 464 465
	dev->archdata.iommu = dev_data;

	return 0;
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

480 481
static void iommu_uninit_device(struct device *dev)
{
482 483
	iommu_group_remove_device(dev);

484 485 486 487 488
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
489
}
J
Joerg Roedel 已提交
490 491 492

void __init amd_iommu_uninit_devices(void)
{
493
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
494 495 496 497 498 499 500 501 502
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
503 504 505 506

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
520 521 522
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
523 524 525 526 527 528 529 530 531 532 533
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
534 535 536 537 538 539
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

540
DECLARE_STATS_COUNTER(compl_wait);
541
DECLARE_STATS_COUNTER(cnt_map_single);
542
DECLARE_STATS_COUNTER(cnt_unmap_single);
543
DECLARE_STATS_COUNTER(cnt_map_sg);
544
DECLARE_STATS_COUNTER(cnt_unmap_sg);
545
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
546
DECLARE_STATS_COUNTER(cnt_free_coherent);
547
DECLARE_STATS_COUNTER(cross_page);
548
DECLARE_STATS_COUNTER(domain_flush_single);
549
DECLARE_STATS_COUNTER(domain_flush_all);
550
DECLARE_STATS_COUNTER(alloced_io_mem);
551
DECLARE_STATS_COUNTER(total_map_requests);
552 553 554 555 556
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
576
					 &amd_iommu_unmap_flush);
577 578

	amd_iommu_stats_add(&compl_wait);
579
	amd_iommu_stats_add(&cnt_map_single);
580
	amd_iommu_stats_add(&cnt_unmap_single);
581
	amd_iommu_stats_add(&cnt_map_sg);
582
	amd_iommu_stats_add(&cnt_unmap_sg);
583
	amd_iommu_stats_add(&cnt_alloc_coherent);
584
	amd_iommu_stats_add(&cnt_free_coherent);
585
	amd_iommu_stats_add(&cross_page);
586
	amd_iommu_stats_add(&domain_flush_single);
587
	amd_iommu_stats_add(&domain_flush_all);
588
	amd_iommu_stats_add(&alloced_io_mem);
589
	amd_iommu_stats_add(&total_map_requests);
590 591 592 593
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
594 595 596 597
}

#endif

598 599 600 601 602 603
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

604 605 606 607
static void dump_dte_entry(u16 devid)
{
	int i;

608 609
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
610 611 612
			amd_iommu_dev_table[devid].data[i]);
}

613 614 615 616 617 618 619 620 621
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

622
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
623
{
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
645

646
	printk(KERN_ERR "AMD-Vi: Event logged [");
647 648 649 650 651 652 653

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
654
		dump_dte_entry(devid);
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
676
		dump_command(address);
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
697 698

	memset(__evt, 0, 4 * sizeof(u32));
699 700 701 702 703 704 705 706 707 708 709 710 711
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
712
		iommu_print_event(iommu, iommu->evt_buf + head);
713 714 715 716 717 718 719 720
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

721
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
722 723 724
{
	struct amd_iommu_fault fault;

725 726
	INC_STATS_COUNTER(pri_requests);

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	unsigned long flags;
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

749 750 751
	/* enable ppr interrupts again */
	writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);

752 753 754 755 756 757
	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
774

775 776 777
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
778

779 780 781 782 783 784 785
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
786 787
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
788 789 790

		/*
		 * Release iommu->lock because ppr-handling might need to
F
Frank Arnold 已提交
791
		 * re-acquire it
792 793 794 795 796 797 798 799 800 801
		 */
		spin_unlock_irqrestore(&iommu->lock, flags);

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		spin_lock_irqsave(&iommu->lock, flags);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
802 803 804 805 806 807
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}

	spin_unlock_irqrestore(&iommu->lock, flags);
}

808
irqreturn_t amd_iommu_int_thread(int irq, void *data)
809
{
810 811
	struct amd_iommu *iommu;

812
	for_each_iommu(iommu) {
813
		iommu_poll_events(iommu);
814 815
		iommu_poll_ppr_log(iommu);
	}
816 817

	return IRQ_HANDLED;
818 819
}

820 821 822 823 824
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

825 826 827 828 829 830
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
851 852 853
{
	u8 *target;

854
	target = iommu->cmd_buf + tail;
855 856 857 858 859 860
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
861
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
862
}
863

864
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
865
{
866 867
	WARN_ON(address & 0x7ULL);

868
	memset(cmd, 0, sizeof(*cmd));
869 870 871
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
872 873 874
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

875 876 877 878 879 880 881
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
909
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
910 911 912
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = pasid & PASID_MASK;
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
	cmd->data[0] |= (pasid & 0xff) << 16;
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
		cmd->data[1]  = pasid & PASID_MASK;
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

998 999 1000 1001
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1002 1003
}

1004 1005 1006 1007 1008 1009 1010
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1011 1012
/*
 * Writes the command to the IOMMUs command buffer and informs the
1013
 * hardware about the new command.
1014
 */
1015 1016 1017
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
1018
{
1019
	u32 left, tail, head, next_tail;
1020 1021
	unsigned long flags;

1022
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
1023 1024

again:
1025 1026
	spin_lock_irqsave(&iommu->lock, flags);

1027 1028 1029 1030
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
1031

1032 1033 1034 1035
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
1036

1037 1038
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1039

1040 1041 1042 1043 1044 1045
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
1046 1047
	}

1048 1049 1050
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1051
	iommu->need_sync = sync;
1052

1053
	spin_unlock_irqrestore(&iommu->lock, flags);
1054

1055
	return 0;
1056 1057
}

1058 1059 1060 1061 1062
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1063 1064 1065 1066
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1067
static int iommu_completion_wait(struct amd_iommu *iommu)
1068 1069
{
	struct iommu_cmd cmd;
1070
	volatile u64 sem = 0;
1071
	int ret;
1072

1073
	if (!iommu->need_sync)
1074
		return 0;
1075

1076
	build_completion_wait(&cmd, (u64)&sem);
1077

1078
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1079
	if (ret)
1080
		return ret;
1081

1082
	return wait_on_sem(&sem);
1083 1084
}

1085
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1086
{
1087
	struct iommu_cmd cmd;
1088

1089
	build_inv_dte(&cmd, devid);
1090

1091 1092
	return iommu_queue_command(iommu, &cmd);
}
1093

1094 1095 1096
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1097

1098 1099
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1100

1101 1102
	iommu_completion_wait(iommu);
}
1103

1104 1105 1106 1107 1108 1109 1110
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1111

1112 1113 1114 1115 1116 1117
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1118

1119
	iommu_completion_wait(iommu);
1120 1121
}

1122
static void iommu_flush_all(struct amd_iommu *iommu)
1123
{
1124
	struct iommu_cmd cmd;
1125

1126
	build_inv_all(&cmd);
1127

1128 1129 1130 1131
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1151 1152
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1153 1154 1155 1156
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1157
		iommu_flush_irt_all(iommu);
1158
		iommu_flush_tlb_all(iommu);
1159 1160 1161
	}
}

1162
/*
1163
 * Command send function for flushing on-device TLB
1164
 */
1165 1166
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1167 1168
{
	struct amd_iommu *iommu;
1169
	struct iommu_cmd cmd;
1170
	int qdep;
1171

1172 1173
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1174

1175
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1176 1177

	return iommu_queue_command(iommu, &cmd);
1178 1179
}

1180 1181 1182
/*
 * Command send function for invalidating a device table entry
 */
1183
static int device_flush_dte(struct iommu_dev_data *dev_data)
1184
{
1185
	struct amd_iommu *iommu;
1186
	int ret;
1187

1188
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1189

1190
	ret = iommu_flush_dte(iommu, dev_data->devid);
1191 1192 1193
	if (ret)
		return ret;

1194
	if (dev_data->ats.enabled)
1195
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1196 1197

	return ret;
1198 1199
}

1200 1201 1202 1203 1204
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1205 1206
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1207
{
1208
	struct iommu_dev_data *dev_data;
1209 1210
	struct iommu_cmd cmd;
	int ret = 0, i;
1211

1212
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1213

1214 1215 1216 1217 1218 1219 1220 1221
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1222
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1223 1224
	}

1225 1226
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1227
		if (!dev_data->ats.enabled)
1228 1229
			continue;

1230
		ret |= device_flush_iotlb(dev_data, address, size);
1231 1232
	}

1233
	WARN_ON(ret);
1234 1235
}

1236 1237
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1238
{
1239
	__domain_flush_pages(domain, address, size, 0);
1240
}
1241

1242
/* Flush the whole IO/TLB for a given protection domain */
1243
static void domain_flush_tlb(struct protection_domain *domain)
1244
{
1245
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1246 1247
}

1248
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1249
static void domain_flush_tlb_pde(struct protection_domain *domain)
1250
{
1251
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1252 1253
}

1254
static void domain_flush_complete(struct protection_domain *domain)
1255
{
1256
	int i;
1257

1258 1259 1260
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1261

1262 1263 1264 1265 1266
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1267
	}
1268 1269
}

1270

1271
/*
1272
 * This function flushes the DTEs for all devices in domain
1273
 */
1274
static void domain_flush_devices(struct protection_domain *domain)
1275
{
1276
	struct iommu_dev_data *dev_data;
1277

1278
	list_for_each_entry(dev_data, &domain->dev_list, list)
1279
		device_flush_dte(dev_data);
1280 1281
}

1282 1283 1284 1285 1286 1287 1288
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1318
		      unsigned long page_size,
1319 1320 1321
		      u64 **pte_page,
		      gfp_t gfp)
{
1322
	int level, end_lvl;
1323
	u64 *pte, *page;
1324 1325

	BUG_ON(!is_power_of_2(page_size));
1326 1327 1328 1329

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1330 1331 1332 1333
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1334 1335 1336 1337 1338 1339 1340 1341 1342

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1343 1344 1345 1346
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1364
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1365 1366 1367 1368
{
	int level;
	u64 *pte;

1369 1370 1371 1372 1373
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1374

1375 1376 1377
	while (level > 0) {

		/* Not Present */
1378 1379 1380
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1400 1401
		level -= 1;

1402
		/* Walk to the next level */
1403 1404 1405 1406 1407 1408 1409
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1410 1411 1412 1413 1414 1415 1416
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1417 1418 1419
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1420
			  int prot,
1421
			  unsigned long page_size)
1422
{
1423
	u64 __pte, *pte;
1424
	int i, count;
1425

1426
	if (!(prot & IOMMU_PROT_MASK))
1427 1428
		return -EINVAL;

1429 1430 1431 1432 1433 1434 1435 1436
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1437

1438 1439 1440 1441 1442
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1443 1444 1445 1446 1447 1448

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1449 1450
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1451

1452 1453
	update_domain(dom);

1454 1455 1456
	return 0;
}

1457 1458 1459
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1460
{
1461 1462 1463 1464 1465 1466
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1467

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1497

1498
	return unmapped;
1499 1500
}

1501 1502 1503 1504
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1519 1520 1521 1522
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1523 1524 1525 1526 1527 1528 1529 1530
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1531
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1532
				     PAGE_SIZE);
1533 1534 1535 1536 1537 1538 1539
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1540
			__set_bit(addr >> PAGE_SHIFT,
1541
				  dma_dom->aperture[0]->bitmap);
1542 1543 1544 1545 1546
	}

	return 0;
}

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1569 1570 1571
/*
 * Inits the unity mappings required for a specific device
 */
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1589 1590 1591 1592 1593 1594 1595 1596 1597
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1598

1599
/*
1600
 * The address allocator core functions.
1601 1602 1603
 *
 * called with domain->lock held
 */
1604

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1625 1626 1627 1628 1629
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1630
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1631 1632 1633
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1634
	struct amd_iommu *iommu;
1635
	unsigned long i, old_size;
1636

1637 1638 1639 1640
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1660
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1671
	old_size                = dma_dom->aperture_size;
1672 1673
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1686
	/* Initialize the exclusion range if necessary */
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1709
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1710 1711 1712
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1713
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1714 1715
	}

1716 1717
	update_domain(&dma_dom->domain);

1718 1719 1720
	return 0;

out_free:
1721 1722
	update_domain(&dma_dom->domain);

1723 1724 1725 1726 1727 1728 1729 1730
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1731 1732 1733 1734 1735 1736 1737
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1738
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1739 1740 1741 1742 1743 1744
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1745 1746
	next_bit >>= PAGE_SHIFT;

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1765
			dom->next_address = address + (pages << PAGE_SHIFT);
1766 1767 1768 1769 1770 1771 1772 1773 1774
			break;
		}

		next_bit = 0;
	}

	return address;
}

1775 1776
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1777
					     unsigned int pages,
1778 1779
					     unsigned long align_mask,
					     u64 dma_mask)
1780 1781 1782
{
	unsigned long address;

1783 1784 1785 1786
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1787

1788
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1789
				     dma_mask, dom->next_address);
1790

1791
	if (address == -1) {
1792
		dom->next_address = 0;
1793 1794
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1795 1796
		dom->need_flush = true;
	}
1797

1798
	if (unlikely(address == -1))
1799
		address = DMA_ERROR_CODE;
1800 1801 1802 1803 1804 1805

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1806 1807 1808 1809 1810
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1811 1812 1813 1814
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1815 1816
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1817

1818 1819
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1820 1821 1822 1823
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1824

1825
	if (address >= dom->next_address)
1826
		dom->need_flush = true;
1827 1828

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1829

A
Akinobu Mita 已提交
1830
	bitmap_clear(range->bitmap, address, pages);
1831

1832 1833
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1896
static void free_pagetable(struct protection_domain *domain)
1897 1898 1899 1900
{
	int i, j;
	u64 *p1, *p2, *p3;

1901
	p1 = domain->pt_root;
1902 1903 1904 1905 1906 1907 1908 1909 1910

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1911
		for (j = 0; j < 512; ++j) {
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1922 1923

	domain->pt_root = NULL;
1924 1925
}

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1956 1957
static void free_gcr3_table(struct protection_domain *domain)
{
1958 1959 1960 1961 1962 1963 1964
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1965 1966 1967
	free_page((unsigned long)domain->gcr3_tbl);
}

1968 1969 1970 1971
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1972 1973
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1974 1975
	int i;

1976 1977 1978
	if (!dom)
		return;

1979 1980
	del_domain_from_list(&dom->domain);

1981
	free_pagetable(&dom->domain);
1982

1983 1984 1985 1986 1987 1988
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1989 1990 1991 1992

	kfree(dom);
}

1993 1994
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1995
 * It also initializes the page table and the address allocator data
1996 1997
 * structures required for the dma_ops interface
 */
1998
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
2011
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2012
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2013
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2014
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2015 2016 2017 2018
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2019
	dma_dom->need_flush = false;
2020
	dma_dom->target_dev = 0xffff;
2021

2022 2023
	add_domain_to_list(&dma_dom->domain);

2024
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2025 2026
		goto free_dma_dom;

2027
	/*
2028 2029
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
2030
	 */
2031
	dma_dom->aperture[0]->bitmap[0] = 1;
2032
	dma_dom->next_address = 0;
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2043 2044 2045 2046 2047 2048 2049 2050 2051
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2052
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2053
{
2054
	u64 pte_root = 0;
2055
	u64 flags = 0;
2056

2057 2058 2059
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2060 2061 2062
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2063

2064 2065
	flags = amd_iommu_dev_table[devid].data[1];

2066 2067 2068
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2095 2096 2097 2098 2099
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2100 2101 2102 2103 2104 2105 2106 2107 2108
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
2109 2110
}

2111 2112
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2113 2114
{
	struct amd_iommu *iommu;
2115
	bool ats;
2116

2117 2118
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
2119 2120 2121 2122

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
2123
	set_dte_entry(dev_data->devid, domain, ats);
2124 2125 2126 2127 2128 2129

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2130
	device_flush_dte(dev_data);
2131 2132
}

2133
static void do_detach(struct iommu_dev_data *dev_data)
2134 2135 2136
{
	struct amd_iommu *iommu;

2137
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2138 2139

	/* decrease reference counters */
2140 2141 2142 2143 2144 2145
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2146
	clear_dte_entry(dev_data->devid);
2147

2148
	/* Flush the DTE entry */
2149
	device_flush_dte(dev_data);
2150 2151 2152 2153 2154 2155
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2156
static int __attach_device(struct iommu_dev_data *dev_data,
2157
			   struct protection_domain *domain)
2158
{
2159
	int ret;
2160

2161 2162 2163
	/* lock domain */
	spin_lock(&domain->lock);

2164 2165
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2166

2167 2168 2169 2170 2171
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
2172

2173 2174 2175
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
2176

2177
		/* Do real assignment */
2178
		if (alias_data->domain == NULL)
2179
			do_attach(alias_data, domain);
2180 2181

		atomic_inc(&alias_data->bind);
2182
	}
2183

2184
	if (dev_data->domain == NULL)
2185
		do_attach(dev_data, domain);
2186

2187 2188
	atomic_inc(&dev_data->bind);

2189 2190 2191 2192
	ret = 0;

out_unlock:

2193 2194
	/* ready */
	spin_unlock(&domain->lock);
2195

2196
	return ret;
2197
}
2198

2199 2200 2201 2202 2203 2204 2205 2206

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2207 2208 2209 2210 2211 2212
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2213
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2214 2215 2216
	if (!pos)
		return -EINVAL;

2217 2218 2219
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2220 2221 2222 2223

	return 0;
}

2224 2225
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2226 2227 2228 2229 2230 2231 2232 2233
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2245 2246
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2247 2248 2249
	if (ret)
		goto out_err;

2250 2251 2252 2253 2254 2255
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2269
/* FIXME: Move this to PCI code */
2270
#define PCI_PRI_TLP_OFF		(1 << 15)
2271

J
Joerg Roedel 已提交
2272
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2273
{
2274
	u16 status;
2275 2276
	int pos;

2277
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2278 2279 2280
	if (!pos)
		return false;

2281
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2282

2283
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2284 2285
}

2286
/*
F
Frank Arnold 已提交
2287
 * If a device is not yet associated with a domain, this function
2288 2289
 * assigns it visible for the hardware
 */
2290 2291
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2292
{
2293
	struct pci_dev *pdev = to_pci_dev(dev);
2294
	struct iommu_dev_data *dev_data;
2295
	unsigned long flags;
2296
	int ret;
2297

2298 2299
	dev_data = get_dev_data(dev);

2300 2301 2302 2303 2304 2305 2306 2307 2308
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2309
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2310 2311
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2312 2313 2314
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2315

2316
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2317
	ret = __attach_device(dev_data, domain);
2318 2319
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2320 2321 2322 2323 2324
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2325
	domain_flush_tlb_pde(domain);
2326 2327

	return ret;
2328 2329
}

2330 2331 2332
/*
 * Removes a device from a protection domain (unlocked)
 */
2333
static void __detach_device(struct iommu_dev_data *dev_data)
2334
{
2335
	struct protection_domain *domain;
2336
	unsigned long flags;
2337

2338
	BUG_ON(!dev_data->domain);
2339

2340 2341 2342
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2343

2344 2345 2346
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

2347
		if (atomic_dec_and_test(&alias_data->bind))
2348
			do_detach(alias_data);
2349 2350
	}

2351
	if (atomic_dec_and_test(&dev_data->bind))
2352
		do_detach(dev_data);
2353

2354
	spin_unlock_irqrestore(&domain->lock, flags);
2355 2356 2357

	/*
	 * If we run in passthrough mode the device must be assigned to the
2358 2359
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2360
	 */
2361
	if (dev_data->passthrough &&
2362
	    (dev_data->domain == NULL && domain != pt_domain))
2363
		__attach_device(dev_data, pt_domain);
2364 2365 2366 2367 2368
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2369
static void detach_device(struct device *dev)
2370
{
2371
	struct protection_domain *domain;
2372
	struct iommu_dev_data *dev_data;
2373 2374
	unsigned long flags;

2375
	dev_data = get_dev_data(dev);
2376
	domain   = dev_data->domain;
2377

2378 2379
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2380
	__detach_device(dev_data);
2381
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2382

2383 2384 2385
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2386
		pci_disable_ats(to_pci_dev(dev));
2387 2388

	dev_data->ats.enabled = false;
2389
}
2390

2391 2392 2393 2394 2395 2396
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2397
	struct iommu_dev_data *dev_data;
2398
	struct protection_domain *dom = NULL;
2399 2400
	unsigned long flags;

2401
	dev_data   = get_dev_data(dev);
2402

2403 2404
	if (dev_data->domain)
		return dev_data->domain;
2405

2406 2407
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2408 2409 2410 2411 2412 2413 2414 2415

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2416 2417 2418 2419

	return dom;
}

2420 2421 2422 2423
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2424 2425 2426
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2427
	struct amd_iommu *iommu;
2428
	unsigned long flags;
2429
	u16 devid;
2430

2431 2432
	if (!check_device(dev))
		return 0;
2433

2434 2435 2436
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2437 2438

	switch (action) {
2439
	case BUS_NOTIFY_UNBOUND_DRIVER:
2440 2441 2442

		domain = domain_for_device(dev);

2443 2444
		if (!domain)
			goto out;
2445
		if (dev_data->passthrough)
2446
			break;
2447
		detach_device(dev);
2448 2449
		break;
	case BUS_NOTIFY_ADD_DEVICE:
2450 2451 2452

		iommu_init_device(dev);

2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
		/*
		 * dev_data is still NULL and
		 * got initialized in iommu_init_device
		 */
		dev_data = get_dev_data(dev);

		if (iommu_pass_through || dev_data->iommu_v2) {
			dev_data->passthrough = true;
			attach_device(dev, pt_domain);
			break;
		}

2465 2466
		domain = domain_for_device(dev);

2467 2468 2469 2470
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
2471
		dma_domain = dma_ops_domain_alloc();
2472 2473 2474 2475 2476 2477 2478 2479
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

2480 2481
		dev_data = get_dev_data(dev);

2482
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2483

2484
		break;
2485 2486 2487 2488
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2499
static struct notifier_block device_nb = {
2500 2501
	.notifier_call = device_change_notifier,
};
2502

2503 2504 2505 2506 2507
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2521
static struct protection_domain *get_domain(struct device *dev)
2522
{
2523
	struct protection_domain *domain;
2524
	struct dma_ops_domain *dma_dom;
2525
	u16 devid = get_device_id(dev);
2526

2527
	if (!check_device(dev))
2528
		return ERR_PTR(-EINVAL);
2529

2530 2531 2532
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2533

2534 2535
	if (domain != NULL)
		return domain;
2536

F
Frank Arnold 已提交
2537
	/* Device not bound yet - bind it */
2538
	dma_dom = find_protection_domain(devid);
2539
	if (!dma_dom)
2540 2541
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2542
	DUMP_printk("Using protection domain %d for device %s\n",
2543
		    dma_dom->domain.id, dev_name(dev));
2544

2545
	return &dma_dom->domain;
2546 2547
}

2548 2549
static void update_device_table(struct protection_domain *domain)
{
2550
	struct iommu_dev_data *dev_data;
2551

2552 2553
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2554 2555 2556 2557 2558 2559 2560 2561
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2562 2563 2564

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2565 2566 2567 2568

	domain->updated = false;
}

2569 2570 2571 2572 2573 2574
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2575
	struct aperture_range *aperture;
2576 2577
	u64 *pte, *pte_page;

2578 2579 2580 2581 2582
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2583
	if (!pte) {
2584
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2585
				GFP_ATOMIC);
2586 2587
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2588
		pte += PM_LEVEL_INDEX(0, address);
2589

2590
	update_domain(&dom->domain);
2591 2592 2593 2594

	return pte;
}

2595 2596 2597 2598
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2599
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2610
	pte  = dma_ops_get_pte(dom, address);
2611
	if (!pte)
2612
		return DMA_ERROR_CODE;
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2630 2631 2632
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2633
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2634 2635
				 unsigned long address)
{
2636
	struct aperture_range *aperture;
2637 2638 2639 2640 2641
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2642 2643 2644 2645 2646 2647 2648
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2649

2650
	pte += PM_LEVEL_INDEX(0, address);
2651 2652 2653 2654 2655 2656

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2657 2658
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2659 2660
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2661 2662
 * Must be called with the domain lock held.
 */
2663 2664 2665 2666
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2667
			       int dir,
2668 2669
			       bool align,
			       u64 dma_mask)
2670 2671
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2672
	dma_addr_t address, start, ret;
2673
	unsigned int pages;
2674
	unsigned long align_mask = 0;
2675 2676
	int i;

2677
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2678 2679
	paddr &= PAGE_MASK;

2680 2681
	INC_STATS_COUNTER(total_map_requests);

2682 2683 2684
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2685 2686 2687
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2688
retry:
2689 2690
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2691
	if (unlikely(address == DMA_ERROR_CODE)) {
2692 2693 2694 2695 2696 2697 2698
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2699
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2700 2701 2702
			goto out;

		/*
2703
		 * aperture was successfully enlarged by 128 MB, try
2704 2705 2706 2707
		 * allocation again
		 */
		goto retry;
	}
2708 2709 2710

	start = address;
	for (i = 0; i < pages; ++i) {
2711
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2712
		if (ret == DMA_ERROR_CODE)
2713 2714
			goto out_unmap;

2715 2716 2717 2718 2719
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2720 2721
	ADD_STATS_COUNTER(alloced_io_mem, size);

2722
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2723
		domain_flush_tlb(&dma_dom->domain);
2724
		dma_dom->need_flush = false;
2725
	} else if (unlikely(amd_iommu_np_cache))
2726
		domain_flush_pages(&dma_dom->domain, address, size);
2727

2728 2729
out:
	return address;
2730 2731 2732 2733 2734

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2735
		dma_ops_domain_unmap(dma_dom, start);
2736 2737 2738 2739
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2740
	return DMA_ERROR_CODE;
2741 2742
}

2743 2744 2745 2746
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2747
static void __unmap_single(struct dma_ops_domain *dma_dom,
2748 2749 2750 2751
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2752
	dma_addr_t flush_addr;
2753 2754 2755
	dma_addr_t i, start;
	unsigned int pages;

2756
	if ((dma_addr == DMA_ERROR_CODE) ||
2757
	    (dma_addr + size > dma_dom->aperture_size))
2758 2759
		return;

2760
	flush_addr = dma_addr;
2761
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2762 2763 2764 2765
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2766
		dma_ops_domain_unmap(dma_dom, start);
2767 2768 2769
		start += PAGE_SIZE;
	}

2770 2771
	SUB_STATS_COUNTER(alloced_io_mem, size);

2772
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2773

2774
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2775
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2776 2777
		dma_dom->need_flush = false;
	}
2778 2779
}

2780 2781 2782
/*
 * The exported map_single function for dma_ops.
 */
2783 2784 2785 2786
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2787 2788 2789 2790
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2791
	u64 dma_mask;
2792
	phys_addr_t paddr = page_to_phys(page) + offset;
2793

2794 2795
	INC_STATS_COUNTER(cnt_map_single);

2796 2797
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2798
		return (dma_addr_t)paddr;
2799 2800
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2801

2802 2803
	dma_mask = *dev->dma_mask;

2804
	spin_lock_irqsave(&domain->lock, flags);
2805

2806
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2807
			    dma_mask);
2808
	if (addr == DMA_ERROR_CODE)
2809 2810
		goto out;

2811
	domain_flush_complete(domain);
2812 2813 2814 2815 2816 2817 2818

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2819 2820 2821
/*
 * The exported unmap_single function for dma_ops.
 */
2822 2823
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2824 2825 2826 2827
{
	unsigned long flags;
	struct protection_domain *domain;

2828 2829
	INC_STATS_COUNTER(cnt_unmap_single);

2830 2831
	domain = get_domain(dev);
	if (IS_ERR(domain))
2832 2833
		return;

2834 2835
	spin_lock_irqsave(&domain->lock, flags);

2836
	__unmap_single(domain->priv, dma_addr, size, dir);
2837

2838
	domain_flush_complete(domain);
2839 2840 2841 2842

	spin_unlock_irqrestore(&domain->lock, flags);
}

2843 2844 2845 2846
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2861 2862 2863 2864
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2865
static int map_sg(struct device *dev, struct scatterlist *sglist,
2866 2867
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2868 2869 2870 2871 2872 2873 2874
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2875
	u64 dma_mask;
2876

2877 2878
	INC_STATS_COUNTER(cnt_map_sg);

2879 2880
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2881
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2882 2883
	else if (IS_ERR(domain))
		return 0;
2884

2885
	dma_mask = *dev->dma_mask;
2886 2887 2888 2889 2890 2891

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2892
		s->dma_address = __map_single(dev, domain->priv,
2893 2894
					      paddr, s->length, dir, false,
					      dma_mask);
2895 2896 2897 2898 2899 2900 2901 2902

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2903
	domain_flush_complete(domain);
2904 2905 2906 2907 2908 2909 2910 2911

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2912
			__unmap_single(domain->priv, s->dma_address,
2913 2914 2915 2916 2917 2918 2919 2920 2921
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2922 2923 2924 2925
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2926
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2927 2928
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2929 2930 2931 2932 2933 2934
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2935 2936
	INC_STATS_COUNTER(cnt_unmap_sg);

2937 2938
	domain = get_domain(dev);
	if (IS_ERR(domain))
2939 2940
		return;

2941 2942 2943
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2944
		__unmap_single(domain->priv, s->dma_address,
2945 2946 2947 2948
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2949
	domain_flush_complete(domain);
2950 2951 2952 2953

	spin_unlock_irqrestore(&domain->lock, flags);
}

2954 2955 2956
/*
 * The exported alloc_coherent function for dma_ops.
 */
2957
static void *alloc_coherent(struct device *dev, size_t size,
2958 2959
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2960 2961 2962 2963 2964
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2965
	u64 dma_mask = dev->coherent_dma_mask;
2966

2967 2968
	INC_STATS_COUNTER(cnt_alloc_coherent);

2969 2970
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2971 2972 2973
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2974 2975
	} else if (IS_ERR(domain))
		return NULL;
2976

2977 2978 2979
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2980 2981 2982

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2983
		return NULL;
2984 2985 2986

	paddr = virt_to_phys(virt_addr);

2987 2988 2989
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2990 2991
	spin_lock_irqsave(&domain->lock, flags);

2992
	*dma_addr = __map_single(dev, domain->priv, paddr,
2993
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2994

2995
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2996
		spin_unlock_irqrestore(&domain->lock, flags);
2997
		goto out_free;
J
Jiri Slaby 已提交
2998
	}
2999

3000
	domain_flush_complete(domain);
3001 3002 3003 3004

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
3005 3006 3007 3008 3009 3010

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
3011 3012
}

3013 3014 3015
/*
 * The exported free_coherent function for dma_ops.
 */
3016
static void free_coherent(struct device *dev, size_t size,
3017 3018
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
3019 3020 3021 3022
{
	unsigned long flags;
	struct protection_domain *domain;

3023 3024
	INC_STATS_COUNTER(cnt_free_coherent);

3025 3026
	domain = get_domain(dev);
	if (IS_ERR(domain))
3027 3028
		goto free_mem;

3029 3030
	spin_lock_irqsave(&domain->lock, flags);

3031
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
3032

3033
	domain_flush_complete(domain);
3034 3035 3036 3037 3038 3039 3040

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

3041 3042 3043 3044 3045 3046
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
3047
	return check_device(dev);
3048 3049
}

3050
/*
3051 3052
 * The function for pre-allocating protection domains.
 *
3053 3054 3055 3056
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
3057
static void __init prealloc_protection_domains(void)
3058
{
3059
	struct iommu_dev_data *dev_data;
3060
	struct dma_ops_domain *dma_dom;
3061
	struct pci_dev *dev = NULL;
3062
	u16 devid;
3063

3064
	for_each_pci_dev(dev) {
3065 3066 3067

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
3068
			continue;
3069

3070 3071 3072 3073 3074 3075
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
F
Frank Arnold 已提交
3076
			pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3077 3078 3079
				dev_name(&dev->dev));
		}

3080
		/* Is there already any domain for it? */
3081
		if (domain_for_device(&dev->dev))
3082
			continue;
3083 3084 3085

		devid = get_device_id(&dev->dev);

3086
		dma_dom = dma_ops_domain_alloc();
3087 3088 3089
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
3090 3091
		dma_dom->target_dev = devid;

3092
		attach_device(&dev->dev, &dma_dom->domain);
3093

3094
		list_add_tail(&dma_dom->list, &iommu_pd_list);
3095 3096 3097
	}
}

3098
static struct dma_map_ops amd_iommu_dma_ops = {
3099 3100
	.alloc = alloc_coherent,
	.free = free_coherent,
3101 3102
	.map_page = map_page,
	.unmap_page = unmap_page,
3103 3104
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
3105
	.dma_supported = amd_iommu_dma_supported,
3106 3107
};

3108 3109
static unsigned device_dma_ops_init(void)
{
3110
	struct iommu_dev_data *dev_data;
3111 3112 3113 3114 3115
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
3116 3117 3118

			iommu_ignore_device(&pdev->dev);

3119 3120 3121 3122
			unhandled += 1;
			continue;
		}

3123 3124 3125 3126 3127 3128
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3129 3130 3131 3132 3133
	}

	return unhandled;
}

3134 3135 3136
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3137 3138 3139

void __init amd_iommu_init_api(void)
{
3140
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3141 3142
}

3143 3144 3145
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3146
	int ret, unhandled;
3147

3148 3149 3150 3151 3152
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3153
	for_each_iommu(iommu) {
3154
		iommu->default_dom = dma_ops_domain_alloc();
3155 3156
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3157
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3158 3159 3160 3161 3162
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

3163
	/*
3164
	 * Pre-allocate the protection domains for each device.
3165
	 */
3166
	prealloc_protection_domains();
3167 3168

	iommu_detected = 1;
3169
	swiotlb = 0;
3170

3171
	/* Make the driver finally visible to the drivers */
3172 3173 3174 3175 3176
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3177

3178 3179
	amd_iommu_stats_init();

3180 3181 3182 3183 3184
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3185 3186 3187 3188
	return 0;

free_domains:

3189
	for_each_iommu(iommu) {
3190 3191 3192 3193 3194 3195
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3209
	struct iommu_dev_data *dev_data, *next;
3210 3211 3212 3213
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3214
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3215
		__detach_device(dev_data);
3216 3217
		atomic_set(&dev_data->bind, 0);
	}
3218 3219 3220 3221

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3222 3223 3224 3225 3226
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3227 3228
	del_domain_from_list(domain);

3229 3230 3231 3232 3233 3234 3235
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3236 3237 3238 3239 3240
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3241
		return NULL;
3242 3243

	spin_lock_init(&domain->lock);
3244
	mutex_init(&domain->api_lock);
3245 3246
	domain->id = domain_id_alloc();
	if (!domain->id)
3247
		goto out_err;
3248
	INIT_LIST_HEAD(&domain->dev_list);
3249

3250 3251
	add_domain_to_list(domain);

3252 3253 3254 3255 3256 3257 3258 3259
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3274 3275 3276 3277 3278 3279
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3280
		goto out_free;
3281 3282

	domain->mode    = PAGE_MODE_3_LEVEL;
3283 3284 3285 3286
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3287 3288
	domain->iommu_domain = dom;

3289 3290
	dom->priv = domain;

3291 3292 3293 3294
	dom->geometry.aperture_start = 0;
	dom->geometry.aperture_end   = ~0ULL;
	dom->geometry.force_aperture = true;

3295 3296 3297
	return 0;

out_free:
3298
	protection_domain_free(domain);
3299 3300 3301 3302

	return -ENOMEM;
}

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3315 3316
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3317

3318 3319 3320
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3321
	protection_domain_free(domain);
3322 3323 3324 3325

	dom->priv = NULL;
}

3326 3327 3328
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3329
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3330 3331 3332
	struct amd_iommu *iommu;
	u16 devid;

3333
	if (!check_device(dev))
3334 3335
		return;

3336
	devid = get_device_id(dev);
3337

3338
	if (dev_data->domain != NULL)
3339
		detach_device(dev);
3340 3341 3342 3343 3344 3345 3346 3347

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3348 3349 3350 3351
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3352
	struct iommu_dev_data *dev_data;
3353
	struct amd_iommu *iommu;
3354
	int ret;
3355

3356
	if (!check_device(dev))
3357 3358
		return -EINVAL;

3359 3360
	dev_data = dev->archdata.iommu;

3361
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3362 3363 3364
	if (!iommu)
		return -EINVAL;

3365
	if (dev_data->domain)
3366
		detach_device(dev);
3367

3368
	ret = attach_device(dev, domain);
3369 3370 3371

	iommu_completion_wait(iommu);

3372
	return ret;
3373 3374
}

3375
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3376
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3377 3378 3379 3380 3381
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3382 3383 3384
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3385 3386 3387 3388 3389
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3390
	mutex_lock(&domain->api_lock);
3391
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3392 3393
	mutex_unlock(&domain->api_lock);

3394
	return ret;
3395 3396
}

3397 3398
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3399 3400
{
	struct protection_domain *domain = dom->priv;
3401
	size_t unmap_size;
3402

3403 3404 3405
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3406
	mutex_lock(&domain->api_lock);
3407
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3408
	mutex_unlock(&domain->api_lock);
3409

3410
	domain_flush_tlb_pde(domain);
3411

3412
	return unmap_size;
3413 3414
}

3415 3416 3417 3418
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
3419
	unsigned long offset_mask;
3420
	phys_addr_t paddr;
3421
	u64 *pte, __pte;
3422

3423 3424 3425
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3426
	pte = fetch_pte(domain, iova);
3427

3428
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3429 3430
		return 0;

3431 3432 3433 3434 3435 3436 3437
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3438 3439 3440 3441

	return paddr;
}

S
Sheng Yang 已提交
3442 3443 3444
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
3445 3446 3447
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
3448 3449
	case IOMMU_CAP_INTR_REMAP:
		return irq_remapping_enabled;
3450 3451
	}

S
Sheng Yang 已提交
3452 3453 3454
	return 0;
}

3455 3456 3457 3458 3459
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3460 3461
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3462
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
3463
	.domain_has_cap = amd_iommu_domain_has_cap,
3464
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3465 3466
};

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3479
	struct iommu_dev_data *dev_data;
3480
	struct pci_dev *dev = NULL;
3481
	struct amd_iommu *iommu;
3482
	u16 devid;
3483
	int ret;
3484

3485 3486 3487
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3488

3489
	for_each_pci_dev(dev) {
3490
		if (!check_device(&dev->dev))
3491 3492
			continue;

3493 3494 3495
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3496 3497
		devid = get_device_id(&dev->dev);

3498
		iommu = amd_iommu_rlookup_table[devid];
3499 3500 3501
		if (!iommu)
			continue;

3502
		attach_device(&dev->dev, pt_domain);
3503 3504
	}

J
Joerg Roedel 已提交
3505 3506
	amd_iommu_stats_init();

3507 3508 3509 3510
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3652 3653
	INC_STATS_COUNTER(invalidate_iotlb);

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3674 3675
	INC_STATS_COUNTER(invalidate_iotlb_all);

3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3787 3788 3789 3790 3791 3792 3793 3794

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3795 3796
	INC_STATS_COUNTER(complete_ppr);

3797 3798 3799 3800 3801 3802 3803 3804 3805
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3960
		table = NULL;
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			struct irq_2_iommu *irte_info;

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

4020
			cfg->remapped	      = 1;
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
			irte_info             = &cfg->irq_2_iommu;
			irte_info->sub_handle = devid;
			irte_info->irte_index = index;

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	irte_info = &cfg->irq_2_iommu;
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
4130
	cfg->remapped	      = 1;
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
	irte_info->sub_handle = devid;
	irte_info->irte_index = index;

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
	struct irq_2_iommu *irte_info;
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

	cfg       = data->chip_data;
	irq       = data->irq;
	irte_info = &cfg->irq_2_iommu;

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

	if (get_irte(irte_info->sub_handle, irte_info->irte_index, &irte))
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

	modify_irte(irte_info->sub_handle, irte_info->irte_index, irte);

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	irte_info = &cfg->irq_2_iommu;

	free_irte(irte_info->sub_handle, irte_info->irte_index);

	return 0;
}

4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;
	union irte irte;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return;

	irte_info = &cfg->irq_2_iommu;

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

	modify_irte(irte_info->sub_handle, irte_info->irte_index, irte);

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
	msg->data       = irte_info->irte_index;
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
	index = alloc_irq_index(cfg, devid, nvec);

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
	irte_info	= &cfg->irq_2_iommu;

4291
	cfg->remapped	      = 1;
4292 4293 4294 4295 4296 4297
	irte_info->sub_handle = devid;
	irte_info->irte_index = index + offset;

	return 0;
}

4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
static int setup_hpet_msi(unsigned int irq, unsigned int id)
{
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;
	int index, devid;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	irte_info = &cfg->irq_2_iommu;
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

	index = alloc_irq_index(cfg, devid, 1);
	if (index < 0)
		return index;

4317
	cfg->remapped	      = 1;
4318 4319 4320 4321 4322 4323
	irte_info->sub_handle = devid;
	irte_info->irte_index = index;

	return 0;
}

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
struct irq_remap_ops amd_iommu_irq_ops = {
	.supported		= amd_iommu_supported,
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
	.setup_hpet_msi		= setup_hpet_msi,
};
4339
#endif