slab_common.c 34.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
14 15
#include <linux/cpu.h>
#include <linux/uaccess.h>
16 17
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
18 19 20
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
21
#include <linux/memcontrol.h>
22 23

#define CREATE_TRACE_POINTS
24
#include <trace/events/kmem.h>
25

26 27 28
#include "slab.h"

enum slab_state slab_state;
29 30
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
31
struct kmem_cache *kmem_cache;
32

33 34 35 36 37
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

38 39 40 41 42
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
43
		SLAB_FAILSLAB | SLAB_KASAN)
44

V
Vladimir Davydov 已提交
45 46
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
			 SLAB_NOTRACK | SLAB_ACCOUNT)
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 * (Could be removed. This was introduced to pacify the merge skeptics.)
 */
static int slab_nomerge;

static int __init setup_slab_nomerge(char *str)
{
	slab_nomerge = 1;
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

66 67 68 69 70 71 72 73 74
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

75
#ifdef CONFIG_DEBUG_VM
76
static int kmem_cache_sanity_check(const char *name, size_t size)
77 78 79 80 81
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
82 83
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
84
	}
85

86 87 88 89 90 91 92 93 94 95 96
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
97
			pr_err("Slab cache with size %d has lost its name\n",
98 99 100 101 102 103
			       s->object_size);
			continue;
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
104 105 106
	return 0;
}
#else
107
static inline int kmem_cache_sanity_check(const char *name, size_t size)
108 109 110
{
	return 0;
}
111 112
#endif

113 114 115 116
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

117 118 119 120 121 122
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
123 124
}

125
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
126 127 128 129 130 131 132 133
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
134
			return 0;
135 136
		}
	}
137
	return i;
138 139
}

140
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
141 142 143

LIST_HEAD(slab_root_caches);

144
void slab_init_memcg_params(struct kmem_cache *s)
145
{
T
Tejun Heo 已提交
146
	s->memcg_params.root_cache = NULL;
147
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
T
Tejun Heo 已提交
148
	INIT_LIST_HEAD(&s->memcg_params.children);
149 150 151 152 153 154
}

static int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;
155

T
Tejun Heo 已提交
156
	if (root_cache) {
157
		s->memcg_params.root_cache = root_cache;
T
Tejun Heo 已提交
158 159
		s->memcg_params.memcg = memcg;
		INIT_LIST_HEAD(&s->memcg_params.children_node);
160
		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
161
		return 0;
162
	}
163

164
	slab_init_memcg_params(s);
165

166 167
	if (!memcg_nr_cache_ids)
		return 0;
168

169 170 171 172 173
	arr = kzalloc(sizeof(struct memcg_cache_array) +
		      memcg_nr_cache_ids * sizeof(void *),
		      GFP_KERNEL);
	if (!arr)
		return -ENOMEM;
174

175
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
176 177 178
	return 0;
}

179
static void destroy_memcg_params(struct kmem_cache *s)
180
{
181 182
	if (is_root_cache(s))
		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183 184
}

185
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
186
{
187
	struct memcg_cache_array *old, *new;
188

189 190 191
	new = kzalloc(sizeof(struct memcg_cache_array) +
		      new_array_size * sizeof(void *), GFP_KERNEL);
	if (!new)
192 193
		return -ENOMEM;

194 195 196 197 198
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
199

200 201 202
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
		kfree_rcu(old, rcu);
203 204 205
	return 0;
}

206 207 208 209 210
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

211
	mutex_lock(&slab_mutex);
212
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
213
		ret = update_memcg_params(s, num_memcgs);
214 215 216 217 218
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
219
			break;
220 221 222 223
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
224

225
void memcg_link_cache(struct kmem_cache *s)
226
{
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	if (is_root_cache(s)) {
		list_add(&s->root_caches_node, &slab_root_caches);
	} else {
		list_add(&s->memcg_params.children_node,
			 &s->memcg_params.root_cache->memcg_params.children);
		list_add(&s->memcg_params.kmem_caches_node,
			 &s->memcg_params.memcg->kmem_caches);
	}
}

static void memcg_unlink_cache(struct kmem_cache *s)
{
	if (is_root_cache(s)) {
		list_del(&s->root_caches_node);
	} else {
		list_del(&s->memcg_params.children_node);
		list_del(&s->memcg_params.kmem_caches_node);
	}
245
}
246
#else
247 248
static inline int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
249 250 251 252
{
	return 0;
}

253
static inline void destroy_memcg_params(struct kmem_cache *s)
254 255
{
}
256

257
static inline void memcg_unlink_cache(struct kmem_cache *s)
258 259
{
}
260
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
261

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *))
{
	struct kmem_cache *s;

290
	if (slab_nomerge)
291 292 293 294 295 296 297 298 299 300
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

301 302 303
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

304
	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

323 324 325 326
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

327 328 329 330 331
		return s;
	}
	return NULL;
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

359 360 361 362
static struct kmem_cache *create_cache(const char *name,
		size_t object_size, size_t size, size_t align,
		unsigned long flags, void (*ctor)(void *),
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
{
	struct kmem_cache *s;
	int err;

	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->object_size = object_size;
	s->size = size;
	s->align = align;
	s->ctor = ctor;

378
	err = init_memcg_params(s, memcg, root_cache);
379 380 381 382 383 384 385 386 387
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
388
	memcg_link_cache(s);
389 390 391 392 393 394
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
395
	destroy_memcg_params(s);
396
	kmem_cache_free(kmem_cache, s);
397 398
	goto out;
}
399

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
424
struct kmem_cache *
425 426
kmem_cache_create(const char *name, size_t size, size_t align,
		  unsigned long flags, void (*ctor)(void *))
427
{
428
	struct kmem_cache *s = NULL;
429
	const char *cache_name;
430
	int err;
431

432
	get_online_cpus();
433
	get_online_mems();
434
	memcg_get_cache_ids();
435

436
	mutex_lock(&slab_mutex);
437

438
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
439
	if (err) {
440
		goto out_unlock;
A
Andrew Morton 已提交
441
	}
442

443 444 445 446 447 448
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

449 450 451 452 453 454 455
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
456

457 458
	s = __kmem_cache_alias(name, size, align, flags, ctor);
	if (s)
459
		goto out_unlock;
460

461
	cache_name = kstrdup_const(name, GFP_KERNEL);
462 463 464 465
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
466

467 468 469
	s = create_cache(cache_name, size, size,
			 calculate_alignment(flags, align, size),
			 flags, ctor, NULL, NULL);
470 471
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
472
		kfree_const(cache_name);
473
	}
474 475

out_unlock:
476
	mutex_unlock(&slab_mutex);
477

478
	memcg_put_cache_ids();
479
	put_online_mems();
480 481
	put_online_cpus();

482
	if (err) {
483 484 485 486
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
487
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
488 489 490 491 492
				name, err);
			dump_stack();
		}
		return NULL;
	}
493 494
	return s;
}
495
EXPORT_SYMBOL(kmem_cache_create);
496

497
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
498
{
499 500
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
501

502 503 504 505 506 507 508 509 510 511 512 513
	/*
	 * On destruction, SLAB_DESTROY_BY_RCU kmem_caches are put on the
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
514

515 516 517 518 519 520 521 522 523 524 525 526
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
527 528
}

529
static int shutdown_cache(struct kmem_cache *s)
530
{
531 532 533
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

534 535
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
536

537
	memcg_unlink_cache(s);
538
	list_del(&s->list);
539

540 541 542 543
	if (s->flags & SLAB_DESTROY_BY_RCU) {
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
544
#ifdef SLAB_SUPPORTS_SYSFS
545
		sysfs_slab_release(s);
546 547 548 549
#else
		slab_kmem_cache_release(s);
#endif
	}
550 551

	return 0;
552 553
}

554
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
555
/*
556
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
557 558 559 560 561 562 563
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
564 565
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
566
{
567
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
568
	struct cgroup_subsys_state *css = &memcg->css;
569
	struct memcg_cache_array *arr;
570
	struct kmem_cache *s = NULL;
571
	char *cache_name;
572
	int idx;
573 574

	get_online_cpus();
575 576
	get_online_mems();

577 578
	mutex_lock(&slab_mutex);

579
	/*
580
	 * The memory cgroup could have been offlined while the cache
581 582
	 * creation work was pending.
	 */
583
	if (memcg->kmem_state != KMEM_ONLINE)
584 585
		goto out_unlock;

586 587 588 589
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

590 591 592 593 594
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
595
	if (arr->entries[idx])
596 597
		goto out_unlock;

598
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
599 600
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
601 602 603
	if (!cache_name)
		goto out_unlock;

604 605
	s = create_cache(cache_name, root_cache->object_size,
			 root_cache->size, root_cache->align,
606 607
			 root_cache->flags & CACHE_CREATE_MASK,
			 root_cache->ctor, memcg, root_cache);
608 609 610 611 612
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
613
	if (IS_ERR(s)) {
614
		kfree(cache_name);
615
		goto out_unlock;
616
	}
617

618 619 620 621 622 623
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
624
	arr->entries[idx] = s;
625

626 627
out_unlock:
	mutex_unlock(&slab_mutex);
628 629

	put_online_mems();
630
	put_online_cpus();
631
}
632

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
static void kmemcg_deactivate_workfn(struct work_struct *work)
{
	struct kmem_cache *s = container_of(work, struct kmem_cache,
					    memcg_params.deact_work);

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);

	s->memcg_params.deact_fn(s);

	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();

	/* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
	css_put(&s->memcg_params.memcg->css);
}

static void kmemcg_deactivate_rcufn(struct rcu_head *head)
{
	struct kmem_cache *s = container_of(head, struct kmem_cache,
					    memcg_params.deact_rcu_head);

	/*
	 * We need to grab blocking locks.  Bounce to ->deact_work.  The
	 * work item shares the space with the RCU head and can't be
	 * initialized eariler.
	 */
	INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
665
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
}

/**
 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
 *					   sched RCU grace period
 * @s: target kmem_cache
 * @deact_fn: deactivation function to call
 *
 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
 * held after a sched RCU grace period.  The slab is guaranteed to stay
 * alive until @deact_fn is finished.  This is to be used from
 * __kmemcg_cache_deactivate().
 */
void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
					   void (*deact_fn)(struct kmem_cache *))
{
	if (WARN_ON_ONCE(is_root_cache(s)) ||
	    WARN_ON_ONCE(s->memcg_params.deact_fn))
		return;

	/* pin memcg so that @s doesn't get destroyed in the middle */
	css_get(&s->memcg_params.memcg->css);

	s->memcg_params.deact_fn = deact_fn;
	call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
}

693 694 695 696
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
697
	struct kmem_cache *s, *c;
698 699 700

	idx = memcg_cache_id(memcg);

701 702 703
	get_online_cpus();
	get_online_mems();

704
	mutex_lock(&slab_mutex);
705
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
706 707
		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
708 709 710 711
		c = arr->entries[idx];
		if (!c)
			continue;

712
		__kmemcg_cache_deactivate(c);
713 714 715
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
716 717 718

	put_online_mems();
	put_online_cpus();
719 720
}

721
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
722
{
723
	struct kmem_cache *s, *s2;
724

725 726
	get_online_cpus();
	get_online_mems();
727 728

	mutex_lock(&slab_mutex);
729 730
	list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
				 memcg_params.kmem_caches_node) {
731 732 733 734
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
735
		BUG_ON(shutdown_cache(s));
736 737
	}
	mutex_unlock(&slab_mutex);
738

739 740
	put_online_mems();
	put_online_cpus();
741
}
742

743
static int shutdown_memcg_caches(struct kmem_cache *s)
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
762
		if (shutdown_cache(c))
763 764 765 766 767
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
T
Tejun Heo 已提交
768
			list_move(&c->memcg_params.children_node, &busy);
769 770 771 772 773 774 775 776 777 778 779 780 781 782
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
T
Tejun Heo 已提交
783 784
	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
				 memcg_params.children_node)
785
		shutdown_cache(c);
786

T
Tejun Heo 已提交
787
	list_splice(&busy, &s->memcg_params.children);
788 789 790 791 792

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
T
Tejun Heo 已提交
793
	if (!list_empty(&s->memcg_params.children))
794 795 796 797
		return -EBUSY;
	return 0;
}
#else
798
static inline int shutdown_memcg_caches(struct kmem_cache *s)
799 800 801
{
	return 0;
}
802
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
803

804 805
void slab_kmem_cache_release(struct kmem_cache *s)
{
806
	__kmem_cache_release(s);
807
	destroy_memcg_params(s);
808
	kfree_const(s->name);
809 810 811
	kmem_cache_free(kmem_cache, s);
}

812 813
void kmem_cache_destroy(struct kmem_cache *s)
{
814
	int err;
815

816 817 818
	if (unlikely(!s))
		return;

819
	get_online_cpus();
820 821
	get_online_mems();

822
	mutex_lock(&slab_mutex);
823

824
	s->refcount--;
825 826 827
	if (s->refcount)
		goto out_unlock;

828
	err = shutdown_memcg_caches(s);
829
	if (!err)
830
		err = shutdown_cache(s);
831

832
	if (err) {
J
Joe Perches 已提交
833 834
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
835 836
		dump_stack();
	}
837 838
out_unlock:
	mutex_unlock(&slab_mutex);
839

840
	put_online_mems();
841 842 843 844
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

845 846 847 848 849 850 851 852 853 854 855 856 857
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
858
	kasan_cache_shrink(cachep);
859
	ret = __kmem_cache_shrink(cachep);
860 861 862 863 864 865
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

866
bool slab_is_available(void)
867 868 869
{
	return slab_state >= UP;
}
870

871 872 873 874 875 876 877 878 879
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
		unsigned long flags)
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
880
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
881 882 883

	slab_init_memcg_params(s);

884 885 886
	err = __kmem_cache_create(s, flags);

	if (err)
887
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
				unsigned long flags)
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags);
	list_add(&s->list, &slab_caches);
903
	memcg_link_cache(s);
904 905 906 907
	s->refcount = 1;
	return s;
}

908 909 910 911 912 913 914 915
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

962
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
963
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
964
		return NULL;
965
	}
966

967 968 969 970 971 972 973 974 975
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
976
	if (unlikely((flags & GFP_DMA)))
977 978 979 980 981 982
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

983 984 985 986 987
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
988
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
	{"kmalloc-67108864", 67108864}
};

1005
/*
1006 1007 1008 1009 1010 1011 1012 1013 1014
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
1015
 */
1016
void __init setup_kmalloc_cache_index_table(void)
1017 1018 1019
{
	int i;

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
1050 1051
}

1052
static void __init new_kmalloc_cache(int idx, unsigned long flags)
1053 1054 1055 1056 1057
{
	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
					kmalloc_info[idx].size, flags);
}

1058 1059 1060 1061 1062 1063 1064 1065 1066
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
void __init create_kmalloc_caches(unsigned long flags)
{
	int i;

1067 1068 1069
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i])
			new_kmalloc_cache(i, flags);
1070

1071
		/*
1072 1073 1074
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
1075
		 */
1076 1077 1078 1079
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			new_kmalloc_cache(1, flags);
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			new_kmalloc_cache(2, flags);
1080 1081
	}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
				size, SLAB_CACHE_DMA | flags);
		}
	}
#endif
}
1101 1102
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
1103 1104 1105 1106 1107
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
1108 1109 1110 1111 1112 1113
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
1114
	page = alloc_pages(flags, order);
V
Vladimir Davydov 已提交
1115 1116
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
1117
	kasan_kmalloc_large(ret, size, flags);
V
Vladimir Davydov 已提交
1118 1119 1120 1121
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1122 1123 1124 1125 1126 1127 1128 1129 1130
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
			size_t count)
{
	size_t i;
	unsigned int rand;

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

1179
#ifdef CONFIG_SLABINFO
1180 1181 1182 1183 1184 1185 1186

#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

1187
static void print_slabinfo_header(struct seq_file *m)
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1198
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1199 1200 1201
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1202
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1203 1204 1205 1206 1207
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1208
void *slab_start(struct seq_file *m, loff_t *pos)
1209 1210
{
	mutex_lock(&slab_mutex);
1211
	return seq_list_start(&slab_root_caches, *pos);
1212 1213
}

1214
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1215
{
1216
	return seq_list_next(p, &slab_root_caches, pos);
1217 1218
}

1219
void slab_stop(struct seq_file *m, void *p)
1220 1221 1222 1223
{
	mutex_unlock(&slab_mutex);
}

1224 1225 1226 1227 1228 1229 1230 1231 1232
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1233
	for_each_memcg_cache(c, s) {
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1245
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1246
{
1247 1248 1249 1250 1251
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1252 1253
	memcg_accumulate_slabinfo(s, &sinfo);

1254
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1255
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1256 1257 1258 1259 1260 1261 1262 1263
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1264 1265
}

1266
static int slab_show(struct seq_file *m, void *p)
1267
{
1268
	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1269

1270
	if (p == slab_root_caches.next)
1271
		print_slabinfo_header(m);
1272
	cache_show(s, m);
1273 1274 1275
	return 0;
}

1276
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	mutex_lock(&slab_mutex);
	return seq_list_start(&memcg->kmem_caches, *pos);
}

void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	return seq_list_next(p, &memcg->kmem_caches, pos);
}

void memcg_slab_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

1297 1298
int memcg_slab_show(struct seq_file *m, void *p)
{
1299 1300
	struct kmem_cache *s = list_entry(p, struct kmem_cache,
					  memcg_params.kmem_caches_node);
1301 1302
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

1303
	if (p == memcg->kmem_caches.next)
1304
		print_slabinfo_header(m);
1305
	cache_show(s, m);
1306
	return 0;
1307
}
1308
#endif
1309

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1324
	.start = slab_start,
1325 1326
	.next = slab_next,
	.stop = slab_stop,
1327
	.show = slab_show,
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1345 1346
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1347 1348 1349 1350
	return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1361
	if (ks >= new_size) {
1362
		kasan_krealloc((void *)p, new_size, flags);
1363
		return (void *)p;
1364
	}
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && p != ret)
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);