slab_common.c 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
14 15
#include <linux/cpu.h>
#include <linux/uaccess.h>
16 17
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
18 19 20 21
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>

22 23 24
#include "slab.h"

enum slab_state slab_state;
25 26
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
27
struct kmem_cache *kmem_cache;
28

29 30
#ifdef CONFIG_DEBUG_VM
static int kmem_cache_sanity_check(const char *name, size_t size)
31 32 33 34 35
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
36 37
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
38
	}
39

40 41 42 43 44 45 46 47 48 49 50
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
51
			pr_err("Slab cache with size %d has lost its name\n",
52 53 54 55 56
			       s->object_size);
			continue;
		}

		if (!strcmp(s->name, name)) {
57 58
			pr_err("%s (%s): Cache name already exists.\n",
			       __func__, name);
59 60
			dump_stack();
			s = NULL;
61
			return -EINVAL;
62 63 64 65
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
66 67 68 69 70 71 72
	return 0;
}
#else
static inline int kmem_cache_sanity_check(const char *name, size_t size)
{
	return 0;
}
73 74
#endif

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */

struct kmem_cache *kmem_cache_create(const char *name, size_t size, size_t align,
		unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *s = NULL;
104
	int err = 0;
105

106 107
	get_online_cpus();
	mutex_lock(&slab_mutex);
108 109 110 111

	if (!kmem_cache_sanity_check(name, size) == 0)
		goto out_locked;

112 113 114 115 116 117 118
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
119

120 121 122 123
	s = __kmem_cache_alias(name, size, align, flags, ctor);
	if (s)
		goto out_locked;

124
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
125
	if (s) {
126 127 128 129 130 131 132 133 134 135 136
		s->object_size = s->size = size;
		s->align = align;
		s->ctor = ctor;
		s->name = kstrdup(name, GFP_KERNEL);
		if (!s->name) {
			kmem_cache_free(kmem_cache, s);
			err = -ENOMEM;
			goto out_locked;
		}

		err = __kmem_cache_create(s, flags);
137
		if (!err) {
138

139
			s->refcount = 1;
140
			list_add(&s->list, &slab_caches);
141

142
		} else {
143
			kfree(s->name);
144 145
			kmem_cache_free(kmem_cache, s);
		}
146
	} else
147
		err = -ENOMEM;
148

149
out_locked:
150 151 152
	mutex_unlock(&slab_mutex);
	put_online_cpus();

153 154 155 156 157 158 159 160 161 162 163 164 165
	if (err) {

		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
				name, err);
			dump_stack();
		}

		return NULL;
	}
166 167 168 169

	return s;
}
EXPORT_SYMBOL(kmem_cache_create);
170

171 172 173 174 175 176 177 178 179
void kmem_cache_destroy(struct kmem_cache *s)
{
	get_online_cpus();
	mutex_lock(&slab_mutex);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);

		if (!__kmem_cache_shutdown(s)) {
180
			mutex_unlock(&slab_mutex);
181 182 183
			if (s->flags & SLAB_DESTROY_BY_RCU)
				rcu_barrier();

184
			kfree(s->name);
185
			kmem_cache_free(kmem_cache, s);
186 187
		} else {
			list_add(&s->list, &slab_caches);
188
			mutex_unlock(&slab_mutex);
189 190 191 192
			printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
				s->name);
			dump_stack();
		}
193 194
	} else {
		mutex_unlock(&slab_mutex);
195 196 197 198 199
	}
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

200 201 202 203
int slab_is_available(void)
{
	return slab_state >= UP;
}
204 205

#ifdef CONFIG_SLABINFO
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
static void print_slabinfo_header(struct seq_file *m)
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	mutex_lock(&slab_mutex);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

static int s_show(struct seq_file *m, void *p)
{
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
	return 0;
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
	proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
	return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */