slab_common.c 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
14 15
#include <linux/cpu.h>
#include <linux/uaccess.h>
16 17
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
18 19 20
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
21
#include <linux/memcontrol.h>
22

23 24 25
#include "slab.h"

enum slab_state slab_state;
26 27
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
28
struct kmem_cache *kmem_cache;
29

30
#ifdef CONFIG_DEBUG_VM
31 32
static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
				   size_t size)
33 34 35 36 37
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
38 39
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
40
	}
41

42 43 44 45 46 47 48 49 50 51 52
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
53
			pr_err("Slab cache with size %d has lost its name\n",
54 55 56 57
			       s->object_size);
			continue;
		}

58 59 60 61 62 63 64
		/*
		 * For simplicity, we won't check this in the list of memcg
		 * caches. We have control over memcg naming, and if there
		 * aren't duplicates in the global list, there won't be any
		 * duplicates in the memcg lists as well.
		 */
		if (!memcg && !strcmp(s->name, name)) {
65 66
			pr_err("%s (%s): Cache name already exists.\n",
			       __func__, name);
67 68
			dump_stack();
			s = NULL;
69
			return -EINVAL;
70 71 72 73
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
74 75 76
	return 0;
}
#else
77 78
static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
					  const char *name, size_t size)
79 80 81
{
	return 0;
}
82 83
#endif

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#ifdef CONFIG_MEMCG_KMEM
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;
	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list) {
		if (!is_root_cache(s))
			continue;

		ret = memcg_update_cache_size(s, num_memcgs);
		/*
		 * See comment in memcontrol.c, memcg_update_cache_size:
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
			goto out;
	}

	memcg_update_array_size(num_memcgs);
out:
	mutex_unlock(&slab_mutex);
	return ret;
}
#endif

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}


140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */

165 166
struct kmem_cache *
kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
G
Glauber Costa 已提交
167 168
			size_t align, unsigned long flags, void (*ctor)(void *),
			struct kmem_cache *parent_cache)
169 170
{
	struct kmem_cache *s = NULL;
171
	int err = 0;
172

173 174
	get_online_cpus();
	mutex_lock(&slab_mutex);
175

176
	if (!kmem_cache_sanity_check(memcg, name, size) == 0)
177 178
		goto out_locked;

179 180 181 182 183 184 185
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
186

187
	s = __kmem_cache_alias(memcg, name, size, align, flags, ctor);
188 189 190
	if (s)
		goto out_locked;

191
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
192
	if (s) {
193
		s->object_size = s->size = size;
194
		s->align = calculate_alignment(flags, align, size);
195
		s->ctor = ctor;
196

G
Glauber Costa 已提交
197
		if (memcg_register_cache(memcg, s, parent_cache)) {
198 199 200 201 202
			kmem_cache_free(kmem_cache, s);
			err = -ENOMEM;
			goto out_locked;
		}

203 204 205 206 207 208 209 210
		s->name = kstrdup(name, GFP_KERNEL);
		if (!s->name) {
			kmem_cache_free(kmem_cache, s);
			err = -ENOMEM;
			goto out_locked;
		}

		err = __kmem_cache_create(s, flags);
211 212
		if (!err) {
			s->refcount = 1;
213
			list_add(&s->list, &slab_caches);
214
			memcg_cache_list_add(memcg, s);
215
		} else {
216
			kfree(s->name);
217 218
			kmem_cache_free(kmem_cache, s);
		}
219
	} else
220
		err = -ENOMEM;
221

222
out_locked:
223 224 225
	mutex_unlock(&slab_mutex);
	put_online_cpus();

226 227 228 229 230 231 232 233 234 235 236 237 238
	if (err) {

		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
				name, err);
			dump_stack();
		}

		return NULL;
	}
239 240 241

	return s;
}
242 243 244 245 246

struct kmem_cache *
kmem_cache_create(const char *name, size_t size, size_t align,
		  unsigned long flags, void (*ctor)(void *))
{
G
Glauber Costa 已提交
247
	return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL);
248
}
249
EXPORT_SYMBOL(kmem_cache_create);
250

251 252
void kmem_cache_destroy(struct kmem_cache *s)
{
253 254 255
	/* Destroy all the children caches if we aren't a memcg cache */
	kmem_cache_destroy_memcg_children(s);

256 257 258 259 260 261 262
	get_online_cpus();
	mutex_lock(&slab_mutex);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);

		if (!__kmem_cache_shutdown(s)) {
263
			mutex_unlock(&slab_mutex);
264 265 266
			if (s->flags & SLAB_DESTROY_BY_RCU)
				rcu_barrier();

267
			memcg_release_cache(s);
268
			kfree(s->name);
269
			kmem_cache_free(kmem_cache, s);
270 271
		} else {
			list_add(&s->list, &slab_caches);
272
			mutex_unlock(&slab_mutex);
273 274 275 276
			printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
				s->name);
			dump_stack();
		}
277 278
	} else {
		mutex_unlock(&slab_mutex);
279 280 281 282 283
	}
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

284 285 286 287
int slab_is_available(void)
{
	return slab_state >= UP;
}
288

289 290 291 292 293 294 295 296 297
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
		unsigned long flags)
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
298
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
299 300 301
	err = __kmem_cache_create(s, flags);

	if (err)
302
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
				unsigned long flags)
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags);
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

#endif /* !CONFIG_SLOB */


325
#ifdef CONFIG_SLABINFO
326
void print_slabinfo_header(struct seq_file *m)
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	mutex_lock(&slab_mutex);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;
	int i;

	if (!is_root_cache(s))
		return;

	for_each_memcg_cache_index(i) {
		c = cache_from_memcg(s, i);
		if (!c)
			continue;

		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

int cache_show(struct kmem_cache *s, struct seq_file *m)
397
{
398 399 400 401 402
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

403 404
	memcg_accumulate_slabinfo(s, &sinfo);

405
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
406
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
407 408 409 410 411 412 413 414 415
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
	return 0;
416 417
}

418 419 420 421 422 423 424 425 426
static int s_show(struct seq_file *m, void *p)
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);

	if (!is_root_cache(s))
		return 0;
	return cache_show(s, m);
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
	proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
	return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */