slab_common.c 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
14 15
#include <linux/cpu.h>
#include <linux/uaccess.h>
16 17
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
18 19 20
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
21
#include <linux/memcontrol.h>
22

23 24 25
#include "slab.h"

enum slab_state slab_state;
26 27
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
28
struct kmem_cache *kmem_cache;
29

30
#ifdef CONFIG_DEBUG_VM
31 32
static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
				   size_t size)
33 34 35 36 37
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
38 39
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
40
	}
41

42 43 44 45 46 47 48 49 50 51 52
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
53
			pr_err("Slab cache with size %d has lost its name\n",
54 55 56 57
			       s->object_size);
			continue;
		}

58 59 60 61 62 63 64
		/*
		 * For simplicity, we won't check this in the list of memcg
		 * caches. We have control over memcg naming, and if there
		 * aren't duplicates in the global list, there won't be any
		 * duplicates in the memcg lists as well.
		 */
		if (!memcg && !strcmp(s->name, name)) {
65 66
			pr_err("%s (%s): Cache name already exists.\n",
			       __func__, name);
67 68
			dump_stack();
			s = NULL;
69
			return -EINVAL;
70 71 72 73
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
74 75 76
	return 0;
}
#else
77 78
static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
					  const char *name, size_t size)
79 80 81
{
	return 0;
}
82 83
#endif

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#ifdef CONFIG_MEMCG_KMEM
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;
	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list) {
		if (!is_root_cache(s))
			continue;

		ret = memcg_update_cache_size(s, num_memcgs);
		/*
		 * See comment in memcontrol.c, memcg_update_cache_size:
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
			goto out;
	}

	memcg_update_array_size(num_memcgs);
out:
	mutex_unlock(&slab_mutex);
	return ret;
}
#endif

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}


140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */

165 166 167
struct kmem_cache *
kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
			size_t align, unsigned long flags, void (*ctor)(void *))
168 169
{
	struct kmem_cache *s = NULL;
170
	int err = 0;
171

172 173
	get_online_cpus();
	mutex_lock(&slab_mutex);
174

175
	if (!kmem_cache_sanity_check(memcg, name, size) == 0)
176 177
		goto out_locked;

178 179 180 181 182 183 184
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
185

186
	s = __kmem_cache_alias(memcg, name, size, align, flags, ctor);
187 188 189
	if (s)
		goto out_locked;

190
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
191
	if (s) {
192
		s->object_size = s->size = size;
193
		s->align = calculate_alignment(flags, align, size);
194
		s->ctor = ctor;
195 196 197 198 199 200 201

		if (memcg_register_cache(memcg, s)) {
			kmem_cache_free(kmem_cache, s);
			err = -ENOMEM;
			goto out_locked;
		}

202 203 204 205 206 207 208 209
		s->name = kstrdup(name, GFP_KERNEL);
		if (!s->name) {
			kmem_cache_free(kmem_cache, s);
			err = -ENOMEM;
			goto out_locked;
		}

		err = __kmem_cache_create(s, flags);
210 211
		if (!err) {
			s->refcount = 1;
212
			list_add(&s->list, &slab_caches);
213
			memcg_cache_list_add(memcg, s);
214
		} else {
215
			kfree(s->name);
216 217
			kmem_cache_free(kmem_cache, s);
		}
218
	} else
219
		err = -ENOMEM;
220

221
out_locked:
222 223 224
	mutex_unlock(&slab_mutex);
	put_online_cpus();

225 226 227 228 229 230 231 232 233 234 235 236 237
	if (err) {

		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
				name, err);
			dump_stack();
		}

		return NULL;
	}
238 239 240

	return s;
}
241 242 243 244 245 246 247

struct kmem_cache *
kmem_cache_create(const char *name, size_t size, size_t align,
		  unsigned long flags, void (*ctor)(void *))
{
	return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor);
}
248
EXPORT_SYMBOL(kmem_cache_create);
249

250 251
void kmem_cache_destroy(struct kmem_cache *s)
{
252 253 254
	/* Destroy all the children caches if we aren't a memcg cache */
	kmem_cache_destroy_memcg_children(s);

255 256 257 258 259 260 261
	get_online_cpus();
	mutex_lock(&slab_mutex);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);

		if (!__kmem_cache_shutdown(s)) {
262
			mutex_unlock(&slab_mutex);
263 264 265
			if (s->flags & SLAB_DESTROY_BY_RCU)
				rcu_barrier();

266
			memcg_release_cache(s);
267
			kfree(s->name);
268
			kmem_cache_free(kmem_cache, s);
269 270
		} else {
			list_add(&s->list, &slab_caches);
271
			mutex_unlock(&slab_mutex);
272 273 274 275
			printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
				s->name);
			dump_stack();
		}
276 277
	} else {
		mutex_unlock(&slab_mutex);
278 279 280 281 282
	}
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

283 284 285 286
int slab_is_available(void)
{
	return slab_state >= UP;
}
287

288 289 290 291 292 293 294 295 296
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
		unsigned long flags)
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
297
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	err = __kmem_cache_create(s, flags);

	if (err)
		panic("Creation of kmalloc slab %s size=%zd failed. Reason %d\n",
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
				unsigned long flags)
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags);
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

#endif /* !CONFIG_SLOB */


324
#ifdef CONFIG_SLABINFO
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
static void print_slabinfo_header(struct seq_file *m)
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	mutex_lock(&slab_mutex);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

static int s_show(struct seq_file *m, void *p)
{
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
	return 0;
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
	proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
	return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */