slab_common.c 31.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
14 15
#include <linux/cpu.h>
#include <linux/uaccess.h>
16 17
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
18 19 20
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
21
#include <linux/memcontrol.h>
22 23

#define CREATE_TRACE_POINTS
24
#include <trace/events/kmem.h>
25

26 27 28
#include "slab.h"

enum slab_state slab_state;
29 30
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
31
struct kmem_cache *kmem_cache;
32

33 34 35 36 37
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

38 39 40 41 42
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
43
		SLAB_FAILSLAB | SLAB_KASAN)
44

V
Vladimir Davydov 已提交
45 46
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
			 SLAB_NOTRACK | SLAB_ACCOUNT)
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 * (Could be removed. This was introduced to pacify the merge skeptics.)
 */
static int slab_nomerge;

static int __init setup_slab_nomerge(char *str)
{
	slab_nomerge = 1;
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

66 67 68 69 70 71 72 73 74
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

75
#ifdef CONFIG_DEBUG_VM
76
static int kmem_cache_sanity_check(const char *name, size_t size)
77 78 79 80 81
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
82 83
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
84
	}
85

86 87 88 89 90 91 92 93 94 95 96
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
97
			pr_err("Slab cache with size %d has lost its name\n",
98 99 100 101 102 103
			       s->object_size);
			continue;
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
104 105 106
	return 0;
}
#else
107
static inline int kmem_cache_sanity_check(const char *name, size_t size)
108 109 110
{
	return 0;
}
111 112
#endif

113 114 115 116
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

117 118 119 120 121 122
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
123 124
}

125
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
126 127 128 129 130 131 132 133
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
134
			return 0;
135 136
		}
	}
137
	return i;
138 139
}

140
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
141
void slab_init_memcg_params(struct kmem_cache *s)
142
{
143
	s->memcg_params.is_root_cache = true;
144
	INIT_LIST_HEAD(&s->memcg_params.list);
145 146 147 148 149 150 151
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
}

static int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;
152

153 154 155 156
	if (memcg) {
		s->memcg_params.is_root_cache = false;
		s->memcg_params.memcg = memcg;
		s->memcg_params.root_cache = root_cache;
157
		return 0;
158
	}
159

160
	slab_init_memcg_params(s);
161

162 163
	if (!memcg_nr_cache_ids)
		return 0;
164

165 166 167 168 169
	arr = kzalloc(sizeof(struct memcg_cache_array) +
		      memcg_nr_cache_ids * sizeof(void *),
		      GFP_KERNEL);
	if (!arr)
		return -ENOMEM;
170

171
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
172 173 174
	return 0;
}

175
static void destroy_memcg_params(struct kmem_cache *s)
176
{
177 178
	if (is_root_cache(s))
		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
179 180
}

181
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
182
{
183
	struct memcg_cache_array *old, *new;
184

185 186
	if (!is_root_cache(s))
		return 0;
187

188 189 190
	new = kzalloc(sizeof(struct memcg_cache_array) +
		      new_array_size * sizeof(void *), GFP_KERNEL);
	if (!new)
191 192
		return -ENOMEM;

193 194 195 196 197
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
198

199 200 201
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
		kfree_rcu(old, rcu);
202 203 204
	return 0;
}

205 206 207 208 209
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

210
	mutex_lock(&slab_mutex);
211
	list_for_each_entry(s, &slab_caches, list) {
212
		ret = update_memcg_params(s, num_memcgs);
213 214 215 216 217
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
218
			break;
219 220 221 222
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
223 224 225 226 227

static void unlink_memcg_cache(struct kmem_cache *s)
{
	list_del(&s->memcg_params.list);
}
228
#else
229 230
static inline int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
231 232 233 234
{
	return 0;
}

235
static inline void destroy_memcg_params(struct kmem_cache *s)
236 237
{
}
238 239 240 241

static inline void unlink_memcg_cache(struct kmem_cache *s)
{
}
242
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *))
{
	struct kmem_cache *s;

272
	if (slab_nomerge)
273 274 275 276 277 278 279 280 281 282
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

283 284 285
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

286
	list_for_each_entry_reverse(s, &slab_caches, list) {
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

305 306 307 308
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

309 310 311 312 313
		return s;
	}
	return NULL;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

341 342 343 344
static struct kmem_cache *create_cache(const char *name,
		size_t object_size, size_t size, size_t align,
		unsigned long flags, void (*ctor)(void *),
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
{
	struct kmem_cache *s;
	int err;

	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->object_size = object_size;
	s->size = size;
	s->align = align;
	s->ctor = ctor;

360
	err = init_memcg_params(s, memcg, root_cache);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
376
	destroy_memcg_params(s);
377
	kmem_cache_free(kmem_cache, s);
378 379
	goto out;
}
380

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
405
struct kmem_cache *
406 407
kmem_cache_create(const char *name, size_t size, size_t align,
		  unsigned long flags, void (*ctor)(void *))
408
{
409
	struct kmem_cache *s = NULL;
410
	const char *cache_name;
411
	int err;
412

413
	get_online_cpus();
414
	get_online_mems();
415
	memcg_get_cache_ids();
416

417
	mutex_lock(&slab_mutex);
418

419
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
420
	if (err) {
421
		goto out_unlock;
A
Andrew Morton 已提交
422
	}
423

424 425 426 427 428 429
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

430 431 432 433 434 435 436
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
437

438 439
	s = __kmem_cache_alias(name, size, align, flags, ctor);
	if (s)
440
		goto out_unlock;
441

442
	cache_name = kstrdup_const(name, GFP_KERNEL);
443 444 445 446
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
447

448 449 450
	s = create_cache(cache_name, size, size,
			 calculate_alignment(flags, align, size),
			 flags, ctor, NULL, NULL);
451 452
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
453
		kfree_const(cache_name);
454
	}
455 456

out_unlock:
457
	mutex_unlock(&slab_mutex);
458

459
	memcg_put_cache_ids();
460
	put_online_mems();
461 462
	put_online_cpus();

463
	if (err) {
464 465 466 467
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
468
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
469 470 471 472 473
				name, err);
			dump_stack();
		}
		return NULL;
	}
474 475
	return s;
}
476
EXPORT_SYMBOL(kmem_cache_create);
477

478
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
479
{
480 481
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
482

483 484 485 486 487 488 489 490 491 492 493 494
	/*
	 * On destruction, SLAB_DESTROY_BY_RCU kmem_caches are put on the
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
495

496 497 498 499 500 501 502 503 504 505 506 507
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
508 509
}

510
static int shutdown_cache(struct kmem_cache *s)
511
{
512 513
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
514

515 516 517
	list_del(&s->list);
	if (!is_root_cache(s))
		unlink_memcg_cache(s);
518

519 520 521 522
	if (s->flags & SLAB_DESTROY_BY_RCU) {
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
523
#ifdef SLAB_SUPPORTS_SYSFS
524
		sysfs_slab_release(s);
525 526 527 528
#else
		slab_kmem_cache_release(s);
#endif
	}
529 530

	return 0;
531 532
}

533
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
534
/*
535
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
536 537 538 539 540 541 542
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
543 544
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
545
{
546
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
547
	struct cgroup_subsys_state *css = &memcg->css;
548
	struct memcg_cache_array *arr;
549
	struct kmem_cache *s = NULL;
550
	char *cache_name;
551
	int idx;
552 553

	get_online_cpus();
554 555
	get_online_mems();

556 557
	mutex_lock(&slab_mutex);

558
	/*
559
	 * The memory cgroup could have been offlined while the cache
560 561
	 * creation work was pending.
	 */
562
	if (memcg->kmem_state != KMEM_ONLINE)
563 564
		goto out_unlock;

565 566 567 568
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

569 570 571 572 573
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
574
	if (arr->entries[idx])
575 576
		goto out_unlock;

577
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
578 579
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
580 581 582
	if (!cache_name)
		goto out_unlock;

583 584
	s = create_cache(cache_name, root_cache->object_size,
			 root_cache->size, root_cache->align,
585 586
			 root_cache->flags & CACHE_CREATE_MASK,
			 root_cache->ctor, memcg, root_cache);
587 588 589 590 591
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
592
	if (IS_ERR(s)) {
593
		kfree(cache_name);
594
		goto out_unlock;
595
	}
596

597 598
	list_add(&s->memcg_params.list, &root_cache->memcg_params.list);

599 600 601 602 603 604
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
605
	arr->entries[idx] = s;
606

607 608
out_unlock:
	mutex_unlock(&slab_mutex);
609 610

	put_online_mems();
611
	put_online_cpus();
612
}
613

614 615 616 617
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
618
	struct kmem_cache *s, *c;
619 620 621

	idx = memcg_cache_id(memcg);

622 623 624
	get_online_cpus();
	get_online_mems();

625 626 627 628 629 630 631
	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		if (!is_root_cache(s))
			continue;

		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
632 633 634 635
		c = arr->entries[idx];
		if (!c)
			continue;

636
		__kmem_cache_shrink(c, true);
637 638 639
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
640 641 642

	put_online_mems();
	put_online_cpus();
643 644
}

645
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
646
{
647
	struct kmem_cache *s, *s2;
648

649 650
	get_online_cpus();
	get_online_mems();
651 652

	mutex_lock(&slab_mutex);
653
	list_for_each_entry_safe(s, s2, &slab_caches, list) {
654
		if (is_root_cache(s) || s->memcg_params.memcg != memcg)
655 656 657 658 659
			continue;
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
660
		BUG_ON(shutdown_cache(s));
661 662
	}
	mutex_unlock(&slab_mutex);
663

664 665
	put_online_mems();
	put_online_cpus();
666
}
667

668
static int shutdown_memcg_caches(struct kmem_cache *s)
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
687
		if (shutdown_cache(c))
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
			list_move(&c->memcg_params.list, &busy);
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
	list_for_each_entry_safe(c, c2, &s->memcg_params.list,
				 memcg_params.list)
710
		shutdown_cache(c);
711 712 713 714 715 716 717 718 719 720 721 722

	list_splice(&busy, &s->memcg_params.list);

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
	if (!list_empty(&s->memcg_params.list))
		return -EBUSY;
	return 0;
}
#else
723
static inline int shutdown_memcg_caches(struct kmem_cache *s)
724 725 726
{
	return 0;
}
727
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
728

729 730
void slab_kmem_cache_release(struct kmem_cache *s)
{
731
	__kmem_cache_release(s);
732
	destroy_memcg_params(s);
733
	kfree_const(s->name);
734 735 736
	kmem_cache_free(kmem_cache, s);
}

737 738
void kmem_cache_destroy(struct kmem_cache *s)
{
739
	int err;
740

741 742 743
	if (unlikely(!s))
		return;

744
	get_online_cpus();
745 746
	get_online_mems();

747
	kasan_cache_destroy(s);
748
	mutex_lock(&slab_mutex);
749

750
	s->refcount--;
751 752 753
	if (s->refcount)
		goto out_unlock;

754
	err = shutdown_memcg_caches(s);
755
	if (!err)
756
		err = shutdown_cache(s);
757

758
	if (err) {
J
Joe Perches 已提交
759 760
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
761 762
		dump_stack();
	}
763 764
out_unlock:
	mutex_unlock(&slab_mutex);
765

766
	put_online_mems();
767 768 769 770
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

771 772 773 774 775 776 777 778 779 780 781 782 783
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
784
	kasan_cache_shrink(cachep);
785
	ret = __kmem_cache_shrink(cachep, false);
786 787 788 789 790 791
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

792
bool slab_is_available(void)
793 794 795
{
	return slab_state >= UP;
}
796

797 798 799 800 801 802 803 804 805
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
		unsigned long flags)
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
806
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
807 808 809

	slab_init_memcg_params(s);

810 811 812
	err = __kmem_cache_create(s, flags);

	if (err)
813
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
				unsigned long flags)
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags);
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

833 834 835 836 837 838 839 840
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

887
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
888
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
889
		return NULL;
890
	}
891

892 893 894 895 896 897 898 899 900
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
901
	if (unlikely((flags & GFP_DMA)))
902 903 904 905 906 907
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

908 909 910 911 912
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
913
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
	{"kmalloc-67108864", 67108864}
};

930
/*
931 932 933 934 935 936 937 938 939
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
940
 */
941
void __init setup_kmalloc_cache_index_table(void)
942 943 944
{
	int i;

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
975 976
}

977
static void __init new_kmalloc_cache(int idx, unsigned long flags)
978 979 980 981 982
{
	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
					kmalloc_info[idx].size, flags);
}

983 984 985 986 987 988 989 990 991
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
void __init create_kmalloc_caches(unsigned long flags)
{
	int i;

992 993 994
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i])
			new_kmalloc_cache(i, flags);
995

996
		/*
997 998 999
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
1000
		 */
1001 1002 1003 1004
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			new_kmalloc_cache(1, flags);
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			new_kmalloc_cache(2, flags);
1005 1006
	}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
				size, SLAB_CACHE_DMA | flags);
		}
	}
#endif
}
1026 1027
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
1028 1029 1030 1031 1032
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
1033 1034 1035 1036 1037 1038
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
1039
	page = alloc_pages(flags, order);
V
Vladimir Davydov 已提交
1040 1041
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
1042
	kasan_kmalloc_large(ret, size, flags);
V
Vladimir Davydov 已提交
1043 1044 1045 1046
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1047 1048 1049 1050 1051 1052 1053 1054 1055
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1056

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
			size_t count)
{
	size_t i;
	unsigned int rand;

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

1104
#ifdef CONFIG_SLABINFO
1105 1106 1107 1108 1109 1110 1111

#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

1112
static void print_slabinfo_header(struct seq_file *m)
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1123
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1124 1125 1126
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1127
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1128 1129 1130 1131 1132
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1133
void *slab_start(struct seq_file *m, loff_t *pos)
1134 1135 1136 1137 1138
{
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
}

1139
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1140 1141 1142 1143
{
	return seq_list_next(p, &slab_caches, pos);
}

1144
void slab_stop(struct seq_file *m, void *p)
1145 1146 1147 1148
{
	mutex_unlock(&slab_mutex);
}

1149 1150 1151 1152 1153 1154 1155 1156 1157
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1158
	for_each_memcg_cache(c, s) {
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1170
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1171
{
1172 1173 1174 1175 1176
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1177 1178
	memcg_accumulate_slabinfo(s, &sinfo);

1179
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1180
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1181 1182 1183 1184 1185 1186 1187 1188
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1189 1190
}

1191
static int slab_show(struct seq_file *m, void *p)
1192 1193 1194
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);

1195 1196
	if (p == slab_caches.next)
		print_slabinfo_header(m);
1197 1198 1199 1200 1201
	if (is_root_cache(s))
		cache_show(s, m);
	return 0;
}

1202
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1203 1204 1205 1206 1207 1208 1209
int memcg_slab_show(struct seq_file *m, void *p)
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	if (p == slab_caches.next)
		print_slabinfo_header(m);
1210
	if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1211 1212
		cache_show(s, m);
	return 0;
1213
}
1214
#endif
1215

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1230
	.start = slab_start,
1231 1232
	.next = slab_next,
	.stop = slab_stop,
1233
	.show = slab_show,
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1251 1252
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1253 1254 1255 1256
	return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1267
	if (ks >= new_size) {
1268
		kasan_krealloc((void *)p, new_size, flags);
1269
		return (void *)p;
1270
	}
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && p != ret)
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);