slab_common.c 17.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
14 15
#include <linux/cpu.h>
#include <linux/uaccess.h>
16 17
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
18 19 20
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
21
#include <linux/memcontrol.h>
22
#include <trace/events/kmem.h>
23

24 25 26
#include "slab.h"

enum slab_state slab_state;
27 28
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
29
struct kmem_cache *kmem_cache;
30

31
#ifdef CONFIG_DEBUG_VM
32
static int kmem_cache_sanity_check(const char *name, size_t size)
33 34 35 36 37
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
38 39
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
40
	}
41

42 43 44 45 46 47 48 49 50 51 52
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
53
			pr_err("Slab cache with size %d has lost its name\n",
54 55 56 57
			       s->object_size);
			continue;
		}

58
#if !defined(CONFIG_SLUB) || !defined(CONFIG_SLUB_DEBUG_ON)
59
		if (!strcmp(s->name, name)) {
60 61
			pr_err("%s (%s): Cache name already exists.\n",
			       __func__, name);
62 63
			dump_stack();
			s = NULL;
64
			return -EINVAL;
65
		}
66
#endif
67 68 69
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
70 71 72
	return 0;
}
#else
73
static inline int kmem_cache_sanity_check(const char *name, size_t size)
74 75 76
{
	return 0;
}
77 78
#endif

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
#ifdef CONFIG_MEMCG_KMEM
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;
	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list) {
		if (!is_root_cache(s))
			continue;

		ret = memcg_update_cache_size(s, num_memcgs);
		/*
		 * See comment in memcontrol.c, memcg_update_cache_size:
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
			goto out;
	}

	memcg_update_array_size(num_memcgs);
out:
	mutex_unlock(&slab_mutex);
	return ret;
}
#endif

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
static struct kmem_cache *
do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
		     unsigned long flags, void (*ctor)(void *),
		     struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct kmem_cache *s;
	int err;

	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->object_size = object_size;
	s->size = size;
	s->align = align;
	s->ctor = ctor;

	err = memcg_alloc_cache_params(memcg, s, root_cache);
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
	memcg_register_cache(s);
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
	memcg_free_cache_params(s);
	kfree(s);
	goto out;
}
174

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
199
struct kmem_cache *
200 201
kmem_cache_create(const char *name, size_t size, size_t align,
		  unsigned long flags, void (*ctor)(void *))
202
{
203 204
	struct kmem_cache *s;
	char *cache_name;
205
	int err;
206

207 208
	get_online_cpus();
	mutex_lock(&slab_mutex);
209

210
	err = kmem_cache_sanity_check(name, size);
211 212
	if (err)
		goto out_unlock;
213

214 215 216 217 218 219 220
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
221

222 223
	s = __kmem_cache_alias(name, size, align, flags, ctor);
	if (s)
224
		goto out_unlock;
225

226 227 228 229 230
	cache_name = kstrdup(name, GFP_KERNEL);
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
231

232 233 234 235 236 237 238
	s = do_kmem_cache_create(cache_name, size, size,
				 calculate_alignment(flags, align, size),
				 flags, ctor, NULL, NULL);
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
		kfree(cache_name);
	}
239 240

out_unlock:
241 242 243
	mutex_unlock(&slab_mutex);
	put_online_cpus();

244
	if (err) {
245 246 247 248 249 250 251 252 253 254
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
				name, err);
			dump_stack();
		}
		return NULL;
	}
255 256
	return s;
}
257
EXPORT_SYMBOL(kmem_cache_create);
258

259 260 261 262 263 264 265 266 267 268 269
#ifdef CONFIG_MEMCG_KMEM
/*
 * kmem_cache_create_memcg - Create a cache for a memory cgroup.
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
void kmem_cache_create_memcg(struct mem_cgroup *memcg, struct kmem_cache *root_cache)
270
{
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
	struct kmem_cache *s;
	char *cache_name;

	get_online_cpus();
	mutex_lock(&slab_mutex);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, memcg_cache_id(memcg)))
		goto out_unlock;

	cache_name = memcg_create_cache_name(memcg, root_cache);
	if (!cache_name)
		goto out_unlock;

	s = do_kmem_cache_create(cache_name, root_cache->object_size,
				 root_cache->size, root_cache->align,
				 root_cache->flags, root_cache->ctor,
				 memcg, root_cache);
293
	if (IS_ERR(s))
294 295 296 297 298
		kfree(cache_name);

out_unlock:
	mutex_unlock(&slab_mutex);
	put_online_cpus();
299
}
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

static int kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	int rc;

	if (!s->memcg_params ||
	    !s->memcg_params->is_root_cache)
		return 0;

	mutex_unlock(&slab_mutex);
	rc = __kmem_cache_destroy_memcg_children(s);
	mutex_lock(&slab_mutex);

	return rc;
}
#else
static int kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	return 0;
}
320
#endif /* CONFIG_MEMCG_KMEM */
321

322 323 324 325 326 327
void slab_kmem_cache_release(struct kmem_cache *s)
{
	kfree(s->name);
	kmem_cache_free(kmem_cache, s);
}

328 329 330 331
void kmem_cache_destroy(struct kmem_cache *s)
{
	get_online_cpus();
	mutex_lock(&slab_mutex);
332

333
	s->refcount--;
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
	if (s->refcount)
		goto out_unlock;

	if (kmem_cache_destroy_memcg_children(s) != 0)
		goto out_unlock;

	list_del(&s->list);
	memcg_unregister_cache(s);

	if (__kmem_cache_shutdown(s) != 0) {
		list_add(&s->list, &slab_caches);
		memcg_register_cache(s);
		printk(KERN_ERR "kmem_cache_destroy %s: "
		       "Slab cache still has objects\n", s->name);
		dump_stack();
		goto out_unlock;
350
	}
351 352 353 354 355 356

	mutex_unlock(&slab_mutex);
	if (s->flags & SLAB_DESTROY_BY_RCU)
		rcu_barrier();

	memcg_free_cache_params(s);
357 358 359 360 361
#ifdef SLAB_SUPPORTS_SYSFS
	sysfs_slab_remove(s);
#else
	slab_kmem_cache_release(s);
#endif
362 363 364 365 366
	goto out_put_cpus;

out_unlock:
	mutex_unlock(&slab_mutex);
out_put_cpus:
367 368 369 370
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

371 372 373 374
int slab_is_available(void)
{
	return slab_state >= UP;
}
375

376 377 378 379 380 381 382 383 384
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
		unsigned long flags)
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
385
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
386 387 388
	err = __kmem_cache_create(s, flags);

	if (err)
389
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
				unsigned long flags)
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags);
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

409 410 411 412 413 414 415 416
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

463
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
464
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
465
		return NULL;
466
	}
467

468 469 470 471 472 473 474 475 476
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
477
	if (unlikely((flags & GFP_DMA)))
478 479 480 481 482 483
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

484 485 486 487 488 489 490 491 492
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
void __init create_kmalloc_caches(unsigned long flags)
{
	int i;

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
	 * MIPS it seems. The standard arches will not generate any code here.
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
534 535
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i]) {
536 537
			kmalloc_caches[i] = create_kmalloc_cache(NULL,
							1 << i, flags);
538
		}
539

540 541 542 543 544 545 546
		/*
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
		 */
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
547

548 549
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
550 551
	}

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
	/* Kmalloc array is now usable */
	slab_state = UP;

	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];
		char *n;

		if (s) {
			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));

			BUG_ON(!n);
			s->name = n;
		}
	}

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
				size, SLAB_CACHE_DMA | flags);
		}
	}
#endif
}
583 584
#endif /* !CONFIG_SLOB */

585 586 587 588 589 590 591 592 593
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
594

595
#ifdef CONFIG_SLABINFO
596 597 598 599 600 601 602

#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

603
void print_slabinfo_header(struct seq_file *m)
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

626 627 628 629 630 631 632 633 634 635 636
static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	mutex_lock(&slab_mutex);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

637
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
638 639 640 641
{
	return seq_list_next(p, &slab_caches, pos);
}

642
void slab_stop(struct seq_file *m, void *p)
643 644 645 646
{
	mutex_unlock(&slab_mutex);
}

647 648 649 650 651 652 653 654 655 656 657
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;
	int i;

	if (!is_root_cache(s))
		return;

	for_each_memcg_cache_index(i) {
658
		c = cache_from_memcg_idx(s, i);
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
		if (!c)
			continue;

		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

int cache_show(struct kmem_cache *s, struct seq_file *m)
674
{
675 676 677 678 679
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

680 681
	memcg_accumulate_slabinfo(s, &sinfo);

682
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
683
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
684 685 686 687 688 689 690 691 692
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
	return 0;
693 694
}

695 696 697 698 699 700 701 702 703
static int s_show(struct seq_file *m, void *p)
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);

	if (!is_root_cache(s))
		return 0;
	return cache_show(s, m);
}

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
	.start = s_start,
719 720
	.next = slab_next,
	.stop = slab_stop,
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	.show = s_show,
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
739 740
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
741 742 743 744
	return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */