slab_common.c 32.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
14 15
#include <linux/cpu.h>
#include <linux/uaccess.h>
16 17
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
18 19 20
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
21
#include <linux/memcontrol.h>
22 23

#define CREATE_TRACE_POINTS
24
#include <trace/events/kmem.h>
25

26 27 28
#include "slab.h"

enum slab_state slab_state;
29 30
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
31
struct kmem_cache *kmem_cache;
32

33 34 35 36 37
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

38 39 40 41 42
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
43
		SLAB_FAILSLAB | SLAB_KASAN)
44

V
Vladimir Davydov 已提交
45 46
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
			 SLAB_NOTRACK | SLAB_ACCOUNT)
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 * (Could be removed. This was introduced to pacify the merge skeptics.)
 */
static int slab_nomerge;

static int __init setup_slab_nomerge(char *str)
{
	slab_nomerge = 1;
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

66 67 68 69 70 71 72 73 74
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

75
#ifdef CONFIG_DEBUG_VM
76
static int kmem_cache_sanity_check(const char *name, size_t size)
77 78 79 80 81
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
82 83
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
84
	}
85

86 87 88 89 90 91 92 93 94 95 96
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
97
			pr_err("Slab cache with size %d has lost its name\n",
98 99 100 101 102 103
			       s->object_size);
			continue;
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
104 105 106
	return 0;
}
#else
107
static inline int kmem_cache_sanity_check(const char *name, size_t size)
108 109 110
{
	return 0;
}
111 112
#endif

113 114 115 116
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

117 118 119 120 121 122
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
123 124
}

125
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
126 127 128 129 130 131 132 133
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
134
			return 0;
135 136
		}
	}
137
	return i;
138 139
}

140
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
141
void slab_init_memcg_params(struct kmem_cache *s)
142
{
T
Tejun Heo 已提交
143
	s->memcg_params.root_cache = NULL;
144
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
T
Tejun Heo 已提交
145
	INIT_LIST_HEAD(&s->memcg_params.children);
146 147 148 149 150 151
}

static int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;
152

T
Tejun Heo 已提交
153
	if (root_cache) {
154
		s->memcg_params.root_cache = root_cache;
T
Tejun Heo 已提交
155 156
		s->memcg_params.memcg = memcg;
		INIT_LIST_HEAD(&s->memcg_params.children_node);
157
		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
158
		return 0;
159
	}
160

161
	slab_init_memcg_params(s);
162

163 164
	if (!memcg_nr_cache_ids)
		return 0;
165

166 167 168 169 170
	arr = kzalloc(sizeof(struct memcg_cache_array) +
		      memcg_nr_cache_ids * sizeof(void *),
		      GFP_KERNEL);
	if (!arr)
		return -ENOMEM;
171

172
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
173 174 175
	return 0;
}

176
static void destroy_memcg_params(struct kmem_cache *s)
177
{
178 179
	if (is_root_cache(s))
		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
180 181
}

182
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
183
{
184
	struct memcg_cache_array *old, *new;
185

186 187
	if (!is_root_cache(s))
		return 0;
188

189 190 191
	new = kzalloc(sizeof(struct memcg_cache_array) +
		      new_array_size * sizeof(void *), GFP_KERNEL);
	if (!new)
192 193
		return -ENOMEM;

194 195 196 197 198
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
199

200 201 202
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
		kfree_rcu(old, rcu);
203 204 205
	return 0;
}

206 207 208 209 210
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

211
	mutex_lock(&slab_mutex);
212
	list_for_each_entry(s, &slab_caches, list) {
213
		ret = update_memcg_params(s, num_memcgs);
214 215 216 217 218
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
219
			break;
220 221 222 223
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
224 225 226

static void unlink_memcg_cache(struct kmem_cache *s)
{
T
Tejun Heo 已提交
227
	list_del(&s->memcg_params.children_node);
228
	list_del(&s->memcg_params.kmem_caches_node);
229
}
230
#else
231 232
static inline int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
233 234 235 236
{
	return 0;
}

237
static inline void destroy_memcg_params(struct kmem_cache *s)
238 239
{
}
240 241 242 243

static inline void unlink_memcg_cache(struct kmem_cache *s)
{
}
244
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
245

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *))
{
	struct kmem_cache *s;

274
	if (slab_nomerge)
275 276 277 278 279 280 281 282 283 284
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

285 286 287
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

288
	list_for_each_entry_reverse(s, &slab_caches, list) {
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

307 308 309 310
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

311 312 313 314 315
		return s;
	}
	return NULL;
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

343 344 345 346
static struct kmem_cache *create_cache(const char *name,
		size_t object_size, size_t size, size_t align,
		unsigned long flags, void (*ctor)(void *),
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
{
	struct kmem_cache *s;
	int err;

	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->object_size = object_size;
	s->size = size;
	s->align = align;
	s->ctor = ctor;

362
	err = init_memcg_params(s, memcg, root_cache);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
378
	destroy_memcg_params(s);
379
	kmem_cache_free(kmem_cache, s);
380 381
	goto out;
}
382

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
407
struct kmem_cache *
408 409
kmem_cache_create(const char *name, size_t size, size_t align,
		  unsigned long flags, void (*ctor)(void *))
410
{
411
	struct kmem_cache *s = NULL;
412
	const char *cache_name;
413
	int err;
414

415
	get_online_cpus();
416
	get_online_mems();
417
	memcg_get_cache_ids();
418

419
	mutex_lock(&slab_mutex);
420

421
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
422
	if (err) {
423
		goto out_unlock;
A
Andrew Morton 已提交
424
	}
425

426 427 428 429 430 431
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

432 433 434 435 436 437 438
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
439

440 441
	s = __kmem_cache_alias(name, size, align, flags, ctor);
	if (s)
442
		goto out_unlock;
443

444
	cache_name = kstrdup_const(name, GFP_KERNEL);
445 446 447 448
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
449

450 451 452
	s = create_cache(cache_name, size, size,
			 calculate_alignment(flags, align, size),
			 flags, ctor, NULL, NULL);
453 454
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
455
		kfree_const(cache_name);
456
	}
457 458

out_unlock:
459
	mutex_unlock(&slab_mutex);
460

461
	memcg_put_cache_ids();
462
	put_online_mems();
463 464
	put_online_cpus();

465
	if (err) {
466 467 468 469
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
470
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
471 472 473 474 475
				name, err);
			dump_stack();
		}
		return NULL;
	}
476 477
	return s;
}
478
EXPORT_SYMBOL(kmem_cache_create);
479

480
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
481
{
482 483
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
484

485 486 487 488 489 490 491 492 493 494 495 496
	/*
	 * On destruction, SLAB_DESTROY_BY_RCU kmem_caches are put on the
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
497

498 499 500 501 502 503 504 505 506 507 508 509
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
510 511
}

512
static int shutdown_cache(struct kmem_cache *s)
513
{
514 515
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
516

517 518 519
	list_del(&s->list);
	if (!is_root_cache(s))
		unlink_memcg_cache(s);
520

521 522 523 524
	if (s->flags & SLAB_DESTROY_BY_RCU) {
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
525
#ifdef SLAB_SUPPORTS_SYSFS
526
		sysfs_slab_release(s);
527 528 529 530
#else
		slab_kmem_cache_release(s);
#endif
	}
531 532

	return 0;
533 534
}

535
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
536
/*
537
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
538 539 540 541 542 543 544
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
545 546
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
547
{
548
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
549
	struct cgroup_subsys_state *css = &memcg->css;
550
	struct memcg_cache_array *arr;
551
	struct kmem_cache *s = NULL;
552
	char *cache_name;
553
	int idx;
554 555

	get_online_cpus();
556 557
	get_online_mems();

558 559
	mutex_lock(&slab_mutex);

560
	/*
561
	 * The memory cgroup could have been offlined while the cache
562 563
	 * creation work was pending.
	 */
564
	if (memcg->kmem_state != KMEM_ONLINE)
565 566
		goto out_unlock;

567 568 569 570
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

571 572 573 574 575
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
576
	if (arr->entries[idx])
577 578
		goto out_unlock;

579
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
580 581
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
582 583 584
	if (!cache_name)
		goto out_unlock;

585 586
	s = create_cache(cache_name, root_cache->object_size,
			 root_cache->size, root_cache->align,
587 588
			 root_cache->flags & CACHE_CREATE_MASK,
			 root_cache->ctor, memcg, root_cache);
589 590 591 592 593
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
594
	if (IS_ERR(s)) {
595
		kfree(cache_name);
596
		goto out_unlock;
597
	}
598

T
Tejun Heo 已提交
599 600
	list_add(&s->memcg_params.children_node,
		 &root_cache->memcg_params.children);
601
	list_add(&s->memcg_params.kmem_caches_node, &memcg->kmem_caches);
602

603 604 605 606 607 608
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
609
	arr->entries[idx] = s;
610

611 612
out_unlock:
	mutex_unlock(&slab_mutex);
613 614

	put_online_mems();
615
	put_online_cpus();
616
}
617

618 619 620 621
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
622
	struct kmem_cache *s, *c;
623 624 625

	idx = memcg_cache_id(memcg);

626 627 628
	get_online_cpus();
	get_online_mems();

629 630 631 632 633 634 635
	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		if (!is_root_cache(s))
			continue;

		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
636 637 638 639
		c = arr->entries[idx];
		if (!c)
			continue;

640
		__kmem_cache_shrink(c, true);
641 642 643
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
644 645 646

	put_online_mems();
	put_online_cpus();
647 648
}

649
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
650
{
651
	struct kmem_cache *s, *s2;
652

653 654
	get_online_cpus();
	get_online_mems();
655 656

	mutex_lock(&slab_mutex);
657 658
	list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
				 memcg_params.kmem_caches_node) {
659 660 661 662
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
663
		BUG_ON(shutdown_cache(s));
664 665
	}
	mutex_unlock(&slab_mutex);
666

667 668
	put_online_mems();
	put_online_cpus();
669
}
670

671
static int shutdown_memcg_caches(struct kmem_cache *s)
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
690
		if (shutdown_cache(c))
691 692 693 694 695
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
T
Tejun Heo 已提交
696
			list_move(&c->memcg_params.children_node, &busy);
697 698 699 700 701 702 703 704 705 706 707 708 709 710
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
T
Tejun Heo 已提交
711 712
	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
				 memcg_params.children_node)
713
		shutdown_cache(c);
714

T
Tejun Heo 已提交
715
	list_splice(&busy, &s->memcg_params.children);
716 717 718 719 720

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
T
Tejun Heo 已提交
721
	if (!list_empty(&s->memcg_params.children))
722 723 724 725
		return -EBUSY;
	return 0;
}
#else
726
static inline int shutdown_memcg_caches(struct kmem_cache *s)
727 728 729
{
	return 0;
}
730
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
731

732 733
void slab_kmem_cache_release(struct kmem_cache *s)
{
734
	__kmem_cache_release(s);
735
	destroy_memcg_params(s);
736
	kfree_const(s->name);
737 738 739
	kmem_cache_free(kmem_cache, s);
}

740 741
void kmem_cache_destroy(struct kmem_cache *s)
{
742
	int err;
743

744 745 746
	if (unlikely(!s))
		return;

747
	get_online_cpus();
748 749
	get_online_mems();

750
	kasan_cache_destroy(s);
751
	mutex_lock(&slab_mutex);
752

753
	s->refcount--;
754 755 756
	if (s->refcount)
		goto out_unlock;

757
	err = shutdown_memcg_caches(s);
758
	if (!err)
759
		err = shutdown_cache(s);
760

761
	if (err) {
J
Joe Perches 已提交
762 763
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
764 765
		dump_stack();
	}
766 767
out_unlock:
	mutex_unlock(&slab_mutex);
768

769
	put_online_mems();
770 771 772 773
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

774 775 776 777 778 779 780 781 782 783 784 785 786
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
787
	kasan_cache_shrink(cachep);
788
	ret = __kmem_cache_shrink(cachep, false);
789 790 791 792 793 794
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

795
bool slab_is_available(void)
796 797 798
{
	return slab_state >= UP;
}
799

800 801 802 803 804 805 806 807 808
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
		unsigned long flags)
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
809
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
810 811 812

	slab_init_memcg_params(s);

813 814 815
	err = __kmem_cache_create(s, flags);

	if (err)
816
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
				unsigned long flags)
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags);
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

836 837 838 839 840 841 842 843
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

890
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
891
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
892
		return NULL;
893
	}
894

895 896 897 898 899 900 901 902 903
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
904
	if (unlikely((flags & GFP_DMA)))
905 906 907 908 909 910
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

911 912 913 914 915
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
916
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
	{"kmalloc-67108864", 67108864}
};

933
/*
934 935 936 937 938 939 940 941 942
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
943
 */
944
void __init setup_kmalloc_cache_index_table(void)
945 946 947
{
	int i;

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
978 979
}

980
static void __init new_kmalloc_cache(int idx, unsigned long flags)
981 982 983 984 985
{
	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
					kmalloc_info[idx].size, flags);
}

986 987 988 989 990 991 992 993 994
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
void __init create_kmalloc_caches(unsigned long flags)
{
	int i;

995 996 997
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i])
			new_kmalloc_cache(i, flags);
998

999
		/*
1000 1001 1002
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
1003
		 */
1004 1005 1006 1007
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			new_kmalloc_cache(1, flags);
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			new_kmalloc_cache(2, flags);
1008 1009
	}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
				size, SLAB_CACHE_DMA | flags);
		}
	}
#endif
}
1029 1030
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
1031 1032 1033 1034 1035
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
1036 1037 1038 1039 1040 1041
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
1042
	page = alloc_pages(flags, order);
V
Vladimir Davydov 已提交
1043 1044
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
1045
	kasan_kmalloc_large(ret, size, flags);
V
Vladimir Davydov 已提交
1046 1047 1048 1049
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1050 1051 1052 1053 1054 1055 1056 1057 1058
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1059

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
			size_t count)
{
	size_t i;
	unsigned int rand;

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

1107
#ifdef CONFIG_SLABINFO
1108 1109 1110 1111 1112 1113 1114

#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

1115
static void print_slabinfo_header(struct seq_file *m)
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1126
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1127 1128 1129
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1130
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1131 1132 1133 1134 1135
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1136
void *slab_start(struct seq_file *m, loff_t *pos)
1137 1138 1139 1140 1141
{
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
}

1142
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1143 1144 1145 1146
{
	return seq_list_next(p, &slab_caches, pos);
}

1147
void slab_stop(struct seq_file *m, void *p)
1148 1149 1150 1151
{
	mutex_unlock(&slab_mutex);
}

1152 1153 1154 1155 1156 1157 1158 1159 1160
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1161
	for_each_memcg_cache(c, s) {
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1173
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1174
{
1175 1176 1177 1178 1179
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1180 1181
	memcg_accumulate_slabinfo(s, &sinfo);

1182
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1183
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1184 1185 1186 1187 1188 1189 1190 1191
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1192 1193
}

1194
static int slab_show(struct seq_file *m, void *p)
1195 1196 1197
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);

1198 1199
	if (p == slab_caches.next)
		print_slabinfo_header(m);
1200 1201 1202 1203 1204
	if (is_root_cache(s))
		cache_show(s, m);
	return 0;
}

1205
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	mutex_lock(&slab_mutex);
	return seq_list_start(&memcg->kmem_caches, *pos);
}

void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	return seq_list_next(p, &memcg->kmem_caches, pos);
}

void memcg_slab_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

1226 1227
int memcg_slab_show(struct seq_file *m, void *p)
{
1228 1229
	struct kmem_cache *s = list_entry(p, struct kmem_cache,
					  memcg_params.kmem_caches_node);
1230 1231
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

1232
	if (p == memcg->kmem_caches.next)
1233
		print_slabinfo_header(m);
1234
	cache_show(s, m);
1235
	return 0;
1236
}
1237
#endif
1238

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1253
	.start = slab_start,
1254 1255
	.next = slab_next,
	.stop = slab_stop,
1256
	.show = slab_show,
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1274 1275
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1276 1277 1278 1279
	return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1290
	if (ks >= new_size) {
1291
		kasan_krealloc((void *)p, new_size, flags);
1292
		return (void *)p;
1293
	}
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && p != ret)
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);