arm.c 38.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/bug.h>
20
#include <linux/cpu_pm.h>
21 22 23
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
24
#include <linux/list.h>
25 26 27 28 29
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
30
#include <linux/kvm.h>
31 32
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
33
#include <linux/sched/stat.h>
34
#include <trace/events/kvm.h>
35
#include <kvm/arm_pmu.h>
36
#include <kvm/arm_psci.h>
37 38 39 40

#define CREATE_TRACE_POINTS
#include "trace.h"

41
#include <linux/uaccess.h>
42 43
#include <asm/ptrace.h>
#include <asm/mman.h>
44
#include <asm/tlbflush.h>
45
#include <asm/cacheflush.h>
46
#include <asm/cpufeature.h>
47 48 49 50
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
51
#include <asm/kvm_emulate.h>
52
#include <asm/kvm_coproc.h>
53
#include <asm/sections.h>
54 55 56 57 58

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

59
DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 61
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

62 63 64
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

65 66
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 68
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
69
static DEFINE_SPINLOCK(kvm_vmid_lock);
70

71 72
static bool vgic_present;

73 74
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

75 76
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
77
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
78 79
}

80 81
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

82 83 84 85 86 87
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
88
	return __this_cpu_read(kvm_arm_running_vcpu);
89 90 91 92 93
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
94
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
95 96 97 98
{
	return &kvm_arm_running_vcpu;
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


115 116 117 118
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
119 120
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
121
	int ret, cpu;
122

123 124 125
	if (type)
		return -EINVAL;

126 127 128 129 130 131 132
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

133 134 135 136
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

137
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
138 139 140
	if (ret)
		goto out_free_stage2_pgd;

141
	kvm_vgic_early_init(kvm);
142

143 144 145
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

146
	/* The maximum number of VCPUs is limited by the host's GIC model */
147 148
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149

150 151 152 153
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
154 155
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
156
	return ret;
157 158
}

159 160 161 162 163 164 165 166 167 168
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

169
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 171 172 173 174
{
	return VM_FAULT_SIGBUS;
}


175 176 177 178
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
179 180 181 182
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

183 184
	kvm_vgic_destroy(kvm);

185 186 187
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

188 189 190 191 192 193
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
194
	atomic_set(&kvm->online_vcpus, 0);
195 196
}

197
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 199 200
{
	int r;
	switch (ext) {
201
	case KVM_CAP_IRQCHIP:
202 203
		r = vgic_present;
		break;
204
	case KVM_CAP_IOEVENTFD:
205
	case KVM_CAP_DEVICE_CTRL:
206 207 208 209
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
210
	case KVM_CAP_ARM_PSCI:
211
	case KVM_CAP_ARM_PSCI_0_2:
212
	case KVM_CAP_READONLY_MEM:
213
	case KVM_CAP_MP_STATE:
214
	case KVM_CAP_IMMEDIATE_EXIT:
215
	case KVM_CAP_VCPU_EVENTS:
216 217
		r = 1;
		break;
218 219
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
220
		break;
221 222 223 224 225 226
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
227 228 229
	case KVM_CAP_MAX_VCPU_ID:
		r = KVM_MAX_VCPU_ID;
		break;
230 231 232
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
233 234 235 236 237 238
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
239 240 241 242 243 244 245
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
246
	default:
247
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
248 249 250 251 252 253 254 255 256 257 258
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
274 275 276 277 278 279

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

280 281 282 283 284
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

285 286 287 288 289
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

290 291 292 293 294 295 296 297 298 299
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

300
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
301 302 303
	if (err)
		goto vcpu_uninit;

304
	return vcpu;
305 306
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
307 308 309 310 311 312
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

313
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
314 315 316 317 318
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
319 320 321
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

322
	kvm_mmu_free_memory_caches(vcpu);
323
	kvm_timer_vcpu_terminate(vcpu);
324
	kvm_pmu_vcpu_destroy(vcpu);
325
	kvm_vcpu_uninit(vcpu);
326
	kmem_cache_free(kvm_vcpu_cache, vcpu);
327 328 329 330 331 332 333 334 335
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
336
	return kvm_timer_is_pending(vcpu);
337 338
}

339 340 341
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
342 343 344
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
345
	 * so that we have the latest PMR and group enables. This ensures
346 347
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
348 349 350
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
351 352 353
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
354
	vgic_v4_put(vcpu, true);
355
	preempt_enable();
356 357 358 359 360
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
361 362 363
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
364 365
}

366 367
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
368 369
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
370
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
371

372 373 374
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

375 376
	kvm_arm_reset_debug_ptr(vcpu);

377
	return kvm_vgic_vcpu_init(vcpu);
378 379 380 381
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
382 383 384 385 386 387 388 389 390 391 392 393 394
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

395
	vcpu->cpu = cpu;
396
	vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
397

398
	kvm_arm_set_running_vcpu(vcpu);
399
	kvm_vgic_load(vcpu);
400
	kvm_timer_vcpu_load(vcpu);
401
	kvm_vcpu_load_sysregs(vcpu);
402
	kvm_arch_vcpu_load_fp(vcpu);
403 404 405 406 407

	if (single_task_running())
		vcpu_clear_wfe_traps(vcpu);
	else
		vcpu_set_wfe_traps(vcpu);
408 409 410 411
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
412
	kvm_arch_vcpu_put_fp(vcpu);
413
	kvm_vcpu_put_sysregs(vcpu);
414
	kvm_timer_vcpu_put(vcpu);
415 416
	kvm_vgic_put(vcpu);

417 418
	vcpu->cpu = -1;

419
	kvm_arm_set_running_vcpu(NULL);
420 421
}

A
Andrew Jones 已提交
422 423 424
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
425
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
426 427 428
	kvm_vcpu_kick(vcpu);
}

429 430 431
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
432
	if (vcpu->arch.power_off)
433 434 435 436 437
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
438 439 440 441 442
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
443 444
	int ret = 0;

445 446
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
447
		vcpu->arch.power_off = false;
448 449
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
450
		vcpu_power_off(vcpu);
451 452
		break;
	default:
453
		ret = -EINVAL;
454 455
	}

456
	return ret;
457 458
}

459 460 461 462 463 464 465
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
466 467
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
468 469
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
470
		&& !v->arch.power_off && !v->arch.pause);
471 472
}

473 474
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
475
	return vcpu_mode_priv(vcpu);
476 477
}

478 479 480 481 482 483 484
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
485
	preempt_disable();
486
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
487
	preempt_enable();
488 489 490 491
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
492
 * @kvm: The VM's VMID to check
493 494 495 496 497 498 499 500 501 502 503
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
504 505 506
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
	return unlikely(READ_ONCE(kvm->arch.vmid_gen) != current_vmid_gen);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

522
	if (!need_new_vmid_gen(kvm))
523 524
		return;

525
	spin_lock(&kvm_vmid_lock);
526 527 528 529 530 531 532

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
533
		spin_unlock(&kvm_vmid_lock);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
558
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
559 560

	/* update vttbr to be used with the new vmid */
561
	pgd_phys = virt_to_phys(kvm->arch.pgd);
562
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
563
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
564
	kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
565

566 567 568 569
	smp_wmb();
	WRITE_ONCE(kvm->arch.vmid_gen, atomic64_read(&kvm_vmid_gen));

	spin_unlock(&kvm_vmid_lock);
570 571 572 573
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
574
	struct kvm *kvm = vcpu->kvm;
575
	int ret = 0;
576

577 578 579 580
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
581

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
598 599
	}

600
	ret = kvm_timer_enable(vcpu);
601 602 603 604
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
605

606
	return ret;
607 608
}

609 610 611 612 613
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

614
void kvm_arm_halt_guest(struct kvm *kvm)
615 616 617 618 619 620
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
621
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
622 623
}

624
void kvm_arm_resume_guest(struct kvm *kvm)
625 626 627 628
{
	int i;
	struct kvm_vcpu *vcpu;

629 630
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
631
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
632
	}
633 634
}

635
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
636
{
637
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
638

639
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
640
				       (!vcpu->arch.pause)));
641

A
Andrew Jones 已提交
642
	if (vcpu->arch.power_off || vcpu->arch.pause) {
643
		/* Awaken to handle a signal, request we sleep again later. */
644
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
645
	}
646 647 648 649 650 651 652

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
653 654
}

655 656 657 658 659
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

660 661 662
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
663 664
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
665

666 667 668
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

669 670 671 672 673
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
674 675 676
	}
}

677 678 679 680 681 682 683 684 685 686 687
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
688 689
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
690 691
	int ret;

692
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
693 694 695 696
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
697
		return ret;
698

C
Christoffer Dall 已提交
699 700 701
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
702
			return ret;
C
Christoffer Dall 已提交
703 704
	}

705 706 707 708
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
709

710
	kvm_sigset_activate(vcpu);
711 712 713 714 715 716 717 718 719 720 721

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

722 723
		check_vcpu_requests(vcpu);

724 725 726 727 728
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
729
		preempt_disable();
730

731
		kvm_pmu_flush_hwstate(vcpu);
732

733 734
		local_irq_disable();

735 736
		kvm_vgic_flush_hwstate(vcpu);

737
		/*
738 739
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
740
		 */
741
		if (signal_pending(current)) {
742 743 744 745
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

761 762 763 764 765 766 767 768
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

769
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
A
Andrew Jones 已提交
770
		    kvm_request_pending(vcpu)) {
771
			vcpu->mode = OUTSIDE_GUEST_MODE;
772
			isb(); /* Ensure work in x_flush_hwstate is committed */
773
			kvm_pmu_sync_hwstate(vcpu);
774 775
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
776
			kvm_vgic_sync_hwstate(vcpu);
777
			local_irq_enable();
778
			preempt_enable();
779 780 781
			continue;
		}

782 783
		kvm_arm_setup_debug(vcpu);

784 785 786 787
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
788
		guest_enter_irqoff();
789

790 791 792
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
793
			kvm_arm_vhe_guest_exit();
794 795 796 797
		} else {
			ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
		}

798
		vcpu->mode = OUTSIDE_GUEST_MODE;
799
		vcpu->stat.exits++;
800 801 802 803
		/*
		 * Back from guest
		 *************************************************************/

804 805
		kvm_arm_clear_debug(vcpu);

806
		/*
807
		 * We must sync the PMU state before the vgic state so
808 809 810 811 812
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

813 814 815 816 817
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
818 819
		kvm_vgic_sync_hwstate(vcpu);

820 821 822 823 824
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
825 826
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
827

828 829
		kvm_arch_vcpu_ctxsync_fp(vcpu);

830 831 832 833 834 835 836 837 838 839 840 841 842
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
843
		 * We do local_irq_enable() before calling guest_exit() so
844 845
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
846
		 * preemption after calling guest_exit() so that if we get
847 848 849
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
850
		guest_exit();
851
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
852

853 854 855
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

856 857
		preempt_enable();

858 859 860
		ret = handle_exit(vcpu, run, ret);
	}

861
	/* Tell userspace about in-kernel device output levels */
862 863 864 865
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
866

867 868
	kvm_sigset_deactivate(vcpu);

869
	vcpu_put(vcpu);
870
	return ret;
871 872
}

873 874 875 876
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
877
	unsigned long *hcr;
878 879 880 881 882 883

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

884
	hcr = vcpu_hcr(vcpu);
885
	if (level)
886
		set = test_and_set_bit(bit_index, hcr);
887
	else
888
		set = test_and_clear_bit(bit_index, hcr);
889 890 891 892 893 894 895 896 897 898 899 900

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
901
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
902 903 904 905 906
	kvm_vcpu_kick(vcpu);

	return 0;
}

907 908
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
909 910 911 912 913 914 915 916 917 918 919 920 921
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

922 923 924 925
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
926

927 928
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
929

930 931 932
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
933

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
951

952
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
953 954 955 956
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

957
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
958 959
			return -EINVAL;

960
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
961 962 963
	}

	return -EINVAL;
964 965
}

966 967 968
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
969
	unsigned int i, ret;
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1004 1005 1006 1007 1008
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1009

1010 1011
	return ret;
}
1012

1013 1014 1015 1016 1017 1018 1019 1020 1021
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1022 1023 1024 1025 1026 1027 1028
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

1029 1030
	vcpu_reset_hcr(vcpu);

1031
	/*
1032
	 * Handle the "start in power-off" case.
1033
	 */
1034
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1035
		vcpu_power_off(vcpu);
1036
	else
1037
		vcpu->arch.power_off = false;
1038 1039 1040 1041

	return 0;
}

1042 1043 1044 1045 1046 1047 1048
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1049
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1063
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1077
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1078 1079 1080 1081 1082 1083
		break;
	}

	return ret;
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1110 1111 1112 1113 1114
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1115
	struct kvm_device_attr attr;
1116 1117
	long r;

1118 1119 1120 1121
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1122
		r = -EFAULT;
1123
		if (copy_from_user(&init, argp, sizeof(init)))
1124
			break;
1125

1126 1127
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1128 1129 1130 1131
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1132

1133
		r = -ENOEXEC;
1134
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1135
			break;
1136

1137
		r = -EFAULT;
1138
		if (copy_from_user(&reg, argp, sizeof(reg)))
1139 1140
			break;

1141
		if (ioctl == KVM_SET_ONE_REG)
1142
			r = kvm_arm_set_reg(vcpu, &reg);
1143
		else
1144 1145
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1146 1147 1148 1149 1150 1151
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1152
		r = -ENOEXEC;
1153
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1154
			break;
1155

1156
		r = -EFAULT;
1157
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1158
			break;
1159 1160 1161
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1162 1163
			break;
		r = -E2BIG;
1164
		if (n < reg_list.n)
1165 1166 1167
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1168
	}
1169
	case KVM_SET_DEVICE_ATTR: {
1170
		r = -EFAULT;
1171
		if (copy_from_user(&attr, argp, sizeof(attr)))
1172 1173 1174
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1175 1176
	}
	case KVM_GET_DEVICE_ATTR: {
1177
		r = -EFAULT;
1178
		if (copy_from_user(&attr, argp, sizeof(attr)))
1179 1180 1181
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1182 1183
	}
	case KVM_HAS_DEVICE_ATTR: {
1184
		r = -EFAULT;
1185
		if (copy_from_user(&attr, argp, sizeof(attr)))
1186 1187 1188
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1189
	}
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1209
	default:
1210
		r = -EINVAL;
1211
	}
1212 1213

	return r;
1214 1215
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1235 1236
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1249 1250
}

1251 1252 1253
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1254 1255 1256 1257 1258 1259 1260 1261 1262
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1263 1264
		if (!vgic_present)
			return -ENXIO;
1265
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1266 1267 1268
	default:
		return -ENODEV;
	}
1269 1270
}

1271 1272 1273
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1274 1275 1276 1277
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1278
	case KVM_CREATE_IRQCHIP: {
1279
		int ret;
1280 1281
		if (!vgic_present)
			return -ENXIO;
1282 1283 1284 1285
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1286
	}
1287 1288 1289 1290 1291 1292 1293
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1307 1308 1309
	default:
		return -EINVAL;
	}
1310 1311
}

1312
static void cpu_init_hyp_mode(void *dummy)
1313
{
1314
	phys_addr_t pgd_ptr;
1315 1316 1317 1318 1319
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1320
	__hyp_set_vectors(kvm_get_idmap_vector());
1321

1322
	pgd_ptr = kvm_mmu_get_httbr();
1323
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1324
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1325
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1326

M
Marc Zyngier 已提交
1327
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1328
	__cpu_init_stage2();
1329 1330
}

1331 1332 1333 1334 1335 1336
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1337 1338
static void cpu_hyp_reinit(void)
{
1339 1340
	cpu_hyp_reset();

1341 1342
	if (is_kernel_in_hyp_mode()) {
		/*
1343
		 * __cpu_init_stage2() is safe to call even if the PM
1344 1345
		 * event was cancelled before the CPU was reset.
		 */
1346
		__cpu_init_stage2();
1347
		kvm_timer_init_vhe();
1348
	} else {
1349
		cpu_init_hyp_mode(NULL);
1350
	}
1351

1352 1353
	kvm_arm_init_debug();

1354 1355
	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1356 1357
}

1358 1359 1360
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1361
		cpu_hyp_reinit();
1362
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1363
	}
1364
}
1365

1366 1367 1368 1369
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1370 1371
}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1384

1385 1386 1387 1388 1389
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1405
		return NOTIFY_OK;
1406
	case CPU_PM_ENTER_FAILED:
1407 1408 1409 1410
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1411

1412 1413 1414 1415 1416
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1427 1428 1429 1430
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1431 1432 1433 1434
#else
static inline void hyp_cpu_pm_init(void)
{
}
1435 1436 1437
static inline void hyp_cpu_pm_exit(void)
{
}
1438 1439
#endif

1440 1441
static int init_common_resources(void)
{
1442 1443 1444 1445
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1446 1447 1448 1449 1450
	return 0;
}

static int init_subsystems(void)
{
1451
	int err = 0;
1452

1453
	/*
1454
	 * Enable hardware so that subsystem initialisation can access EL2.
1455
	 */
1456
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1457 1458 1459 1460 1461 1462

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1474
		err = 0;
1475 1476
		break;
	default:
1477
		goto out;
1478 1479 1480 1481 1482
	}

	/*
	 * Init HYP architected timer support
	 */
1483
	err = kvm_timer_hyp_init(vgic_present);
1484
	if (err)
1485
		goto out;
1486 1487 1488 1489

	kvm_perf_init();
	kvm_coproc_table_init();

1490 1491 1492 1493
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1494 1495 1496 1497 1498 1499 1500 1501 1502
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1503
	hyp_cpu_pm_exit();
1504 1505
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1530
			goto out_err;
1531 1532 1533 1534 1535 1536 1537 1538
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1539
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1540
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1541 1542
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1543
		goto out_err;
1544 1545
	}

1546
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1547
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1548 1549
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1550 1551 1552 1553 1554 1555 1556
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1557
		goto out_err;
1558 1559
	}

1560 1561 1562 1563 1564 1565
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1566 1567 1568 1569 1570
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1571 1572
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1573 1574 1575

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1576
			goto out_err;
1577 1578 1579 1580
		}
	}

	for_each_possible_cpu(cpu) {
1581
		kvm_cpu_context_t *cpu_ctxt;
1582

1583
		cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1584
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1585 1586

		if (err) {
1587
			kvm_err("Cannot map host CPU state: %d\n", err);
1588
			goto out_err;
1589 1590 1591
		}
	}

1592 1593 1594 1595
	err = hyp_map_aux_data();
	if (err)
		kvm_err("Cannot map host auxilary data: %d\n", err);

1596
	return 0;
1597

1598
out_err:
1599
	teardown_hyp_mode();
1600 1601 1602 1603
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1604 1605 1606 1607 1608
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1633 1634
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1635 1636 1637 1638 1639 1640 1641
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1642 1643
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1662 1663 1664
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1665 1666
int kvm_arch_init(void *opaque)
{
1667
	int err;
1668
	int ret, cpu;
1669
	bool in_hyp_mode;
1670 1671

	if (!is_hyp_mode_available()) {
1672
		kvm_info("HYP mode not available\n");
1673 1674 1675
		return -ENODEV;
	}

1676 1677 1678 1679 1680
	if (!kvm_arch_check_sve_has_vhe()) {
		kvm_pr_unimpl("SVE system without VHE unsupported.  Broken cpu?");
		return -ENODEV;
	}

1681 1682 1683 1684 1685 1686
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1687 1688
	}

1689
	err = init_common_resources();
1690
	if (err)
1691
		return err;
1692

1693 1694 1695
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode) {
1696
		err = init_hyp_mode();
1697 1698 1699
		if (err)
			goto out_err;
	}
1700

1701 1702 1703
	err = init_subsystems();
	if (err)
		goto out_hyp;
1704

1705 1706 1707 1708 1709
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1710
	return 0;
1711 1712

out_hyp:
1713 1714
	if (!in_hyp_mode)
		teardown_hyp_mode();
1715 1716
out_err:
	return err;
1717 1718 1719 1720 1721
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1722
	kvm_perf_teardown();
1723 1724 1725 1726 1727 1728 1729 1730 1731
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);