arm.c 37.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/bug.h>
20
#include <linux/cpu_pm.h>
21 22 23
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
24
#include <linux/list.h>
25 26 27 28 29
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
30
#include <linux/kvm.h>
31 32
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
33
#include <linux/sched/stat.h>
34
#include <trace/events/kvm.h>
35
#include <kvm/arm_pmu.h>
36
#include <kvm/arm_psci.h>
37 38 39 40

#define CREATE_TRACE_POINTS
#include "trace.h"

41
#include <linux/uaccess.h>
42 43
#include <asm/ptrace.h>
#include <asm/mman.h>
44
#include <asm/tlbflush.h>
45
#include <asm/cacheflush.h>
46
#include <asm/cpufeature.h>
47 48 49 50
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
51
#include <asm/kvm_emulate.h>
52
#include <asm/kvm_coproc.h>
53
#include <asm/sections.h>
54 55 56 57 58

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

59
DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 61
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

62 63 64
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

65 66
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 68
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
69
static DEFINE_SPINLOCK(kvm_vmid_lock);
70

71 72
static bool vgic_present;

73 74
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

75 76
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
77
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
78 79
}

80 81
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

82 83 84 85 86 87
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
88
	return __this_cpu_read(kvm_arm_running_vcpu);
89 90 91 92 93
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
94
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
95 96 97 98
{
	return &kvm_arm_running_vcpu;
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


115 116 117 118
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
119 120
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
121
	int ret, cpu;
122

123 124 125
	if (type)
		return -EINVAL;

126 127 128 129 130 131 132
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

133 134 135 136
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

137
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
138 139 140
	if (ret)
		goto out_free_stage2_pgd;

141
	kvm_vgic_early_init(kvm);
142

143 144 145
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

146
	/* The maximum number of VCPUs is limited by the host's GIC model */
147 148
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149

150 151 152 153
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
154 155
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
156
	return ret;
157 158
}

159 160 161 162 163 164 165 166 167 168
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

169
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 171 172 173 174
{
	return VM_FAULT_SIGBUS;
}


175 176 177 178
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
179 180 181 182
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

183 184
	kvm_vgic_destroy(kvm);

185 186 187
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

188 189 190 191 192 193
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
194
	atomic_set(&kvm->online_vcpus, 0);
195 196
}

197
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 199 200
{
	int r;
	switch (ext) {
201
	case KVM_CAP_IRQCHIP:
202 203
		r = vgic_present;
		break;
204
	case KVM_CAP_IOEVENTFD:
205
	case KVM_CAP_DEVICE_CTRL:
206 207 208 209
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
210
	case KVM_CAP_ARM_PSCI:
211
	case KVM_CAP_ARM_PSCI_0_2:
212
	case KVM_CAP_READONLY_MEM:
213
	case KVM_CAP_MP_STATE:
214
	case KVM_CAP_IMMEDIATE_EXIT:
215 216
		r = 1;
		break;
217 218
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
219
		break;
220 221 222 223 224 225
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
226 227 228
	case KVM_CAP_MAX_VCPU_ID:
		r = KVM_MAX_VCPU_ID;
		break;
229 230 231
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
232 233 234 235 236 237
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
238 239 240 241 242 243 244
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
245
	default:
246
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
247 248 249 250 251 252 253 254 255 256 257
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
273 274 275 276 277 278

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

279 280 281 282 283
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

284 285 286 287 288
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

289 290 291 292 293 294 295 296 297 298
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

299
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
300 301 302
	if (err)
		goto vcpu_uninit;

303
	return vcpu;
304 305
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
306 307 308 309 310 311
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

312
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
313 314 315 316 317
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
318 319 320
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

321
	kvm_mmu_free_memory_caches(vcpu);
322
	kvm_timer_vcpu_terminate(vcpu);
323
	kvm_pmu_vcpu_destroy(vcpu);
324
	kvm_vcpu_uninit(vcpu);
325
	kmem_cache_free(kvm_vcpu_cache, vcpu);
326 327 328 329 330 331 332 333 334
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
335
	return kvm_timer_is_pending(vcpu);
336 337
}

338 339 340
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
341 342 343 344 345 346 347 348 349 350 351
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
	 * so that we have the lastest PMR and group enables. This ensures
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
	preempt_enable();

352
	kvm_vgic_v4_enable_doorbell(vcpu);
353 354 355 356 357
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
358
	kvm_vgic_v4_disable_doorbell(vcpu);
359 360
}

361 362
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
363 364
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
365
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
366

367 368 369
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

370 371
	kvm_arm_reset_debug_ptr(vcpu);

372
	return kvm_vgic_vcpu_init(vcpu);
373 374 375 376
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
377 378 379 380 381 382 383 384 385 386 387 388 389
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

390
	vcpu->cpu = cpu;
391
	vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
392

393
	kvm_arm_set_running_vcpu(vcpu);
394
	kvm_vgic_load(vcpu);
395
	kvm_timer_vcpu_load(vcpu);
396
	kvm_vcpu_load_sysregs(vcpu);
397
	kvm_arch_vcpu_load_fp(vcpu);
398 399 400 401 402

	if (single_task_running())
		vcpu_clear_wfe_traps(vcpu);
	else
		vcpu_set_wfe_traps(vcpu);
403 404 405 406
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
407
	kvm_arch_vcpu_put_fp(vcpu);
408
	kvm_vcpu_put_sysregs(vcpu);
409
	kvm_timer_vcpu_put(vcpu);
410 411
	kvm_vgic_put(vcpu);

412 413
	vcpu->cpu = -1;

414
	kvm_arm_set_running_vcpu(NULL);
415 416
}

A
Andrew Jones 已提交
417 418 419
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
420
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
421 422 423
	kvm_vcpu_kick(vcpu);
}

424 425 426
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
427
	if (vcpu->arch.power_off)
428 429 430 431 432
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
433 434 435 436 437
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
438 439
	int ret = 0;

440 441
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
442
		vcpu->arch.power_off = false;
443 444
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
445
		vcpu_power_off(vcpu);
446 447
		break;
	default:
448
		ret = -EINVAL;
449 450
	}

451
	return ret;
452 453
}

454 455 456 457 458 459 460
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
461 462
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
463 464
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
465
		&& !v->arch.power_off && !v->arch.pause);
466 467
}

468 469
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
470
	return vcpu_mode_priv(vcpu);
471 472
}

473 474 475 476 477 478 479
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
480
	preempt_disable();
481
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
482
	preempt_enable();
483 484 485 486
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
487
 * @kvm: The VM's VMID to check
488 489 490 491 492 493 494 495 496 497 498
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
499 500 501
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
	return unlikely(READ_ONCE(kvm->arch.vmid_gen) != current_vmid_gen);
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

517
	if (!need_new_vmid_gen(kvm))
518 519
		return;

520
	spin_lock(&kvm_vmid_lock);
521 522 523 524 525 526 527

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
528
		spin_unlock(&kvm_vmid_lock);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
553
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
554 555

	/* update vttbr to be used with the new vmid */
556
	pgd_phys = virt_to_phys(kvm->arch.pgd);
557
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
558
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
559
	kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
560

561 562 563 564
	smp_wmb();
	WRITE_ONCE(kvm->arch.vmid_gen, atomic64_read(&kvm_vmid_gen));

	spin_unlock(&kvm_vmid_lock);
565 566 567 568
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
569
	struct kvm *kvm = vcpu->kvm;
570
	int ret = 0;
571

572 573 574 575
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
576

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
593 594
	}

595
	ret = kvm_timer_enable(vcpu);
596 597 598 599
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
600

601
	return ret;
602 603
}

604 605 606 607 608
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

609
void kvm_arm_halt_guest(struct kvm *kvm)
610 611 612 613 614 615
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
616
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
617 618
}

619
void kvm_arm_resume_guest(struct kvm *kvm)
620 621 622 623
{
	int i;
	struct kvm_vcpu *vcpu;

624 625
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
626
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
627
	}
628 629
}

630
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
631
{
632
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
633

634
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
635
				       (!vcpu->arch.pause)));
636

A
Andrew Jones 已提交
637
	if (vcpu->arch.power_off || vcpu->arch.pause) {
638
		/* Awaken to handle a signal, request we sleep again later. */
639
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
640
	}
641 642 643 644 645 646 647

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
648 649
}

650 651 652 653 654
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

655 656 657
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
658 659
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
660

661 662 663
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

664 665 666 667 668
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
669 670 671
	}
}

672 673 674 675 676 677 678 679 680 681 682
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
683 684
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
685 686
	int ret;

687
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
688 689 690 691
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
692
		return ret;
693

C
Christoffer Dall 已提交
694 695 696
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
697 698 699
			return ret;
		if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
			return 0;
C
Christoffer Dall 已提交
700 701
	}

702 703 704 705
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
706

707
	kvm_sigset_activate(vcpu);
708 709 710 711 712 713 714 715 716 717 718

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

719 720
		check_vcpu_requests(vcpu);

721 722 723 724 725
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
726
		preempt_disable();
727

728
		kvm_pmu_flush_hwstate(vcpu);
729

730 731
		local_irq_disable();

732 733
		kvm_vgic_flush_hwstate(vcpu);

734
		/*
735 736
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
737
		 */
738
		if (signal_pending(current)) {
739 740 741 742
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

758 759 760 761 762 763 764 765
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

766
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
A
Andrew Jones 已提交
767
		    kvm_request_pending(vcpu)) {
768
			vcpu->mode = OUTSIDE_GUEST_MODE;
769
			isb(); /* Ensure work in x_flush_hwstate is committed */
770
			kvm_pmu_sync_hwstate(vcpu);
771 772
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
773
			kvm_vgic_sync_hwstate(vcpu);
774
			local_irq_enable();
775
			preempt_enable();
776 777 778
			continue;
		}

779 780
		kvm_arm_setup_debug(vcpu);

781 782 783 784
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
785
		guest_enter_irqoff();
786

787 788 789
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
790
			kvm_arm_vhe_guest_exit();
791 792 793 794
		} else {
			ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
		}

795
		vcpu->mode = OUTSIDE_GUEST_MODE;
796
		vcpu->stat.exits++;
797 798 799 800
		/*
		 * Back from guest
		 *************************************************************/

801 802
		kvm_arm_clear_debug(vcpu);

803
		/*
804
		 * We must sync the PMU state before the vgic state so
805 806 807 808 809
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

810 811 812 813 814
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
815 816
		kvm_vgic_sync_hwstate(vcpu);

817 818 819 820 821
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
822 823
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
824

825 826
		kvm_arch_vcpu_ctxsync_fp(vcpu);

827 828 829 830 831 832 833 834 835 836 837 838 839
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
840
		 * We do local_irq_enable() before calling guest_exit() so
841 842
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
843
		 * preemption after calling guest_exit() so that if we get
844 845 846
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
847
		guest_exit();
848
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
849

850 851 852
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

853 854
		preempt_enable();

855 856 857
		ret = handle_exit(vcpu, run, ret);
	}

858
	/* Tell userspace about in-kernel device output levels */
859 860 861 862
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
863

864 865
	kvm_sigset_deactivate(vcpu);

866
	vcpu_put(vcpu);
867
	return ret;
868 869
}

870 871 872 873
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
874
	unsigned long *hcr;
875 876 877 878 879 880

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

881
	hcr = vcpu_hcr(vcpu);
882
	if (level)
883
		set = test_and_set_bit(bit_index, hcr);
884
	else
885
		set = test_and_clear_bit(bit_index, hcr);
886 887 888 889 890 891 892 893 894 895 896 897

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
898
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
899 900 901 902 903
	kvm_vcpu_kick(vcpu);

	return 0;
}

904 905
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
906 907 908 909 910 911 912 913 914 915 916 917 918
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

919 920 921 922
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
923

924 925
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
926

927 928 929
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
930

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
948

949
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
950 951 952 953
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

954
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
955 956
			return -EINVAL;

957
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
958 959 960
	}

	return -EINVAL;
961 962
}

963 964 965
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
966
	unsigned int i, ret;
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1001 1002 1003 1004 1005
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1006

1007 1008
	return ret;
}
1009

1010 1011 1012 1013 1014 1015 1016 1017 1018
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1019 1020 1021 1022 1023 1024 1025
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

1026 1027
	vcpu_reset_hcr(vcpu);

1028
	/*
1029
	 * Handle the "start in power-off" case.
1030
	 */
1031
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1032
		vcpu_power_off(vcpu);
1033
	else
1034
		vcpu->arch.power_off = false;
1035 1036 1037 1038

	return 0;
}

1039 1040 1041 1042 1043 1044 1045
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1046
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1060
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1074
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1075 1076 1077 1078 1079 1080
		break;
	}

	return ret;
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1107 1108 1109 1110 1111
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1112
	struct kvm_device_attr attr;
1113 1114
	long r;

1115 1116 1117 1118
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1119
		r = -EFAULT;
1120
		if (copy_from_user(&init, argp, sizeof(init)))
1121
			break;
1122

1123 1124
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1125 1126 1127 1128
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1129

1130
		r = -ENOEXEC;
1131
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1132
			break;
1133

1134
		r = -EFAULT;
1135
		if (copy_from_user(&reg, argp, sizeof(reg)))
1136 1137
			break;

1138
		if (ioctl == KVM_SET_ONE_REG)
1139
			r = kvm_arm_set_reg(vcpu, &reg);
1140
		else
1141 1142
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1143 1144 1145 1146 1147 1148
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1149
		r = -ENOEXEC;
1150
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1151
			break;
1152

1153
		r = -EFAULT;
1154
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1155
			break;
1156 1157 1158
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1159 1160
			break;
		r = -E2BIG;
1161
		if (n < reg_list.n)
1162 1163 1164
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1165
	}
1166
	case KVM_SET_DEVICE_ATTR: {
1167
		r = -EFAULT;
1168
		if (copy_from_user(&attr, argp, sizeof(attr)))
1169 1170 1171
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1172 1173
	}
	case KVM_GET_DEVICE_ATTR: {
1174
		r = -EFAULT;
1175
		if (copy_from_user(&attr, argp, sizeof(attr)))
1176 1177 1178
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1179 1180
	}
	case KVM_HAS_DEVICE_ATTR: {
1181
		r = -EFAULT;
1182
		if (copy_from_user(&attr, argp, sizeof(attr)))
1183 1184 1185
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1186
	}
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1206
	default:
1207
		r = -EINVAL;
1208
	}
1209 1210

	return r;
1211 1212
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1232 1233
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1246 1247
}

1248 1249 1250
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1251 1252 1253 1254 1255 1256 1257 1258 1259
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1260 1261
		if (!vgic_present)
			return -ENXIO;
1262
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1263 1264 1265
	default:
		return -ENODEV;
	}
1266 1267
}

1268 1269 1270
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1271 1272 1273 1274
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1275
	case KVM_CREATE_IRQCHIP: {
1276
		int ret;
1277 1278
		if (!vgic_present)
			return -ENXIO;
1279 1280 1281 1282
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1283
	}
1284 1285 1286 1287 1288 1289 1290
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1304 1305 1306
	default:
		return -EINVAL;
	}
1307 1308
}

1309
static void cpu_init_hyp_mode(void *dummy)
1310
{
1311
	phys_addr_t pgd_ptr;
1312 1313 1314 1315 1316
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1317
	__hyp_set_vectors(kvm_get_idmap_vector());
1318

1319
	pgd_ptr = kvm_mmu_get_httbr();
1320
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1321
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1322
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1323

M
Marc Zyngier 已提交
1324
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1325
	__cpu_init_stage2();
1326 1327
}

1328 1329 1330 1331 1332 1333
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1334 1335
static void cpu_hyp_reinit(void)
{
1336 1337
	cpu_hyp_reset();

1338 1339
	if (is_kernel_in_hyp_mode()) {
		/*
1340
		 * __cpu_init_stage2() is safe to call even if the PM
1341 1342
		 * event was cancelled before the CPU was reset.
		 */
1343
		__cpu_init_stage2();
1344
		kvm_timer_init_vhe();
1345
	} else {
1346
		cpu_init_hyp_mode(NULL);
1347
	}
1348

1349 1350
	kvm_arm_init_debug();

1351 1352
	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1353 1354
}

1355 1356 1357
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1358
		cpu_hyp_reinit();
1359
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1360
	}
1361
}
1362

1363 1364 1365 1366
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1367 1368
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1381

1382 1383 1384 1385 1386
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1402
		return NOTIFY_OK;
1403
	case CPU_PM_ENTER_FAILED:
1404 1405 1406 1407
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1408

1409 1410 1411 1412 1413
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1424 1425 1426 1427
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1428 1429 1430 1431
#else
static inline void hyp_cpu_pm_init(void)
{
}
1432 1433 1434
static inline void hyp_cpu_pm_exit(void)
{
}
1435 1436
#endif

1437 1438
static int init_common_resources(void)
{
1439 1440 1441 1442
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1443 1444 1445 1446 1447
	return 0;
}

static int init_subsystems(void)
{
1448
	int err = 0;
1449

1450
	/*
1451
	 * Enable hardware so that subsystem initialisation can access EL2.
1452
	 */
1453
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1454 1455 1456 1457 1458 1459

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1471
		err = 0;
1472 1473
		break;
	default:
1474
		goto out;
1475 1476 1477 1478 1479
	}

	/*
	 * Init HYP architected timer support
	 */
1480
	err = kvm_timer_hyp_init(vgic_present);
1481
	if (err)
1482
		goto out;
1483 1484 1485 1486

	kvm_perf_init();
	kvm_coproc_table_init();

1487 1488 1489 1490
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1491 1492 1493 1494 1495 1496 1497 1498 1499
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1500
	hyp_cpu_pm_exit();
1501 1502
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1527
			goto out_err;
1528 1529 1530 1531 1532 1533 1534 1535
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1536
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1537
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1538 1539
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1540
		goto out_err;
1541 1542
	}

1543
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1544
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1545 1546
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1547 1548 1549 1550 1551 1552 1553
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1554
		goto out_err;
1555 1556
	}

1557 1558 1559 1560 1561 1562
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1563 1564 1565 1566 1567
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1568 1569
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1570 1571 1572

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1573
			goto out_err;
1574 1575 1576 1577
		}
	}

	for_each_possible_cpu(cpu) {
1578
		kvm_cpu_context_t *cpu_ctxt;
1579

1580
		cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1581
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1582 1583

		if (err) {
1584
			kvm_err("Cannot map host CPU state: %d\n", err);
1585
			goto out_err;
1586 1587 1588
		}
	}

1589 1590 1591 1592
	err = hyp_map_aux_data();
	if (err)
		kvm_err("Cannot map host auxilary data: %d\n", err);

1593
	return 0;
1594

1595
out_err:
1596
	teardown_hyp_mode();
1597 1598 1599 1600
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1601 1602 1603 1604 1605
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1630 1631
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1632 1633 1634 1635 1636 1637 1638
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1639 1640
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1659 1660 1661
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1662 1663
int kvm_arch_init(void *opaque)
{
1664
	int err;
1665
	int ret, cpu;
1666
	bool in_hyp_mode;
1667 1668

	if (!is_hyp_mode_available()) {
1669
		kvm_info("HYP mode not available\n");
1670 1671 1672
		return -ENODEV;
	}

1673 1674 1675 1676 1677
	if (!kvm_arch_check_sve_has_vhe()) {
		kvm_pr_unimpl("SVE system without VHE unsupported.  Broken cpu?");
		return -ENODEV;
	}

1678 1679 1680 1681 1682 1683
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1684 1685
	}

1686
	err = init_common_resources();
1687
	if (err)
1688
		return err;
1689

1690 1691 1692
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode) {
1693
		err = init_hyp_mode();
1694 1695 1696
		if (err)
			goto out_err;
	}
1697

1698 1699 1700
	err = init_subsystems();
	if (err)
		goto out_hyp;
1701

1702 1703 1704 1705 1706
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1707
	return 0;
1708 1709

out_hyp:
1710 1711
	if (!in_hyp_mode)
		teardown_hyp_mode();
1712 1713
out_err:
	return err;
1714 1715 1716 1717 1718
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1719
	kvm_perf_teardown();
1720 1721 1722 1723 1724 1725 1726 1727 1728
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);