arm.c 35.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/bug.h>
20
#include <linux/cpu_pm.h>
21 22 23
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
24
#include <linux/list.h>
25 26 27 28 29
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
30
#include <linux/kvm.h>
31 32
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
33
#include <trace/events/kvm.h>
34
#include <kvm/arm_pmu.h>
35
#include <kvm/arm_psci.h>
36 37 38 39

#define CREATE_TRACE_POINTS
#include "trace.h"

40
#include <linux/uaccess.h>
41 42
#include <asm/ptrace.h>
#include <asm/mman.h>
43
#include <asm/tlbflush.h>
44
#include <asm/cacheflush.h>
45
#include <asm/cpufeature.h>
46 47 48 49
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
50
#include <asm/kvm_emulate.h>
51
#include <asm/kvm_coproc.h>
52
#include <asm/sections.h>
53 54 55 56 57

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

58
DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
59 60
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

61 62 63
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

64 65
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
66 67
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
68
static DEFINE_RWLOCK(kvm_vmid_lock);
69

70 71
static bool vgic_present;

72 73
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

74 75
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
76
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
77 78
}

79 80
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

81 82 83 84 85 86
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
87
	return __this_cpu_read(kvm_arm_running_vcpu);
88 89 90 91 92
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
93
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
94 95 96 97
{
	return &kvm_arm_running_vcpu;
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


114 115 116 117
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
118 119
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
120
	int ret, cpu;
121

122 123 124
	if (type)
		return -EINVAL;

125 126 127 128 129 130 131
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

132 133 134 135
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

136
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
137 138 139
	if (ret)
		goto out_free_stage2_pgd;

140
	kvm_vgic_early_init(kvm);
141

142 143 144
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

145
	/* The maximum number of VCPUs is limited by the host's GIC model */
146 147
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
148

149 150 151 152
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
153 154
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
155
	return ret;
156 157
}

158 159 160 161 162 163 164 165 166 167
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

168
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
169 170 171 172 173
{
	return VM_FAULT_SIGBUS;
}


174 175 176 177
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
178 179 180 181
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

182 183
	kvm_vgic_destroy(kvm);

184 185 186
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

187 188 189 190 191 192
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
193
	atomic_set(&kvm->online_vcpus, 0);
194 195
}

196
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
197 198 199
{
	int r;
	switch (ext) {
200
	case KVM_CAP_IRQCHIP:
201 202
		r = vgic_present;
		break;
203
	case KVM_CAP_IOEVENTFD:
204
	case KVM_CAP_DEVICE_CTRL:
205 206 207 208
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
209
	case KVM_CAP_ARM_PSCI:
210
	case KVM_CAP_ARM_PSCI_0_2:
211
	case KVM_CAP_READONLY_MEM:
212
	case KVM_CAP_MP_STATE:
213
	case KVM_CAP_IMMEDIATE_EXIT:
214 215
		r = 1;
		break;
216 217
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
218
		break;
219 220 221 222 223 224
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
225 226 227
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
228 229 230 231 232 233
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
234 235 236 237 238 239 240
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
241
	default:
242
		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

260 261 262 263 264
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

265 266 267 268 269
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

270 271 272 273 274 275 276 277 278 279
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

280
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
281 282 283
	if (err)
		goto vcpu_uninit;

284
	return vcpu;
285 286
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
287 288 289 290 291 292
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

293
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
294 295 296 297 298
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
299 300 301
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

302
	kvm_mmu_free_memory_caches(vcpu);
303
	kvm_timer_vcpu_terminate(vcpu);
304
	kvm_pmu_vcpu_destroy(vcpu);
305
	kvm_vcpu_uninit(vcpu);
306
	kmem_cache_free(kvm_vcpu_cache, vcpu);
307 308 309 310 311 312 313 314 315
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
316
	return kvm_timer_is_pending(vcpu);
317 318
}

319 320 321
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
322
	kvm_vgic_v4_enable_doorbell(vcpu);
323 324 325 326 327
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
328
	kvm_vgic_v4_disable_doorbell(vcpu);
329 330
}

331 332
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
333 334
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
335
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
336

337 338 339
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

340 341
	kvm_arm_reset_debug_ptr(vcpu);

342
	return kvm_vgic_vcpu_init(vcpu);
343 344 345 346
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
347 348 349 350 351 352 353 354 355 356 357 358 359
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

360
	vcpu->cpu = cpu;
361
	vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
362

363
	kvm_arm_set_running_vcpu(vcpu);
364
	kvm_vgic_load(vcpu);
365
	kvm_timer_vcpu_load(vcpu);
366
	kvm_vcpu_load_sysregs(vcpu);
367
	kvm_arch_vcpu_load_fp(vcpu);
368 369 370 371
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
372
	kvm_arch_vcpu_put_fp(vcpu);
373
	kvm_vcpu_put_sysregs(vcpu);
374
	kvm_timer_vcpu_put(vcpu);
375 376
	kvm_vgic_put(vcpu);

377 378
	vcpu->cpu = -1;

379
	kvm_arm_set_running_vcpu(NULL);
380 381
}

A
Andrew Jones 已提交
382 383 384
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
385
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
386 387 388
	kvm_vcpu_kick(vcpu);
}

389 390 391
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
392
	if (vcpu->arch.power_off)
393 394 395 396 397
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
398 399 400 401 402
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
403 404
	int ret = 0;

405 406
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
407
		vcpu->arch.power_off = false;
408 409
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
410
		vcpu_power_off(vcpu);
411 412
		break;
	default:
413
		ret = -EINVAL;
414 415
	}

416
	return ret;
417 418
}

419 420 421 422 423 424 425
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
426 427
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
428 429
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
430
		&& !v->arch.power_off && !v->arch.pause);
431 432
}

433 434
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
435
	return vcpu_mode_priv(vcpu);
436 437
}

438 439 440 441 442 443 444
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
445
	preempt_disable();
446
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
447
	preempt_enable();
448 449 450 451
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
452
 * @kvm: The VM's VMID to check
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;
479
	bool new_gen;
480

481 482 483 484 485
	read_lock(&kvm_vmid_lock);
	new_gen = need_new_vmid_gen(kvm);
	read_unlock(&kvm_vmid_lock);

	if (!new_gen)
486 487
		return;

488
	write_lock(&kvm_vmid_lock);
489 490 491 492 493 494 495

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
496
		write_unlock(&kvm_vmid_lock);
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
522
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
523 524

	/* update vttbr to be used with the new vmid */
525
	pgd_phys = virt_to_phys(kvm->arch.pgd);
526
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
527
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
528
	kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
529

530
	write_unlock(&kvm_vmid_lock);
531 532 533 534
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
535
	struct kvm *kvm = vcpu->kvm;
536
	int ret = 0;
537

538 539 540 541
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
542

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
559 560
	}

561
	ret = kvm_timer_enable(vcpu);
562 563 564 565
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
566

567
	return ret;
568 569
}

570 571 572 573 574
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

575
void kvm_arm_halt_guest(struct kvm *kvm)
576 577 578 579 580 581
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
582
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
583 584
}

585
void kvm_arm_resume_guest(struct kvm *kvm)
586 587 588 589
{
	int i;
	struct kvm_vcpu *vcpu;

590 591 592 593
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
		swake_up(kvm_arch_vcpu_wq(vcpu));
	}
594 595
}

596
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
597
{
598
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
599

600
	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
601
				       (!vcpu->arch.pause)));
602

A
Andrew Jones 已提交
603
	if (vcpu->arch.power_off || vcpu->arch.pause) {
604
		/* Awaken to handle a signal, request we sleep again later. */
605
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
606
	}
607 608
}

609 610 611 612 613
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

614 615 616
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
617 618
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
619 620 621 622 623 624

		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
625 626 627
	}
}

628 629 630 631 632 633 634 635 636 637 638
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
639 640
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
641 642
	int ret;

643
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
644 645 646 647
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
648
		return ret;
649

C
Christoffer Dall 已提交
650 651 652
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
653 654 655
			return ret;
		if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
			return 0;
C
Christoffer Dall 已提交
656 657
	}

658 659 660 661
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
662

663
	kvm_sigset_activate(vcpu);
664 665 666 667 668 669 670 671 672 673 674

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

675 676
		check_vcpu_requests(vcpu);

677 678 679 680 681
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
682
		preempt_disable();
683

684
		kvm_pmu_flush_hwstate(vcpu);
685

686 687
		local_irq_disable();

688 689
		kvm_vgic_flush_hwstate(vcpu);

690
		/*
691 692
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
693
		 */
694
		if (signal_pending(current)) {
695 696 697 698
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

714 715 716 717 718 719 720 721
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

722
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
A
Andrew Jones 已提交
723
		    kvm_request_pending(vcpu)) {
724
			vcpu->mode = OUTSIDE_GUEST_MODE;
725
			isb(); /* Ensure work in x_flush_hwstate is committed */
726
			kvm_pmu_sync_hwstate(vcpu);
727 728
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
729
			kvm_vgic_sync_hwstate(vcpu);
730
			local_irq_enable();
731
			preempt_enable();
732 733 734
			continue;
		}

735 736
		kvm_arm_setup_debug(vcpu);

737 738 739 740
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
741
		guest_enter_irqoff();
742

743 744 745
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
746
			kvm_arm_vhe_guest_exit();
747 748 749 750
		} else {
			ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
		}

751
		vcpu->mode = OUTSIDE_GUEST_MODE;
752
		vcpu->stat.exits++;
753 754 755 756
		/*
		 * Back from guest
		 *************************************************************/

757 758
		kvm_arm_clear_debug(vcpu);

759
		/*
760
		 * We must sync the PMU state before the vgic state so
761 762 763 764 765
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

766 767 768 769 770
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
771 772
		kvm_vgic_sync_hwstate(vcpu);

773 774 775 776 777
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
778 779
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
780

781 782
		kvm_arch_vcpu_ctxsync_fp(vcpu);

783 784 785 786 787 788 789 790 791 792 793 794 795
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
796
		 * We do local_irq_enable() before calling guest_exit() so
797 798
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
799
		 * preemption after calling guest_exit() so that if we get
800 801 802
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
803
		guest_exit();
804
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
805

806 807 808
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

809 810
		preempt_enable();

811 812 813
		ret = handle_exit(vcpu, run, ret);
	}

814
	/* Tell userspace about in-kernel device output levels */
815 816 817 818
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
819

820 821
	kvm_sigset_deactivate(vcpu);

822
	vcpu_put(vcpu);
823
	return ret;
824 825
}

826 827 828 829
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
830
	unsigned long *hcr;
831 832 833 834 835 836

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

837
	hcr = vcpu_hcr(vcpu);
838
	if (level)
839
		set = test_and_set_bit(bit_index, hcr);
840
	else
841
		set = test_and_clear_bit(bit_index, hcr);
842 843 844 845 846 847 848 849 850 851 852 853

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
854
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
855 856 857 858 859
	kvm_vcpu_kick(vcpu);

	return 0;
}

860 861
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
862 863 864 865 866 867 868 869 870 871 872 873 874
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

875 876 877 878
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
879

880 881
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
882

883 884 885
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
886

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
904

905
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
906 907 908 909
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

910
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
911 912
			return -EINVAL;

913
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
914 915 916
	}

	return -EINVAL;
917 918
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


961 962 963 964 965 966 967 968 969
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

970 971 972 973 974 975 976
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

977 978
	vcpu_reset_hcr(vcpu);

979
	/*
980
	 * Handle the "start in power-off" case.
981
	 */
982
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
983
		vcpu_power_off(vcpu);
984
	else
985
		vcpu->arch.power_off = false;
986 987 988 989

	return 0;
}

990 991 992 993 994 995 996
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
997
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1011
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1025
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1026 1027 1028 1029 1030 1031
		break;
	}

	return ret;
}

1032 1033 1034 1035 1036
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1037
	struct kvm_device_attr attr;
1038 1039
	long r;

1040 1041 1042 1043
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1044
		r = -EFAULT;
1045
		if (copy_from_user(&init, argp, sizeof(init)))
1046
			break;
1047

1048 1049
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1050 1051 1052 1053
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1054

1055
		r = -ENOEXEC;
1056
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1057
			break;
1058

1059
		r = -EFAULT;
1060
		if (copy_from_user(&reg, argp, sizeof(reg)))
1061 1062
			break;

1063
		if (ioctl == KVM_SET_ONE_REG)
1064
			r = kvm_arm_set_reg(vcpu, &reg);
1065
		else
1066 1067
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1068 1069 1070 1071 1072 1073
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1074
		r = -ENOEXEC;
1075
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1076
			break;
1077

1078
		r = -EFAULT;
1079
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1080
			break;
1081 1082 1083
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1084 1085
			break;
		r = -E2BIG;
1086
		if (n < reg_list.n)
1087 1088 1089
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1090
	}
1091
	case KVM_SET_DEVICE_ATTR: {
1092
		r = -EFAULT;
1093
		if (copy_from_user(&attr, argp, sizeof(attr)))
1094 1095 1096
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1097 1098
	}
	case KVM_GET_DEVICE_ATTR: {
1099
		r = -EFAULT;
1100
		if (copy_from_user(&attr, argp, sizeof(attr)))
1101 1102 1103
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1104 1105
	}
	case KVM_HAS_DEVICE_ATTR: {
1106
		r = -EFAULT;
1107
		if (copy_from_user(&attr, argp, sizeof(attr)))
1108 1109 1110
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1111
	}
1112
	default:
1113
		r = -EINVAL;
1114
	}
1115 1116

	return r;
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1138 1139
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1152 1153
}

1154 1155 1156
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1157 1158 1159 1160 1161 1162 1163 1164 1165
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1166 1167
		if (!vgic_present)
			return -ENXIO;
1168
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1169 1170 1171
	default:
		return -ENODEV;
	}
1172 1173
}

1174 1175 1176
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1177 1178 1179 1180
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1181
	case KVM_CREATE_IRQCHIP: {
1182
		int ret;
1183 1184
		if (!vgic_present)
			return -ENXIO;
1185 1186 1187 1188
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1189
	}
1190 1191 1192 1193 1194 1195 1196
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1210 1211 1212
	default:
		return -EINVAL;
	}
1213 1214
}

1215
static void cpu_init_hyp_mode(void *dummy)
1216
{
1217
	phys_addr_t pgd_ptr;
1218 1219 1220 1221 1222
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1223
	__hyp_set_vectors(kvm_get_idmap_vector());
1224

1225
	pgd_ptr = kvm_mmu_get_httbr();
1226
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1227
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1228
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1229

M
Marc Zyngier 已提交
1230
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1231
	__cpu_init_stage2();
1232 1233

	kvm_arm_init_debug();
1234 1235
}

1236 1237 1238 1239 1240 1241
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1242 1243
static void cpu_hyp_reinit(void)
{
1244 1245
	cpu_hyp_reset();

1246 1247
	if (is_kernel_in_hyp_mode()) {
		/*
1248
		 * __cpu_init_stage2() is safe to call even if the PM
1249 1250
		 * event was cancelled before the CPU was reset.
		 */
1251
		__cpu_init_stage2();
1252
		kvm_timer_init_vhe();
1253
	} else {
1254
		cpu_init_hyp_mode(NULL);
1255
	}
1256 1257 1258

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1259 1260
}

1261 1262 1263
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1264
		cpu_hyp_reinit();
1265
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1266
	}
1267
}
1268

1269 1270 1271 1272
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1273 1274
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1287

1288 1289 1290 1291 1292
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1308
		return NOTIFY_OK;
1309
	case CPU_PM_ENTER_FAILED:
1310 1311 1312 1313
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1314

1315 1316 1317 1318 1319
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1330 1331 1332 1333
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1334 1335 1336 1337
#else
static inline void hyp_cpu_pm_init(void)
{
}
1338 1339 1340
static inline void hyp_cpu_pm_exit(void)
{
}
1341 1342
#endif

1343 1344
static int init_common_resources(void)
{
1345 1346 1347 1348
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1349 1350 1351 1352 1353
	return 0;
}

static int init_subsystems(void)
{
1354
	int err = 0;
1355

1356
	/*
1357
	 * Enable hardware so that subsystem initialisation can access EL2.
1358
	 */
1359
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1360 1361 1362 1363 1364 1365

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1377
		err = 0;
1378 1379
		break;
	default:
1380
		goto out;
1381 1382 1383 1384 1385
	}

	/*
	 * Init HYP architected timer support
	 */
1386
	err = kvm_timer_hyp_init(vgic_present);
1387
	if (err)
1388
		goto out;
1389 1390 1391 1392

	kvm_perf_init();
	kvm_coproc_table_init();

1393 1394 1395 1396
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1397 1398 1399 1400 1401 1402 1403 1404 1405
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1406
	hyp_cpu_pm_exit();
1407 1408
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1433
			goto out_err;
1434 1435 1436 1437 1438 1439 1440 1441
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1442
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1443
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1444 1445
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1446
		goto out_err;
1447 1448
	}

1449
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1450
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1451 1452
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1453 1454 1455 1456 1457 1458 1459
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1460
		goto out_err;
1461 1462
	}

1463 1464 1465 1466 1467 1468
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1469 1470 1471 1472 1473
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1474 1475
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1476 1477 1478

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1479
			goto out_err;
1480 1481 1482 1483
		}
	}

	for_each_possible_cpu(cpu) {
1484
		kvm_cpu_context_t *cpu_ctxt;
1485

1486
		cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1487
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1488 1489

		if (err) {
1490
			kvm_err("Cannot map host CPU state: %d\n", err);
1491
			goto out_err;
1492 1493 1494 1495
		}
	}

	return 0;
1496

1497
out_err:
1498
	teardown_hyp_mode();
1499 1500 1501 1502
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1503 1504 1505 1506 1507
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1532 1533
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1534 1535 1536 1537 1538 1539 1540
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1541 1542
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1561 1562 1563
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1564 1565
int kvm_arch_init(void *opaque)
{
1566
	int err;
1567
	int ret, cpu;
1568
	bool in_hyp_mode;
1569 1570

	if (!is_hyp_mode_available()) {
1571
		kvm_info("HYP mode not available\n");
1572 1573 1574
		return -ENODEV;
	}

1575 1576 1577 1578 1579
	if (!kvm_arch_check_sve_has_vhe()) {
		kvm_pr_unimpl("SVE system without VHE unsupported.  Broken cpu?");
		return -ENODEV;
	}

1580 1581 1582 1583 1584 1585
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1586 1587
	}

1588
	err = init_common_resources();
1589
	if (err)
1590
		return err;
1591

1592 1593 1594
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode) {
1595
		err = init_hyp_mode();
1596 1597 1598
		if (err)
			goto out_err;
	}
1599

1600 1601 1602
	err = init_subsystems();
	if (err)
		goto out_hyp;
1603

1604 1605 1606 1607 1608
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1609
	return 0;
1610 1611

out_hyp:
1612 1613
	if (!in_hyp_mode)
		teardown_hyp_mode();
1614 1615
out_err:
	return err;
1616 1617 1618 1619 1620
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1621
	kvm_perf_teardown();
1622 1623 1624 1625 1626 1627 1628 1629 1630
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);