arm.c 37.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/bug.h>
20
#include <linux/cpu_pm.h>
21 22 23
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
24
#include <linux/list.h>
25 26 27 28 29
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
30
#include <linux/kvm.h>
31 32
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
33
#include <linux/sched/stat.h>
34
#include <trace/events/kvm.h>
35
#include <kvm/arm_pmu.h>
36
#include <kvm/arm_psci.h>
37 38 39 40

#define CREATE_TRACE_POINTS
#include "trace.h"

41
#include <linux/uaccess.h>
42 43
#include <asm/ptrace.h>
#include <asm/mman.h>
44
#include <asm/tlbflush.h>
45
#include <asm/cacheflush.h>
46
#include <asm/cpufeature.h>
47 48 49 50
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
51
#include <asm/kvm_emulate.h>
52
#include <asm/kvm_coproc.h>
53
#include <asm/sections.h>
54 55 56 57 58

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

59
DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 61
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

62 63 64
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

65 66
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 68
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
69
static DEFINE_SPINLOCK(kvm_vmid_lock);
70

71 72
static bool vgic_present;

73 74
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

75 76
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
77
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
78 79
}

80 81
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

82 83 84 85 86 87
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
88
	return __this_cpu_read(kvm_arm_running_vcpu);
89 90 91 92 93
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
94
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
95 96 97 98
{
	return &kvm_arm_running_vcpu;
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


115 116 117 118
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
119 120
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
121
	int ret, cpu;
122

123 124 125
	if (type)
		return -EINVAL;

126 127 128 129 130 131 132
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

133 134 135 136
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

137
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
138 139 140
	if (ret)
		goto out_free_stage2_pgd;

141
	kvm_vgic_early_init(kvm);
142

143 144 145
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

146
	/* The maximum number of VCPUs is limited by the host's GIC model */
147 148
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149

150 151 152 153
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
154 155
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
156
	return ret;
157 158
}

159 160 161 162 163 164 165 166 167 168
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

169
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 171 172 173 174
{
	return VM_FAULT_SIGBUS;
}


175 176 177 178
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
179 180 181 182
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

183 184
	kvm_vgic_destroy(kvm);

185 186 187
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

188 189 190 191 192 193
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
194
	atomic_set(&kvm->online_vcpus, 0);
195 196
}

197
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 199 200
{
	int r;
	switch (ext) {
201
	case KVM_CAP_IRQCHIP:
202 203
		r = vgic_present;
		break;
204
	case KVM_CAP_IOEVENTFD:
205
	case KVM_CAP_DEVICE_CTRL:
206 207 208 209
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
210
	case KVM_CAP_ARM_PSCI:
211
	case KVM_CAP_ARM_PSCI_0_2:
212
	case KVM_CAP_READONLY_MEM:
213
	case KVM_CAP_MP_STATE:
214
	case KVM_CAP_IMMEDIATE_EXIT:
215 216
		r = 1;
		break;
217 218
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
219
		break;
220 221 222 223 224 225
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
226 227 228
	case KVM_CAP_MAX_VCPU_ID:
		r = KVM_MAX_VCPU_ID;
		break;
229 230 231
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
232 233 234 235 236 237
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
238 239 240 241 242 243 244
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
245
	default:
246
		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
247 248 249 250 251 252 253 254 255 256 257
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
273 274 275 276 277 278

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

279 280 281 282 283
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

284 285 286 287 288
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

289 290 291 292 293 294 295 296 297 298
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

299
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
300 301 302
	if (err)
		goto vcpu_uninit;

303
	return vcpu;
304 305
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
306 307 308 309 310 311
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

312
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
313 314 315 316 317
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
318 319 320
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

321
	kvm_mmu_free_memory_caches(vcpu);
322
	kvm_timer_vcpu_terminate(vcpu);
323
	kvm_pmu_vcpu_destroy(vcpu);
324
	kvm_vcpu_uninit(vcpu);
325
	kmem_cache_free(kvm_vcpu_cache, vcpu);
326 327 328 329 330 331 332 333 334
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
335
	return kvm_timer_is_pending(vcpu);
336 337
}

338 339 340
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
341
	kvm_vgic_v4_enable_doorbell(vcpu);
342 343 344 345 346
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
347
	kvm_vgic_v4_disable_doorbell(vcpu);
348 349
}

350 351
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
352 353
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
354
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
355

356 357 358
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

359 360
	kvm_arm_reset_debug_ptr(vcpu);

361
	return kvm_vgic_vcpu_init(vcpu);
362 363 364 365
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
366 367 368 369 370 371 372 373 374 375 376 377 378
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

379
	vcpu->cpu = cpu;
380
	vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
381

382
	kvm_arm_set_running_vcpu(vcpu);
383
	kvm_vgic_load(vcpu);
384
	kvm_timer_vcpu_load(vcpu);
385
	kvm_vcpu_load_sysregs(vcpu);
386
	kvm_arch_vcpu_load_fp(vcpu);
387 388 389 390 391

	if (single_task_running())
		vcpu_clear_wfe_traps(vcpu);
	else
		vcpu_set_wfe_traps(vcpu);
392 393 394 395
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
396
	kvm_arch_vcpu_put_fp(vcpu);
397
	kvm_vcpu_put_sysregs(vcpu);
398
	kvm_timer_vcpu_put(vcpu);
399 400
	kvm_vgic_put(vcpu);

401 402
	vcpu->cpu = -1;

403
	kvm_arm_set_running_vcpu(NULL);
404 405
}

A
Andrew Jones 已提交
406 407 408
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
409
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
410 411 412
	kvm_vcpu_kick(vcpu);
}

413 414 415
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
416
	if (vcpu->arch.power_off)
417 418 419 420 421
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
422 423 424 425 426
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
427 428
	int ret = 0;

429 430
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
431
		vcpu->arch.power_off = false;
432 433
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
434
		vcpu_power_off(vcpu);
435 436
		break;
	default:
437
		ret = -EINVAL;
438 439
	}

440
	return ret;
441 442
}

443 444 445 446 447 448 449
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
450 451
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
452 453
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
454
		&& !v->arch.power_off && !v->arch.pause);
455 456
}

457 458
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
459
	return vcpu_mode_priv(vcpu);
460 461
}

462 463 464 465 466 467 468
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
469
	preempt_disable();
470
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
471
	preempt_enable();
472 473 474 475
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
476
 * @kvm: The VM's VMID to check
477 478 479 480 481 482 483 484 485 486 487
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
488 489 490
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
	return unlikely(READ_ONCE(kvm->arch.vmid_gen) != current_vmid_gen);
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

506
	if (!need_new_vmid_gen(kvm))
507 508
		return;

509
	spin_lock(&kvm_vmid_lock);
510 511 512 513 514 515 516

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
517
		spin_unlock(&kvm_vmid_lock);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
542
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
543 544

	/* update vttbr to be used with the new vmid */
545
	pgd_phys = virt_to_phys(kvm->arch.pgd);
546
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
547
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
548
	kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
549

550 551 552 553
	smp_wmb();
	WRITE_ONCE(kvm->arch.vmid_gen, atomic64_read(&kvm_vmid_gen));

	spin_unlock(&kvm_vmid_lock);
554 555 556 557
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
558
	struct kvm *kvm = vcpu->kvm;
559
	int ret = 0;
560

561 562 563 564
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
565

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
582 583
	}

584
	ret = kvm_timer_enable(vcpu);
585 586 587 588
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
589

590
	return ret;
591 592
}

593 594 595 596 597
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

598
void kvm_arm_halt_guest(struct kvm *kvm)
599 600 601 602 603 604
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
605
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
606 607
}

608
void kvm_arm_resume_guest(struct kvm *kvm)
609 610 611 612
{
	int i;
	struct kvm_vcpu *vcpu;

613 614
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
615
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
616
	}
617 618
}

619
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
620
{
621
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
622

623
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
624
				       (!vcpu->arch.pause)));
625

A
Andrew Jones 已提交
626
	if (vcpu->arch.power_off || vcpu->arch.pause) {
627
		/* Awaken to handle a signal, request we sleep again later. */
628
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
629
	}
630 631 632 633 634 635 636

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
637 638
}

639 640 641 642 643
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

644 645 646
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
647 648
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
649

650 651 652
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

653 654 655 656 657
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
658 659 660
	}
}

661 662 663 664 665 666 667 668 669 670 671
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
672 673
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
674 675
	int ret;

676
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
677 678 679 680
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
681
		return ret;
682

C
Christoffer Dall 已提交
683 684 685
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
686 687 688
			return ret;
		if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
			return 0;
C
Christoffer Dall 已提交
689 690
	}

691 692 693 694
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
695

696
	kvm_sigset_activate(vcpu);
697 698 699 700 701 702 703 704 705 706 707

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

708 709
		check_vcpu_requests(vcpu);

710 711 712 713 714
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
715
		preempt_disable();
716

717
		kvm_pmu_flush_hwstate(vcpu);
718

719 720
		local_irq_disable();

721 722
		kvm_vgic_flush_hwstate(vcpu);

723
		/*
724 725
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
726
		 */
727
		if (signal_pending(current)) {
728 729 730 731
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

747 748 749 750 751 752 753 754
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

755
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
A
Andrew Jones 已提交
756
		    kvm_request_pending(vcpu)) {
757
			vcpu->mode = OUTSIDE_GUEST_MODE;
758
			isb(); /* Ensure work in x_flush_hwstate is committed */
759
			kvm_pmu_sync_hwstate(vcpu);
760 761
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
762
			kvm_vgic_sync_hwstate(vcpu);
763
			local_irq_enable();
764
			preempt_enable();
765 766 767
			continue;
		}

768 769
		kvm_arm_setup_debug(vcpu);

770 771 772 773
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
774
		guest_enter_irqoff();
775

776 777 778
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
779
			kvm_arm_vhe_guest_exit();
780 781 782 783
		} else {
			ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
		}

784
		vcpu->mode = OUTSIDE_GUEST_MODE;
785
		vcpu->stat.exits++;
786 787 788 789
		/*
		 * Back from guest
		 *************************************************************/

790 791
		kvm_arm_clear_debug(vcpu);

792
		/*
793
		 * We must sync the PMU state before the vgic state so
794 795 796 797 798
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

799 800 801 802 803
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
804 805
		kvm_vgic_sync_hwstate(vcpu);

806 807 808 809 810
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
811 812
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
813

814 815
		kvm_arch_vcpu_ctxsync_fp(vcpu);

816 817 818 819 820 821 822 823 824 825 826 827 828
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
829
		 * We do local_irq_enable() before calling guest_exit() so
830 831
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
832
		 * preemption after calling guest_exit() so that if we get
833 834 835
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
836
		guest_exit();
837
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
838

839 840 841
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

842 843
		preempt_enable();

844 845 846
		ret = handle_exit(vcpu, run, ret);
	}

847
	/* Tell userspace about in-kernel device output levels */
848 849 850 851
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
852

853 854
	kvm_sigset_deactivate(vcpu);

855
	vcpu_put(vcpu);
856
	return ret;
857 858
}

859 860 861 862
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
863
	unsigned long *hcr;
864 865 866 867 868 869

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

870
	hcr = vcpu_hcr(vcpu);
871
	if (level)
872
		set = test_and_set_bit(bit_index, hcr);
873
	else
874
		set = test_and_clear_bit(bit_index, hcr);
875 876 877 878 879 880 881 882 883 884 885 886

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
887
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
888 889 890 891 892
	kvm_vcpu_kick(vcpu);

	return 0;
}

893 894
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
895 896 897 898 899 900 901 902 903 904 905 906 907
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

908 909 910 911
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
912

913 914
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
915

916 917 918
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
919

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
937

938
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
939 940 941 942
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

943
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
944 945
			return -EINVAL;

946
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
947 948 949
	}

	return -EINVAL;
950 951
}

952 953 954
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
955
	unsigned int i, ret;
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
990 991 992 993 994
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
995

996 997
	return ret;
}
998

999 1000 1001 1002 1003 1004 1005 1006 1007
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1008 1009 1010 1011 1012 1013 1014
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

1015 1016
	vcpu_reset_hcr(vcpu);

1017
	/*
1018
	 * Handle the "start in power-off" case.
1019
	 */
1020
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1021
		vcpu_power_off(vcpu);
1022
	else
1023
		vcpu->arch.power_off = false;
1024 1025 1026 1027

	return 0;
}

1028 1029 1030 1031 1032 1033 1034
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1035
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1049
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1063
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1064 1065 1066 1067 1068 1069
		break;
	}

	return ret;
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1096 1097 1098 1099 1100
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1101
	struct kvm_device_attr attr;
1102 1103
	long r;

1104 1105 1106 1107
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1108
		r = -EFAULT;
1109
		if (copy_from_user(&init, argp, sizeof(init)))
1110
			break;
1111

1112 1113
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1114 1115 1116 1117
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1118

1119
		r = -ENOEXEC;
1120
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1121
			break;
1122

1123
		r = -EFAULT;
1124
		if (copy_from_user(&reg, argp, sizeof(reg)))
1125 1126
			break;

1127
		if (ioctl == KVM_SET_ONE_REG)
1128
			r = kvm_arm_set_reg(vcpu, &reg);
1129
		else
1130 1131
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1132 1133 1134 1135 1136 1137
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1138
		r = -ENOEXEC;
1139
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1140
			break;
1141

1142
		r = -EFAULT;
1143
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1144
			break;
1145 1146 1147
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1148 1149
			break;
		r = -E2BIG;
1150
		if (n < reg_list.n)
1151 1152 1153
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1154
	}
1155
	case KVM_SET_DEVICE_ATTR: {
1156
		r = -EFAULT;
1157
		if (copy_from_user(&attr, argp, sizeof(attr)))
1158 1159 1160
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1161 1162
	}
	case KVM_GET_DEVICE_ATTR: {
1163
		r = -EFAULT;
1164
		if (copy_from_user(&attr, argp, sizeof(attr)))
1165 1166 1167
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1168 1169
	}
	case KVM_HAS_DEVICE_ATTR: {
1170
		r = -EFAULT;
1171
		if (copy_from_user(&attr, argp, sizeof(attr)))
1172 1173 1174
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1175
	}
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1195
	default:
1196
		r = -EINVAL;
1197
	}
1198 1199

	return r;
1200 1201
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1221 1222
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1235 1236
}

1237 1238 1239
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1240 1241 1242 1243 1244 1245 1246 1247 1248
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1249 1250
		if (!vgic_present)
			return -ENXIO;
1251
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1252 1253 1254
	default:
		return -ENODEV;
	}
1255 1256
}

1257 1258 1259
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1260 1261 1262 1263
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1264
	case KVM_CREATE_IRQCHIP: {
1265
		int ret;
1266 1267
		if (!vgic_present)
			return -ENXIO;
1268 1269 1270 1271
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1272
	}
1273 1274 1275 1276 1277 1278 1279
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1293 1294 1295
	default:
		return -EINVAL;
	}
1296 1297
}

1298
static void cpu_init_hyp_mode(void *dummy)
1299
{
1300
	phys_addr_t pgd_ptr;
1301 1302 1303 1304 1305
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1306
	__hyp_set_vectors(kvm_get_idmap_vector());
1307

1308
	pgd_ptr = kvm_mmu_get_httbr();
1309
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1310
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1311
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1312

M
Marc Zyngier 已提交
1313
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1314
	__cpu_init_stage2();
1315 1316
}

1317 1318 1319 1320 1321 1322
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1323 1324
static void cpu_hyp_reinit(void)
{
1325 1326
	cpu_hyp_reset();

1327 1328
	if (is_kernel_in_hyp_mode()) {
		/*
1329
		 * __cpu_init_stage2() is safe to call even if the PM
1330 1331
		 * event was cancelled before the CPU was reset.
		 */
1332
		__cpu_init_stage2();
1333
		kvm_timer_init_vhe();
1334
	} else {
1335
		cpu_init_hyp_mode(NULL);
1336
	}
1337

1338 1339
	kvm_arm_init_debug();

1340 1341
	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1342 1343
}

1344 1345 1346
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1347
		cpu_hyp_reinit();
1348
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1349
	}
1350
}
1351

1352 1353 1354 1355
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1356 1357
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1370

1371 1372 1373 1374 1375
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1391
		return NOTIFY_OK;
1392
	case CPU_PM_ENTER_FAILED:
1393 1394 1395 1396
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1397

1398 1399 1400 1401 1402
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1413 1414 1415 1416
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1417 1418 1419 1420
#else
static inline void hyp_cpu_pm_init(void)
{
}
1421 1422 1423
static inline void hyp_cpu_pm_exit(void)
{
}
1424 1425
#endif

1426 1427
static int init_common_resources(void)
{
1428 1429 1430 1431
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1432 1433 1434 1435 1436
	return 0;
}

static int init_subsystems(void)
{
1437
	int err = 0;
1438

1439
	/*
1440
	 * Enable hardware so that subsystem initialisation can access EL2.
1441
	 */
1442
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1443 1444 1445 1446 1447 1448

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1460
		err = 0;
1461 1462
		break;
	default:
1463
		goto out;
1464 1465 1466 1467 1468
	}

	/*
	 * Init HYP architected timer support
	 */
1469
	err = kvm_timer_hyp_init(vgic_present);
1470
	if (err)
1471
		goto out;
1472 1473 1474 1475

	kvm_perf_init();
	kvm_coproc_table_init();

1476 1477 1478 1479
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1480 1481 1482 1483 1484 1485 1486 1487 1488
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1489
	hyp_cpu_pm_exit();
1490 1491
}

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1516
			goto out_err;
1517 1518 1519 1520 1521 1522 1523 1524
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1525
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1526
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1527 1528
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1529
		goto out_err;
1530 1531
	}

1532
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1533
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1534 1535
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1536 1537 1538 1539 1540 1541 1542
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1543
		goto out_err;
1544 1545
	}

1546 1547 1548 1549 1550 1551
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1552 1553 1554 1555 1556
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1557 1558
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1559 1560 1561

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1562
			goto out_err;
1563 1564 1565 1566
		}
	}

	for_each_possible_cpu(cpu) {
1567
		kvm_cpu_context_t *cpu_ctxt;
1568

1569
		cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1570
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1571 1572

		if (err) {
1573
			kvm_err("Cannot map host CPU state: %d\n", err);
1574
			goto out_err;
1575 1576 1577
		}
	}

1578 1579 1580 1581
	err = hyp_map_aux_data();
	if (err)
		kvm_err("Cannot map host auxilary data: %d\n", err);

1582
	return 0;
1583

1584
out_err:
1585
	teardown_hyp_mode();
1586 1587 1588 1589
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1590 1591 1592 1593 1594
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1619 1620
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1621 1622 1623 1624 1625 1626 1627
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1628 1629
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1648 1649 1650
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1651 1652
int kvm_arch_init(void *opaque)
{
1653
	int err;
1654
	int ret, cpu;
1655
	bool in_hyp_mode;
1656 1657

	if (!is_hyp_mode_available()) {
1658
		kvm_info("HYP mode not available\n");
1659 1660 1661
		return -ENODEV;
	}

1662 1663 1664 1665 1666
	if (!kvm_arch_check_sve_has_vhe()) {
		kvm_pr_unimpl("SVE system without VHE unsupported.  Broken cpu?");
		return -ENODEV;
	}

1667 1668 1669 1670 1671 1672
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1673 1674
	}

1675
	err = init_common_resources();
1676
	if (err)
1677
		return err;
1678

1679 1680 1681
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode) {
1682
		err = init_hyp_mode();
1683 1684 1685
		if (err)
			goto out_err;
	}
1686

1687 1688 1689
	err = init_subsystems();
	if (err)
		goto out_hyp;
1690

1691 1692 1693 1694 1695
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1696
	return 0;
1697 1698

out_hyp:
1699 1700
	if (!in_hyp_mode)
		teardown_hyp_mode();
1701 1702
out_err:
	return err;
1703 1704 1705 1706 1707
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1708
	kvm_perf_teardown();
1709 1710 1711 1712 1713 1714 1715 1716 1717
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);