arm.c 37.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/bug.h>
20
#include <linux/cpu_pm.h>
21 22 23
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
24
#include <linux/list.h>
25 26 27 28 29
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
30
#include <linux/kvm.h>
31 32
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
33
#include <linux/sched/stat.h>
34
#include <trace/events/kvm.h>
35
#include <kvm/arm_pmu.h>
36
#include <kvm/arm_psci.h>
37 38 39 40

#define CREATE_TRACE_POINTS
#include "trace.h"

41
#include <linux/uaccess.h>
42 43
#include <asm/ptrace.h>
#include <asm/mman.h>
44
#include <asm/tlbflush.h>
45
#include <asm/cacheflush.h>
46
#include <asm/cpufeature.h>
47 48 49 50
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
51
#include <asm/kvm_emulate.h>
52
#include <asm/kvm_coproc.h>
53
#include <asm/sections.h>
54 55 56 57 58

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

59
DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 61
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

62 63 64
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

65 66
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 68
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
69
static DEFINE_SPINLOCK(kvm_vmid_lock);
70

71 72
static bool vgic_present;

73 74
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

75 76
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
77
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
78 79
}

80 81
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

82 83 84 85 86 87
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
88
	return __this_cpu_read(kvm_arm_running_vcpu);
89 90 91 92 93
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
94
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
95 96 97 98
{
	return &kvm_arm_running_vcpu;
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


115 116 117 118
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
119 120
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
121
	int ret, cpu;
122

123 124 125
	if (type)
		return -EINVAL;

126 127 128 129 130 131 132
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

133 134 135 136
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

137
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
138 139 140
	if (ret)
		goto out_free_stage2_pgd;

141
	kvm_vgic_early_init(kvm);
142

143 144 145
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

146
	/* The maximum number of VCPUs is limited by the host's GIC model */
147 148
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149

150 151 152 153
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
154 155
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
156
	return ret;
157 158
}

159 160 161 162 163 164 165 166 167 168
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

169
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 171 172 173 174
{
	return VM_FAULT_SIGBUS;
}


175 176 177 178
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
179 180 181 182
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

183 184
	kvm_vgic_destroy(kvm);

185 186 187
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

188 189 190 191 192 193
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
194
	atomic_set(&kvm->online_vcpus, 0);
195 196
}

197
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 199 200
{
	int r;
	switch (ext) {
201
	case KVM_CAP_IRQCHIP:
202 203
		r = vgic_present;
		break;
204
	case KVM_CAP_IOEVENTFD:
205
	case KVM_CAP_DEVICE_CTRL:
206 207 208 209
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
210
	case KVM_CAP_ARM_PSCI:
211
	case KVM_CAP_ARM_PSCI_0_2:
212
	case KVM_CAP_READONLY_MEM:
213
	case KVM_CAP_MP_STATE:
214
	case KVM_CAP_IMMEDIATE_EXIT:
215
	case KVM_CAP_VCPU_EVENTS:
216 217
		r = 1;
		break;
218 219
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
220
		break;
221 222 223 224 225 226
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
227 228 229
	case KVM_CAP_MAX_VCPU_ID:
		r = KVM_MAX_VCPU_ID;
		break;
230 231 232
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
233 234 235 236 237 238
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
239 240 241 242 243 244 245
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
246
	default:
247
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
248 249 250 251 252 253 254 255 256 257 258
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
274 275 276 277 278 279

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

280 281 282 283 284
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

285 286 287 288 289
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

290 291 292 293 294 295 296 297 298 299
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

300
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
301 302 303
	if (err)
		goto vcpu_uninit;

304
	return vcpu;
305 306
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
307 308 309 310 311 312
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

313
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
314 315 316 317 318
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
319 320 321
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

322
	kvm_mmu_free_memory_caches(vcpu);
323
	kvm_timer_vcpu_terminate(vcpu);
324
	kvm_pmu_vcpu_destroy(vcpu);
325
	kvm_vcpu_uninit(vcpu);
326
	kmem_cache_free(kvm_vcpu_cache, vcpu);
327 328 329 330 331 332 333 334 335
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
336
	return kvm_timer_is_pending(vcpu);
337 338
}

339 340 341
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
342 343 344 345 346 347 348 349 350 351 352
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
	 * so that we have the lastest PMR and group enables. This ensures
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
	preempt_enable();

353
	kvm_vgic_v4_enable_doorbell(vcpu);
354 355 356 357 358
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
359
	kvm_vgic_v4_disable_doorbell(vcpu);
360 361
}

362 363
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
364 365
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
366
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
367

368 369 370
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

371 372
	kvm_arm_reset_debug_ptr(vcpu);

373
	return kvm_vgic_vcpu_init(vcpu);
374 375 376 377
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
378 379 380 381 382 383 384 385 386 387 388 389 390
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

391
	vcpu->cpu = cpu;
392
	vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
393

394
	kvm_arm_set_running_vcpu(vcpu);
395
	kvm_vgic_load(vcpu);
396
	kvm_timer_vcpu_load(vcpu);
397
	kvm_vcpu_load_sysregs(vcpu);
398
	kvm_arch_vcpu_load_fp(vcpu);
399 400 401 402 403

	if (single_task_running())
		vcpu_clear_wfe_traps(vcpu);
	else
		vcpu_set_wfe_traps(vcpu);
404 405 406 407
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
408
	kvm_arch_vcpu_put_fp(vcpu);
409
	kvm_vcpu_put_sysregs(vcpu);
410
	kvm_timer_vcpu_put(vcpu);
411 412
	kvm_vgic_put(vcpu);

413 414
	vcpu->cpu = -1;

415
	kvm_arm_set_running_vcpu(NULL);
416 417
}

A
Andrew Jones 已提交
418 419 420
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
421
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
422 423 424
	kvm_vcpu_kick(vcpu);
}

425 426 427
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
428
	if (vcpu->arch.power_off)
429 430 431 432 433
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
434 435 436 437 438
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
439 440
	int ret = 0;

441 442
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
443
		vcpu->arch.power_off = false;
444 445
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
446
		vcpu_power_off(vcpu);
447 448
		break;
	default:
449
		ret = -EINVAL;
450 451
	}

452
	return ret;
453 454
}

455 456 457 458 459 460 461
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
462 463
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
464 465
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
466
		&& !v->arch.power_off && !v->arch.pause);
467 468
}

469 470
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
471
	return vcpu_mode_priv(vcpu);
472 473
}

474 475 476 477 478 479 480
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
481
	preempt_disable();
482
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
483
	preempt_enable();
484 485 486 487
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
488
 * @kvm: The VM's VMID to check
489 490 491 492 493 494 495 496 497 498 499
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
500 501 502
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
	return unlikely(READ_ONCE(kvm->arch.vmid_gen) != current_vmid_gen);
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

518
	if (!need_new_vmid_gen(kvm))
519 520
		return;

521
	spin_lock(&kvm_vmid_lock);
522 523 524 525 526 527 528

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
529
		spin_unlock(&kvm_vmid_lock);
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
554
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
555 556

	/* update vttbr to be used with the new vmid */
557
	pgd_phys = virt_to_phys(kvm->arch.pgd);
558
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
559
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
560
	kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
561

562 563 564 565
	smp_wmb();
	WRITE_ONCE(kvm->arch.vmid_gen, atomic64_read(&kvm_vmid_gen));

	spin_unlock(&kvm_vmid_lock);
566 567 568 569
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
570
	struct kvm *kvm = vcpu->kvm;
571
	int ret = 0;
572

573 574 575 576
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
577

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
594 595
	}

596
	ret = kvm_timer_enable(vcpu);
597 598 599 600
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
601

602
	return ret;
603 604
}

605 606 607 608 609
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

610
void kvm_arm_halt_guest(struct kvm *kvm)
611 612 613 614 615 616
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
617
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
618 619
}

620
void kvm_arm_resume_guest(struct kvm *kvm)
621 622 623 624
{
	int i;
	struct kvm_vcpu *vcpu;

625 626
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
627
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
628
	}
629 630
}

631
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
632
{
633
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
634

635
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
636
				       (!vcpu->arch.pause)));
637

A
Andrew Jones 已提交
638
	if (vcpu->arch.power_off || vcpu->arch.pause) {
639
		/* Awaken to handle a signal, request we sleep again later. */
640
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
641
	}
642 643 644 645 646 647 648

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
649 650
}

651 652 653 654 655
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

656 657 658
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
659 660
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
661

662 663 664
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

665 666 667 668 669
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
670 671 672
	}
}

673 674 675 676 677 678 679 680 681 682 683
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
684 685
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
686 687
	int ret;

688
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
689 690 691 692
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
693
		return ret;
694

C
Christoffer Dall 已提交
695 696 697
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
698
			return ret;
C
Christoffer Dall 已提交
699 700
	}

701 702 703 704
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
705

706
	kvm_sigset_activate(vcpu);
707 708 709 710 711 712 713 714 715 716 717

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

718 719
		check_vcpu_requests(vcpu);

720 721 722 723 724
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
725
		preempt_disable();
726

727
		kvm_pmu_flush_hwstate(vcpu);
728

729 730
		local_irq_disable();

731 732
		kvm_vgic_flush_hwstate(vcpu);

733
		/*
734 735
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
736
		 */
737
		if (signal_pending(current)) {
738 739 740 741
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

757 758 759 760 761 762 763 764
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

765
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
A
Andrew Jones 已提交
766
		    kvm_request_pending(vcpu)) {
767
			vcpu->mode = OUTSIDE_GUEST_MODE;
768
			isb(); /* Ensure work in x_flush_hwstate is committed */
769
			kvm_pmu_sync_hwstate(vcpu);
770 771
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
772
			kvm_vgic_sync_hwstate(vcpu);
773
			local_irq_enable();
774
			preempt_enable();
775 776 777
			continue;
		}

778 779
		kvm_arm_setup_debug(vcpu);

780 781 782 783
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
784
		guest_enter_irqoff();
785

786 787 788
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
789
			kvm_arm_vhe_guest_exit();
790 791 792 793
		} else {
			ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
		}

794
		vcpu->mode = OUTSIDE_GUEST_MODE;
795
		vcpu->stat.exits++;
796 797 798 799
		/*
		 * Back from guest
		 *************************************************************/

800 801
		kvm_arm_clear_debug(vcpu);

802
		/*
803
		 * We must sync the PMU state before the vgic state so
804 805 806 807 808
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

809 810 811 812 813
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
814 815
		kvm_vgic_sync_hwstate(vcpu);

816 817 818 819 820
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
821 822
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
823

824 825
		kvm_arch_vcpu_ctxsync_fp(vcpu);

826 827 828 829 830 831 832 833 834 835 836 837 838
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
839
		 * We do local_irq_enable() before calling guest_exit() so
840 841
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
842
		 * preemption after calling guest_exit() so that if we get
843 844 845
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
846
		guest_exit();
847
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
848

849 850 851
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

852 853
		preempt_enable();

854 855 856
		ret = handle_exit(vcpu, run, ret);
	}

857
	/* Tell userspace about in-kernel device output levels */
858 859 860 861
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
862

863 864
	kvm_sigset_deactivate(vcpu);

865
	vcpu_put(vcpu);
866
	return ret;
867 868
}

869 870 871 872
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
873
	unsigned long *hcr;
874 875 876 877 878 879

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

880
	hcr = vcpu_hcr(vcpu);
881
	if (level)
882
		set = test_and_set_bit(bit_index, hcr);
883
	else
884
		set = test_and_clear_bit(bit_index, hcr);
885 886 887 888 889 890 891 892 893 894 895 896

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
897
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
898 899 900 901 902
	kvm_vcpu_kick(vcpu);

	return 0;
}

903 904
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
905 906 907 908 909 910 911 912 913 914 915 916 917
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

918 919 920 921
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
922

923 924
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
925

926 927 928
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
929

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
947

948
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
949 950 951 952
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

953
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
954 955
			return -EINVAL;

956
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
957 958 959
	}

	return -EINVAL;
960 961
}

962 963 964
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
965
	unsigned int i, ret;
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1000 1001 1002 1003 1004
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1005

1006 1007
	return ret;
}
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1018 1019 1020 1021 1022 1023 1024
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

1025 1026
	vcpu_reset_hcr(vcpu);

1027
	/*
1028
	 * Handle the "start in power-off" case.
1029
	 */
1030
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1031
		vcpu_power_off(vcpu);
1032
	else
1033
		vcpu->arch.power_off = false;
1034 1035 1036 1037

	return 0;
}

1038 1039 1040 1041 1042 1043 1044
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1045
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1059
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1073
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1074 1075 1076 1077 1078 1079
		break;
	}

	return ret;
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1106 1107 1108 1109 1110
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1111
	struct kvm_device_attr attr;
1112 1113
	long r;

1114 1115 1116 1117
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1118
		r = -EFAULT;
1119
		if (copy_from_user(&init, argp, sizeof(init)))
1120
			break;
1121

1122 1123
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1124 1125 1126 1127
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1128

1129
		r = -ENOEXEC;
1130
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1131
			break;
1132

1133
		r = -EFAULT;
1134
		if (copy_from_user(&reg, argp, sizeof(reg)))
1135 1136
			break;

1137
		if (ioctl == KVM_SET_ONE_REG)
1138
			r = kvm_arm_set_reg(vcpu, &reg);
1139
		else
1140 1141
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1142 1143 1144 1145 1146 1147
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1148
		r = -ENOEXEC;
1149
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1150
			break;
1151

1152
		r = -EFAULT;
1153
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1154
			break;
1155 1156 1157
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1158 1159
			break;
		r = -E2BIG;
1160
		if (n < reg_list.n)
1161 1162 1163
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1164
	}
1165
	case KVM_SET_DEVICE_ATTR: {
1166
		r = -EFAULT;
1167
		if (copy_from_user(&attr, argp, sizeof(attr)))
1168 1169 1170
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1171 1172
	}
	case KVM_GET_DEVICE_ATTR: {
1173
		r = -EFAULT;
1174
		if (copy_from_user(&attr, argp, sizeof(attr)))
1175 1176 1177
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1178 1179
	}
	case KVM_HAS_DEVICE_ATTR: {
1180
		r = -EFAULT;
1181
		if (copy_from_user(&attr, argp, sizeof(attr)))
1182 1183 1184
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1185
	}
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1205
	default:
1206
		r = -EINVAL;
1207
	}
1208 1209

	return r;
1210 1211
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1231 1232
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1245 1246
}

1247 1248 1249
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1250 1251 1252 1253 1254 1255 1256 1257 1258
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1259 1260
		if (!vgic_present)
			return -ENXIO;
1261
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1262 1263 1264
	default:
		return -ENODEV;
	}
1265 1266
}

1267 1268 1269
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1270 1271 1272 1273
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1274
	case KVM_CREATE_IRQCHIP: {
1275
		int ret;
1276 1277
		if (!vgic_present)
			return -ENXIO;
1278 1279 1280 1281
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1282
	}
1283 1284 1285 1286 1287 1288 1289
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1303 1304 1305
	default:
		return -EINVAL;
	}
1306 1307
}

1308
static void cpu_init_hyp_mode(void *dummy)
1309
{
1310
	phys_addr_t pgd_ptr;
1311 1312 1313 1314 1315
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1316
	__hyp_set_vectors(kvm_get_idmap_vector());
1317

1318
	pgd_ptr = kvm_mmu_get_httbr();
1319
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1320
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1321
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1322

M
Marc Zyngier 已提交
1323
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1324
	__cpu_init_stage2();
1325 1326
}

1327 1328 1329 1330 1331 1332
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1333 1334
static void cpu_hyp_reinit(void)
{
1335 1336
	cpu_hyp_reset();

1337 1338
	if (is_kernel_in_hyp_mode()) {
		/*
1339
		 * __cpu_init_stage2() is safe to call even if the PM
1340 1341
		 * event was cancelled before the CPU was reset.
		 */
1342
		__cpu_init_stage2();
1343
		kvm_timer_init_vhe();
1344
	} else {
1345
		cpu_init_hyp_mode(NULL);
1346
	}
1347

1348 1349
	kvm_arm_init_debug();

1350 1351
	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1352 1353
}

1354 1355 1356
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1357
		cpu_hyp_reinit();
1358
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1359
	}
1360
}
1361

1362 1363 1364 1365
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1366 1367
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1380

1381 1382 1383 1384 1385
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1401
		return NOTIFY_OK;
1402
	case CPU_PM_ENTER_FAILED:
1403 1404 1405 1406
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1407

1408 1409 1410 1411 1412
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1423 1424 1425 1426
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1427 1428 1429 1430
#else
static inline void hyp_cpu_pm_init(void)
{
}
1431 1432 1433
static inline void hyp_cpu_pm_exit(void)
{
}
1434 1435
#endif

1436 1437
static int init_common_resources(void)
{
1438 1439 1440 1441
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1442 1443 1444 1445 1446
	return 0;
}

static int init_subsystems(void)
{
1447
	int err = 0;
1448

1449
	/*
1450
	 * Enable hardware so that subsystem initialisation can access EL2.
1451
	 */
1452
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1453 1454 1455 1456 1457 1458

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1470
		err = 0;
1471 1472
		break;
	default:
1473
		goto out;
1474 1475 1476 1477 1478
	}

	/*
	 * Init HYP architected timer support
	 */
1479
	err = kvm_timer_hyp_init(vgic_present);
1480
	if (err)
1481
		goto out;
1482 1483 1484 1485

	kvm_perf_init();
	kvm_coproc_table_init();

1486 1487 1488 1489
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1490 1491 1492 1493 1494 1495 1496 1497 1498
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1499
	hyp_cpu_pm_exit();
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1526
			goto out_err;
1527 1528 1529 1530 1531 1532 1533 1534
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1535
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1536
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1537 1538
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1539
		goto out_err;
1540 1541
	}

1542
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1543
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1544 1545
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1546 1547 1548 1549 1550 1551 1552
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1553
		goto out_err;
1554 1555
	}

1556 1557 1558 1559 1560 1561
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1562 1563 1564 1565 1566
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1567 1568
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1569 1570 1571

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1572
			goto out_err;
1573 1574 1575 1576
		}
	}

	for_each_possible_cpu(cpu) {
1577
		kvm_cpu_context_t *cpu_ctxt;
1578

1579
		cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1580
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1581 1582

		if (err) {
1583
			kvm_err("Cannot map host CPU state: %d\n", err);
1584
			goto out_err;
1585 1586 1587
		}
	}

1588 1589 1590 1591
	err = hyp_map_aux_data();
	if (err)
		kvm_err("Cannot map host auxilary data: %d\n", err);

1592
	return 0;
1593

1594
out_err:
1595
	teardown_hyp_mode();
1596 1597 1598 1599
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1600 1601 1602 1603 1604
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1629 1630
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1631 1632 1633 1634 1635 1636 1637
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1638 1639
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1658 1659 1660
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1661 1662
int kvm_arch_init(void *opaque)
{
1663
	int err;
1664
	int ret, cpu;
1665
	bool in_hyp_mode;
1666 1667

	if (!is_hyp_mode_available()) {
1668
		kvm_info("HYP mode not available\n");
1669 1670 1671
		return -ENODEV;
	}

1672 1673 1674 1675 1676
	if (!kvm_arch_check_sve_has_vhe()) {
		kvm_pr_unimpl("SVE system without VHE unsupported.  Broken cpu?");
		return -ENODEV;
	}

1677 1678 1679 1680 1681 1682
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1683 1684
	}

1685
	err = init_common_resources();
1686
	if (err)
1687
		return err;
1688

1689 1690 1691
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode) {
1692
		err = init_hyp_mode();
1693 1694 1695
		if (err)
			goto out_err;
	}
1696

1697 1698 1699
	err = init_subsystems();
	if (err)
		goto out_hyp;
1700

1701 1702 1703 1704 1705
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1706
	return 0;
1707 1708

out_hyp:
1709 1710
	if (!in_hyp_mode)
		teardown_hyp_mode();
1711 1712
out_err:
	return err;
1713 1714 1715 1716 1717
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1718
	kvm_perf_teardown();
1719 1720 1721 1722 1723 1724 1725 1726 1727
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);