arm.c 37.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/bug.h>
20
#include <linux/cpu_pm.h>
21 22 23
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
24
#include <linux/list.h>
25 26 27 28 29
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
30
#include <linux/kvm.h>
31 32
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
33
#include <linux/sched/stat.h>
34
#include <trace/events/kvm.h>
35
#include <kvm/arm_pmu.h>
36
#include <kvm/arm_psci.h>
37 38 39 40

#define CREATE_TRACE_POINTS
#include "trace.h"

41
#include <linux/uaccess.h>
42 43
#include <asm/ptrace.h>
#include <asm/mman.h>
44
#include <asm/tlbflush.h>
45
#include <asm/cacheflush.h>
46
#include <asm/cpufeature.h>
47 48 49 50
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
51
#include <asm/kvm_emulate.h>
52
#include <asm/kvm_coproc.h>
53
#include <asm/sections.h>
54 55 56 57 58

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

59
DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 61
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

62 63 64
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

65 66
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 68
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
69
static DEFINE_RWLOCK(kvm_vmid_lock);
70

71 72
static bool vgic_present;

73 74
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

75 76
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
77
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
78 79
}

80 81
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

82 83 84 85 86 87
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
88
	return __this_cpu_read(kvm_arm_running_vcpu);
89 90 91 92 93
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
94
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
95 96 97 98
{
	return &kvm_arm_running_vcpu;
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


115 116 117 118
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
119 120
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
121
	int ret, cpu;
122

123 124 125
	if (type)
		return -EINVAL;

126 127 128 129 130 131 132
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

133 134 135 136
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

137
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
138 139 140
	if (ret)
		goto out_free_stage2_pgd;

141
	kvm_vgic_early_init(kvm);
142

143 144 145
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

146
	/* The maximum number of VCPUs is limited by the host's GIC model */
147 148
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149

150 151 152 153
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
154 155
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
156
	return ret;
157 158
}

159 160 161 162 163 164 165 166 167 168
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

169
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 171 172 173 174
{
	return VM_FAULT_SIGBUS;
}


175 176 177 178
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
179 180 181 182
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

183 184
	kvm_vgic_destroy(kvm);

185 186 187
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

188 189 190 191 192 193
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
194
	atomic_set(&kvm->online_vcpus, 0);
195 196
}

197
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 199 200
{
	int r;
	switch (ext) {
201
	case KVM_CAP_IRQCHIP:
202 203
		r = vgic_present;
		break;
204
	case KVM_CAP_IOEVENTFD:
205
	case KVM_CAP_DEVICE_CTRL:
206 207 208 209
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
210
	case KVM_CAP_ARM_PSCI:
211
	case KVM_CAP_ARM_PSCI_0_2:
212
	case KVM_CAP_READONLY_MEM:
213
	case KVM_CAP_MP_STATE:
214
	case KVM_CAP_IMMEDIATE_EXIT:
215 216
		r = 1;
		break;
217 218
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
219
		break;
220 221 222 223 224 225
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
226 227 228
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
229 230 231 232 233 234
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
235 236 237 238 239 240 241
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
242
	default:
243
		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
244 245 246 247 248 249 250 251 252 253 254
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
270 271 272 273 274 275

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

276 277 278 279 280
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

281 282 283 284 285
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

286 287 288 289 290 291 292 293 294 295
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

296
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
297 298 299
	if (err)
		goto vcpu_uninit;

300
	return vcpu;
301 302
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
303 304 305 306 307 308
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

309
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
310 311 312 313 314
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
315 316 317
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

318
	kvm_mmu_free_memory_caches(vcpu);
319
	kvm_timer_vcpu_terminate(vcpu);
320
	kvm_pmu_vcpu_destroy(vcpu);
321
	kvm_vcpu_uninit(vcpu);
322
	kmem_cache_free(kvm_vcpu_cache, vcpu);
323 324 325 326 327 328 329 330 331
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
332
	return kvm_timer_is_pending(vcpu);
333 334
}

335 336 337
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
338
	kvm_vgic_v4_enable_doorbell(vcpu);
339 340 341 342 343
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
344
	kvm_vgic_v4_disable_doorbell(vcpu);
345 346
}

347 348
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
349 350
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
351
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
352

353 354 355
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

356 357
	kvm_arm_reset_debug_ptr(vcpu);

358
	return kvm_vgic_vcpu_init(vcpu);
359 360 361 362
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
363 364 365 366 367 368 369 370 371 372 373 374 375
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

376
	vcpu->cpu = cpu;
377
	vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
378

379
	kvm_arm_set_running_vcpu(vcpu);
380
	kvm_vgic_load(vcpu);
381
	kvm_timer_vcpu_load(vcpu);
382
	kvm_vcpu_load_sysregs(vcpu);
383
	kvm_arch_vcpu_load_fp(vcpu);
384 385 386 387 388

	if (single_task_running())
		vcpu_clear_wfe_traps(vcpu);
	else
		vcpu_set_wfe_traps(vcpu);
389 390 391 392
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
393
	kvm_arch_vcpu_put_fp(vcpu);
394
	kvm_vcpu_put_sysregs(vcpu);
395
	kvm_timer_vcpu_put(vcpu);
396 397
	kvm_vgic_put(vcpu);

398 399
	vcpu->cpu = -1;

400
	kvm_arm_set_running_vcpu(NULL);
401 402
}

A
Andrew Jones 已提交
403 404 405
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
406
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
407 408 409
	kvm_vcpu_kick(vcpu);
}

410 411 412
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
413
	if (vcpu->arch.power_off)
414 415 416 417 418
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
419 420 421 422 423
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
424 425
	int ret = 0;

426 427
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
428
		vcpu->arch.power_off = false;
429 430
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
431
		vcpu_power_off(vcpu);
432 433
		break;
	default:
434
		ret = -EINVAL;
435 436
	}

437
	return ret;
438 439
}

440 441 442 443 444 445 446
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
447 448
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
449 450
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
451
		&& !v->arch.power_off && !v->arch.pause);
452 453
}

454 455
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
456
	return vcpu_mode_priv(vcpu);
457 458
}

459 460 461 462 463 464 465
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
466
	preempt_disable();
467
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
468
	preempt_enable();
469 470 471 472
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
473
 * @kvm: The VM's VMID to check
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;
500
	bool new_gen;
501

502 503 504 505 506
	read_lock(&kvm_vmid_lock);
	new_gen = need_new_vmid_gen(kvm);
	read_unlock(&kvm_vmid_lock);

	if (!new_gen)
507 508
		return;

509
	write_lock(&kvm_vmid_lock);
510 511 512 513 514 515 516

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
517
		write_unlock(&kvm_vmid_lock);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
543
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
544 545

	/* update vttbr to be used with the new vmid */
546
	pgd_phys = virt_to_phys(kvm->arch.pgd);
547
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
548
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
549
	kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
550

551
	write_unlock(&kvm_vmid_lock);
552 553 554 555
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
556
	struct kvm *kvm = vcpu->kvm;
557
	int ret = 0;
558

559 560 561 562
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
563

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
580 581
	}

582
	ret = kvm_timer_enable(vcpu);
583 584 585 586
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
587

588
	return ret;
589 590
}

591 592 593 594 595
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

596
void kvm_arm_halt_guest(struct kvm *kvm)
597 598 599 600 601 602
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
603
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
604 605
}

606
void kvm_arm_resume_guest(struct kvm *kvm)
607 608 609 610
{
	int i;
	struct kvm_vcpu *vcpu;

611 612
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
613
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
614
	}
615 616
}

617
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
618
{
619
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
620

621
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
622
				       (!vcpu->arch.pause)));
623

A
Andrew Jones 已提交
624
	if (vcpu->arch.power_off || vcpu->arch.pause) {
625
		/* Awaken to handle a signal, request we sleep again later. */
626
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
627
	}
628 629
}

630 631 632 633 634
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

635 636 637
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
638 639
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
640 641 642 643 644 645

		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
646 647 648
	}
}

649 650 651 652 653 654 655 656 657 658 659
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
660 661
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
662 663
	int ret;

664
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
665 666 667 668
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
669
		return ret;
670

C
Christoffer Dall 已提交
671 672 673
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
674 675 676
			return ret;
		if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
			return 0;
C
Christoffer Dall 已提交
677 678
	}

679 680 681 682
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
683

684
	kvm_sigset_activate(vcpu);
685 686 687 688 689 690 691 692 693 694 695

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

696 697
		check_vcpu_requests(vcpu);

698 699 700 701 702
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
703
		preempt_disable();
704

705
		kvm_pmu_flush_hwstate(vcpu);
706

707 708
		local_irq_disable();

709 710
		kvm_vgic_flush_hwstate(vcpu);

711
		/*
712 713
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
714
		 */
715
		if (signal_pending(current)) {
716 717 718 719
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

735 736 737 738 739 740 741 742
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

743
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
A
Andrew Jones 已提交
744
		    kvm_request_pending(vcpu)) {
745
			vcpu->mode = OUTSIDE_GUEST_MODE;
746
			isb(); /* Ensure work in x_flush_hwstate is committed */
747
			kvm_pmu_sync_hwstate(vcpu);
748 749
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
750
			kvm_vgic_sync_hwstate(vcpu);
751
			local_irq_enable();
752
			preempt_enable();
753 754 755
			continue;
		}

756 757
		kvm_arm_setup_debug(vcpu);

758 759 760 761
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
762
		guest_enter_irqoff();
763

764 765 766
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
767
			kvm_arm_vhe_guest_exit();
768 769 770 771
		} else {
			ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
		}

772
		vcpu->mode = OUTSIDE_GUEST_MODE;
773
		vcpu->stat.exits++;
774 775 776 777
		/*
		 * Back from guest
		 *************************************************************/

778 779
		kvm_arm_clear_debug(vcpu);

780
		/*
781
		 * We must sync the PMU state before the vgic state so
782 783 784 785 786
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

787 788 789 790 791
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
792 793
		kvm_vgic_sync_hwstate(vcpu);

794 795 796 797 798
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
799 800
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
801

802 803
		kvm_arch_vcpu_ctxsync_fp(vcpu);

804 805 806 807 808 809 810 811 812 813 814 815 816
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
817
		 * We do local_irq_enable() before calling guest_exit() so
818 819
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
820
		 * preemption after calling guest_exit() so that if we get
821 822 823
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
824
		guest_exit();
825
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
826

827 828 829
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

830 831
		preempt_enable();

832 833 834
		ret = handle_exit(vcpu, run, ret);
	}

835
	/* Tell userspace about in-kernel device output levels */
836 837 838 839
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
840

841 842
	kvm_sigset_deactivate(vcpu);

843
	vcpu_put(vcpu);
844
	return ret;
845 846
}

847 848 849 850
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
851
	unsigned long *hcr;
852 853 854 855 856 857

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

858
	hcr = vcpu_hcr(vcpu);
859
	if (level)
860
		set = test_and_set_bit(bit_index, hcr);
861
	else
862
		set = test_and_clear_bit(bit_index, hcr);
863 864 865 866 867 868 869 870 871 872 873 874

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
875
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
876 877 878 879 880
	kvm_vcpu_kick(vcpu);

	return 0;
}

881 882
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
883 884 885 886 887 888 889 890 891 892 893 894 895
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

896 897 898 899
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
900

901 902
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
903

904 905 906
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
907

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
925

926
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
927 928 929 930
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

931
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
932 933
			return -EINVAL;

934
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
935 936 937
	}

	return -EINVAL;
938 939
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


982 983 984 985 986 987 988 989 990
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

991 992 993 994 995 996 997
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

998 999
	vcpu_reset_hcr(vcpu);

1000
	/*
1001
	 * Handle the "start in power-off" case.
1002
	 */
1003
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1004
		vcpu_power_off(vcpu);
1005
	else
1006
		vcpu->arch.power_off = false;
1007 1008 1009 1010

	return 0;
}

1011 1012 1013 1014 1015 1016 1017
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1018
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1032
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1046
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1047 1048 1049 1050 1051 1052
		break;
	}

	return ret;
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1079 1080 1081 1082 1083
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1084
	struct kvm_device_attr attr;
1085 1086
	long r;

1087 1088 1089 1090
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1091
		r = -EFAULT;
1092
		if (copy_from_user(&init, argp, sizeof(init)))
1093
			break;
1094

1095 1096
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1097 1098 1099 1100
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1101

1102
		r = -ENOEXEC;
1103
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1104
			break;
1105

1106
		r = -EFAULT;
1107
		if (copy_from_user(&reg, argp, sizeof(reg)))
1108 1109
			break;

1110
		if (ioctl == KVM_SET_ONE_REG)
1111
			r = kvm_arm_set_reg(vcpu, &reg);
1112
		else
1113 1114
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1115 1116 1117 1118 1119 1120
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1121
		r = -ENOEXEC;
1122
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1123
			break;
1124

1125
		r = -EFAULT;
1126
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1127
			break;
1128 1129 1130
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1131 1132
			break;
		r = -E2BIG;
1133
		if (n < reg_list.n)
1134 1135 1136
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1137
	}
1138
	case KVM_SET_DEVICE_ATTR: {
1139
		r = -EFAULT;
1140
		if (copy_from_user(&attr, argp, sizeof(attr)))
1141 1142 1143
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1144 1145
	}
	case KVM_GET_DEVICE_ATTR: {
1146
		r = -EFAULT;
1147
		if (copy_from_user(&attr, argp, sizeof(attr)))
1148 1149 1150
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1151 1152
	}
	case KVM_HAS_DEVICE_ATTR: {
1153
		r = -EFAULT;
1154
		if (copy_from_user(&attr, argp, sizeof(attr)))
1155 1156 1157
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1158
	}
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1178
	default:
1179
		r = -EINVAL;
1180
	}
1181 1182

	return r;
1183 1184
}

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1204 1205
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1218 1219
}

1220 1221 1222
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1223 1224 1225 1226 1227 1228 1229 1230 1231
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1232 1233
		if (!vgic_present)
			return -ENXIO;
1234
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1235 1236 1237
	default:
		return -ENODEV;
	}
1238 1239
}

1240 1241 1242
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1243 1244 1245 1246
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1247
	case KVM_CREATE_IRQCHIP: {
1248
		int ret;
1249 1250
		if (!vgic_present)
			return -ENXIO;
1251 1252 1253 1254
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1255
	}
1256 1257 1258 1259 1260 1261 1262
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1276 1277 1278
	default:
		return -EINVAL;
	}
1279 1280
}

1281
static void cpu_init_hyp_mode(void *dummy)
1282
{
1283
	phys_addr_t pgd_ptr;
1284 1285 1286 1287 1288
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1289
	__hyp_set_vectors(kvm_get_idmap_vector());
1290

1291
	pgd_ptr = kvm_mmu_get_httbr();
1292
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1293
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1294
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1295

M
Marc Zyngier 已提交
1296
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1297
	__cpu_init_stage2();
1298 1299

	kvm_arm_init_debug();
1300 1301
}

1302 1303 1304 1305 1306 1307
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1308 1309
static void cpu_hyp_reinit(void)
{
1310 1311
	cpu_hyp_reset();

1312 1313
	if (is_kernel_in_hyp_mode()) {
		/*
1314
		 * __cpu_init_stage2() is safe to call even if the PM
1315 1316
		 * event was cancelled before the CPU was reset.
		 */
1317
		__cpu_init_stage2();
1318
		kvm_timer_init_vhe();
1319
	} else {
1320
		cpu_init_hyp_mode(NULL);
1321
	}
1322 1323 1324

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1325 1326
}

1327 1328 1329
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1330
		cpu_hyp_reinit();
1331
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1332
	}
1333
}
1334

1335 1336 1337 1338
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1339 1340
}

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1353

1354 1355 1356 1357 1358
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1374
		return NOTIFY_OK;
1375
	case CPU_PM_ENTER_FAILED:
1376 1377 1378 1379
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1380

1381 1382 1383 1384 1385
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1396 1397 1398 1399
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1400 1401 1402 1403
#else
static inline void hyp_cpu_pm_init(void)
{
}
1404 1405 1406
static inline void hyp_cpu_pm_exit(void)
{
}
1407 1408
#endif

1409 1410
static int init_common_resources(void)
{
1411 1412 1413 1414
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1415 1416 1417 1418 1419
	return 0;
}

static int init_subsystems(void)
{
1420
	int err = 0;
1421

1422
	/*
1423
	 * Enable hardware so that subsystem initialisation can access EL2.
1424
	 */
1425
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1426 1427 1428 1429 1430 1431

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1443
		err = 0;
1444 1445
		break;
	default:
1446
		goto out;
1447 1448 1449 1450 1451
	}

	/*
	 * Init HYP architected timer support
	 */
1452
	err = kvm_timer_hyp_init(vgic_present);
1453
	if (err)
1454
		goto out;
1455 1456 1457 1458

	kvm_perf_init();
	kvm_coproc_table_init();

1459 1460 1461 1462
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1463 1464 1465 1466 1467 1468 1469 1470 1471
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1472
	hyp_cpu_pm_exit();
1473 1474
}

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1499
			goto out_err;
1500 1501 1502 1503 1504 1505 1506 1507
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1508
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1509
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1510 1511
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1512
		goto out_err;
1513 1514
	}

1515
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1516
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1517 1518
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1519 1520 1521 1522 1523 1524 1525
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1526
		goto out_err;
1527 1528
	}

1529 1530 1531 1532 1533 1534
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1535 1536 1537 1538 1539
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1540 1541
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1542 1543 1544

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1545
			goto out_err;
1546 1547 1548 1549
		}
	}

	for_each_possible_cpu(cpu) {
1550
		kvm_cpu_context_t *cpu_ctxt;
1551

1552
		cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1553
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1554 1555

		if (err) {
1556
			kvm_err("Cannot map host CPU state: %d\n", err);
1557
			goto out_err;
1558 1559 1560
		}
	}

1561 1562 1563 1564
	err = hyp_map_aux_data();
	if (err)
		kvm_err("Cannot map host auxilary data: %d\n", err);

1565
	return 0;
1566

1567
out_err:
1568
	teardown_hyp_mode();
1569 1570 1571 1572
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1573 1574 1575 1576 1577
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1602 1603
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1604 1605 1606 1607 1608 1609 1610
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1611 1612
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1631 1632 1633
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1634 1635
int kvm_arch_init(void *opaque)
{
1636
	int err;
1637
	int ret, cpu;
1638
	bool in_hyp_mode;
1639 1640

	if (!is_hyp_mode_available()) {
1641
		kvm_info("HYP mode not available\n");
1642 1643 1644
		return -ENODEV;
	}

1645 1646 1647 1648 1649
	if (!kvm_arch_check_sve_has_vhe()) {
		kvm_pr_unimpl("SVE system without VHE unsupported.  Broken cpu?");
		return -ENODEV;
	}

1650 1651 1652 1653 1654 1655
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1656 1657
	}

1658
	err = init_common_resources();
1659
	if (err)
1660
		return err;
1661

1662 1663 1664
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode) {
1665
		err = init_hyp_mode();
1666 1667 1668
		if (err)
			goto out_err;
	}
1669

1670 1671 1672
	err = init_subsystems();
	if (err)
		goto out_hyp;
1673

1674 1675 1676 1677 1678
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1679
	return 0;
1680 1681

out_hyp:
1682 1683
	if (!in_hyp_mode)
		teardown_hyp_mode();
1684 1685
out_err:
	return err;
1686 1687 1688 1689 1690
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1691
	kvm_perf_teardown();
1692 1693 1694 1695 1696 1697 1698 1699 1700
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);