arm.c 35.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu_pm.h>
20 21 22
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
23
#include <linux/list.h>
24 25 26 27 28
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30 31
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
32
#include <trace/events/kvm.h>
33
#include <kvm/arm_pmu.h>
34
#include <kvm/arm_psci.h>
35 36 37 38

#define CREATE_TRACE_POINTS
#include "trace.h"

39
#include <linux/uaccess.h>
40 41
#include <asm/ptrace.h>
#include <asm/mman.h>
42
#include <asm/tlbflush.h>
43
#include <asm/cacheflush.h>
44 45 46 47
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
48
#include <asm/kvm_emulate.h>
49
#include <asm/kvm_coproc.h>
50
#include <asm/sections.h>
51 52 53 54 55

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

56
DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
57 58
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

59 60 61
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

62 63
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 65
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
66
static DEFINE_SPINLOCK(kvm_vmid_lock);
67

68 69
static bool vgic_present;

70 71
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

72 73
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
74
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 76
}

77 78
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

79 80 81 82 83 84
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
85
	return __this_cpu_read(kvm_arm_running_vcpu);
86 87 88 89 90
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
91
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
92 93 94 95
{
	return &kvm_arm_running_vcpu;
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


112 113 114 115
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
116 117
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
118
	int ret, cpu;
119

120 121 122
	if (type)
		return -EINVAL;

123 124 125 126 127 128 129
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

130 131 132 133
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

134
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135 136 137
	if (ret)
		goto out_free_stage2_pgd;

138
	kvm_vgic_early_init(kvm);
139

140 141 142
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

143
	/* The maximum number of VCPUs is limited by the host's GIC model */
144 145
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146

147 148 149 150
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
151 152
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
153
	return ret;
154 155
}

156 157 158 159 160 161 162 163 164 165
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

166 167 168 169 170 171
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


172 173 174 175
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
176 177 178 179
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

180 181
	kvm_vgic_destroy(kvm);

182 183 184
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

185 186 187 188 189 190
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
191
	atomic_set(&kvm->online_vcpus, 0);
192 193
}

194
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
195 196 197
{
	int r;
	switch (ext) {
198
	case KVM_CAP_IRQCHIP:
199 200
		r = vgic_present;
		break;
201
	case KVM_CAP_IOEVENTFD:
202
	case KVM_CAP_DEVICE_CTRL:
203 204 205 206
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
207
	case KVM_CAP_ARM_PSCI:
208
	case KVM_CAP_ARM_PSCI_0_2:
209
	case KVM_CAP_READONLY_MEM:
210
	case KVM_CAP_MP_STATE:
211
	case KVM_CAP_IMMEDIATE_EXIT:
212 213
		r = 1;
		break;
214 215
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
216
		break;
217 218 219 220 221 222
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
223 224 225
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
226 227 228 229 230 231
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
232 233 234 235 236 237 238
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
239
	default:
240
		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

258 259 260 261 262
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

263 264 265 266 267
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

268 269 270 271 272 273 274 275 276 277
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

278
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279 280 281
	if (err)
		goto vcpu_uninit;

282
	return vcpu;
283 284
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
285 286 287 288 289 290
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

291
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292
{
293
	kvm_vgic_vcpu_early_init(vcpu);
294 295 296 297
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
298 299 300
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

301
	kvm_mmu_free_memory_caches(vcpu);
302
	kvm_timer_vcpu_terminate(vcpu);
303
	kvm_pmu_vcpu_destroy(vcpu);
304
	kvm_vcpu_uninit(vcpu);
305
	kmem_cache_free(kvm_vcpu_cache, vcpu);
306 307 308 309 310 311 312 313 314
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
315
	return kvm_timer_is_pending(vcpu);
316 317
}

318 319 320
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
321
	kvm_vgic_v4_enable_doorbell(vcpu);
322 323 324 325 326
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
327
	kvm_vgic_v4_disable_doorbell(vcpu);
328 329
}

330 331
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
332 333
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
334
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
335

336 337 338
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

339 340
	kvm_arm_reset_debug_ptr(vcpu);

341
	return kvm_vgic_vcpu_init(vcpu);
342 343 344 345
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
346 347 348 349 350 351 352 353 354 355 356 357 358
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

359
	vcpu->cpu = cpu;
360
	vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
361

362
	kvm_arm_set_running_vcpu(vcpu);
363
	kvm_vgic_load(vcpu);
364
	kvm_timer_vcpu_load(vcpu);
365
	kvm_vcpu_load_sysregs(vcpu);
366 367 368 369
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
370
	kvm_vcpu_put_sysregs(vcpu);
371
	kvm_timer_vcpu_put(vcpu);
372 373
	kvm_vgic_put(vcpu);

374 375
	vcpu->cpu = -1;

376
	kvm_arm_set_running_vcpu(NULL);
377 378
}

A
Andrew Jones 已提交
379 380 381
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
382
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
383 384 385
	kvm_vcpu_kick(vcpu);
}

386 387 388
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
389
	if (vcpu->arch.power_off)
390 391 392 393 394
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
395 396 397 398 399
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
400 401
	int ret = 0;

402 403
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
404
		vcpu->arch.power_off = false;
405 406
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
407
		vcpu_power_off(vcpu);
408 409
		break;
	default:
410
		ret = -EINVAL;
411 412
	}

413
	return ret;
414 415
}

416 417 418 419 420 421 422
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
423 424
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
425 426
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
427
		&& !v->arch.power_off && !v->arch.pause);
428 429
}

430 431
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
432
	return vcpu_mode_priv(vcpu);
433 434
}

435 436 437 438 439 440 441
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
442
	preempt_disable();
443
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
444
	preempt_enable();
445 446 447 448
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
449
 * @kvm: The VM's VMID to check
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
514
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
515 516

	/* update vttbr to be used with the new vmid */
517
	pgd_phys = virt_to_phys(kvm->arch.pgd);
518
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
519
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
520
	kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
521 522 523 524 525 526

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
527
	struct kvm *kvm = vcpu->kvm;
528
	int ret = 0;
529

530 531 532 533
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
534

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
551 552
	}

553
	ret = kvm_timer_enable(vcpu);
554 555 556 557
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
558

559
	return ret;
560 561
}

562 563 564 565 566
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

567
void kvm_arm_halt_guest(struct kvm *kvm)
568 569 570 571 572 573
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
574
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
575 576
}

577
void kvm_arm_resume_guest(struct kvm *kvm)
578 579 580 581
{
	int i;
	struct kvm_vcpu *vcpu;

582 583 584 585
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
		swake_up(kvm_arch_vcpu_wq(vcpu));
	}
586 587
}

588
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
589
{
590
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
591

592
	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
593
				       (!vcpu->arch.pause)));
594

A
Andrew Jones 已提交
595
	if (vcpu->arch.power_off || vcpu->arch.pause) {
596
		/* Awaken to handle a signal, request we sleep again later. */
597
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
598
	}
599 600
}

601 602 603 604 605
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

606 607 608
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
609 610
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
611 612 613 614 615 616

		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
617 618 619
	}
}

620 621 622 623 624 625 626 627 628 629 630
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
631 632
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
633 634
	int ret;

635
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
636 637 638 639
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
640
		return ret;
641

C
Christoffer Dall 已提交
642 643 644
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
645 646 647
			return ret;
		if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
			return 0;
C
Christoffer Dall 已提交
648 649
	}

650 651 652 653
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
654

655
	kvm_sigset_activate(vcpu);
656 657 658 659 660 661 662 663 664 665 666

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

667 668
		check_vcpu_requests(vcpu);

669 670 671 672 673
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
674
		preempt_disable();
675

676 677 678
		/* Flush FP/SIMD state that can't survive guest entry/exit */
		kvm_fpsimd_flush_cpu_state();

679
		kvm_pmu_flush_hwstate(vcpu);
680

681 682
		local_irq_disable();

683 684
		kvm_vgic_flush_hwstate(vcpu);

685
		/*
686 687
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
688
		 */
689
		if (signal_pending(current)) {
690 691 692 693
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

709 710 711 712 713 714 715 716
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

717
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
A
Andrew Jones 已提交
718
		    kvm_request_pending(vcpu)) {
719
			vcpu->mode = OUTSIDE_GUEST_MODE;
720
			kvm_pmu_sync_hwstate(vcpu);
721 722
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
723
			kvm_vgic_sync_hwstate(vcpu);
724
			local_irq_enable();
725
			preempt_enable();
726 727 728
			continue;
		}

729 730
		kvm_arm_setup_debug(vcpu);

731 732 733 734
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
735
		guest_enter_irqoff();
736

737 738 739
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
740
			kvm_arm_vhe_guest_exit();
741 742 743 744
		} else {
			ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
		}

745
		vcpu->mode = OUTSIDE_GUEST_MODE;
746
		vcpu->stat.exits++;
747 748 749 750
		/*
		 * Back from guest
		 *************************************************************/

751 752
		kvm_arm_clear_debug(vcpu);

753
		/*
754
		 * We must sync the PMU state before the vgic state so
755 756 757 758 759
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

760 761 762 763 764
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
765 766
		kvm_vgic_sync_hwstate(vcpu);

767 768 769 770 771
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
772 773
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
774

775 776 777 778 779 780 781 782 783 784 785 786 787
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
788
		 * We do local_irq_enable() before calling guest_exit() so
789 790
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
791
		 * preemption after calling guest_exit() so that if we get
792 793 794
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
795
		guest_exit();
796
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
797

798 799 800
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

801 802
		preempt_enable();

803 804 805
		ret = handle_exit(vcpu, run, ret);
	}

806
	/* Tell userspace about in-kernel device output levels */
807 808 809 810
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
811

812 813
	kvm_sigset_deactivate(vcpu);

814
	vcpu_put(vcpu);
815
	return ret;
816 817
}

818 819 820 821
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
822
	unsigned long *hcr;
823 824 825 826 827 828

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

829
	hcr = vcpu_hcr(vcpu);
830
	if (level)
831
		set = test_and_set_bit(bit_index, hcr);
832
	else
833
		set = test_and_clear_bit(bit_index, hcr);
834 835 836 837 838 839 840 841 842 843 844 845

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
846
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
847 848 849 850 851
	kvm_vcpu_kick(vcpu);

	return 0;
}

852 853
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
854 855 856 857 858 859 860 861 862 863 864 865 866
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

867 868 869 870
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
871

872 873
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
874

875 876 877
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
878

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
896

897
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
898 899 900 901
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

902
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
903 904
			return -EINVAL;

905
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
906 907 908
	}

	return -EINVAL;
909 910
}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


953 954 955 956 957 958 959 960 961
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

962 963 964 965 966 967 968
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

969 970
	vcpu_reset_hcr(vcpu);

971
	/*
972
	 * Handle the "start in power-off" case.
973
	 */
974
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
975
		vcpu_power_off(vcpu);
976
	else
977
		vcpu->arch.power_off = false;
978 979 980 981

	return 0;
}

982 983 984 985 986 987 988
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
989
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
990 991 992 993 994 995 996 997 998 999 1000 1001 1002
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1003
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1017
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1018 1019 1020 1021 1022 1023
		break;
	}

	return ret;
}

1024 1025 1026 1027 1028
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1029
	struct kvm_device_attr attr;
1030 1031
	long r;

1032 1033 1034 1035
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1036
		r = -EFAULT;
1037
		if (copy_from_user(&init, argp, sizeof(init)))
1038
			break;
1039

1040 1041
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1042 1043 1044 1045
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1046

1047
		r = -ENOEXEC;
1048
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1049
			break;
1050

1051
		r = -EFAULT;
1052
		if (copy_from_user(&reg, argp, sizeof(reg)))
1053 1054
			break;

1055
		if (ioctl == KVM_SET_ONE_REG)
1056
			r = kvm_arm_set_reg(vcpu, &reg);
1057
		else
1058 1059
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1060 1061 1062 1063 1064 1065
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1066
		r = -ENOEXEC;
1067
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1068
			break;
1069

1070
		r = -EFAULT;
1071
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1072
			break;
1073 1074 1075
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1076 1077
			break;
		r = -E2BIG;
1078
		if (n < reg_list.n)
1079 1080 1081
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1082
	}
1083
	case KVM_SET_DEVICE_ATTR: {
1084
		r = -EFAULT;
1085
		if (copy_from_user(&attr, argp, sizeof(attr)))
1086 1087 1088
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1089 1090
	}
	case KVM_GET_DEVICE_ATTR: {
1091
		r = -EFAULT;
1092
		if (copy_from_user(&attr, argp, sizeof(attr)))
1093 1094 1095
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1096 1097
	}
	case KVM_HAS_DEVICE_ATTR: {
1098
		r = -EFAULT;
1099
		if (copy_from_user(&attr, argp, sizeof(attr)))
1100 1101 1102
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1103
	}
1104
	default:
1105
		r = -EINVAL;
1106
	}
1107 1108

	return r;
1109 1110
}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1130 1131
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1144 1145
}

1146 1147 1148
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1149 1150 1151 1152 1153 1154 1155 1156 1157
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1158 1159
		if (!vgic_present)
			return -ENXIO;
1160
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1161 1162 1163
	default:
		return -ENODEV;
	}
1164 1165
}

1166 1167 1168
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1169 1170 1171 1172
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1173
	case KVM_CREATE_IRQCHIP: {
1174
		int ret;
1175 1176
		if (!vgic_present)
			return -ENXIO;
1177 1178 1179 1180
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1181
	}
1182 1183 1184 1185 1186 1187 1188
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1202 1203 1204
	default:
		return -EINVAL;
	}
1205 1206
}

1207
static void cpu_init_hyp_mode(void *dummy)
1208
{
1209
	phys_addr_t pgd_ptr;
1210 1211 1212 1213 1214
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1215
	__hyp_set_vectors(kvm_get_idmap_vector());
1216

1217
	pgd_ptr = kvm_mmu_get_httbr();
1218
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1219
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1220
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1221

M
Marc Zyngier 已提交
1222
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1223
	__cpu_init_stage2();
1224 1225

	kvm_arm_init_debug();
1226 1227
}

1228 1229 1230 1231 1232 1233
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1234 1235
static void cpu_hyp_reinit(void)
{
1236 1237
	cpu_hyp_reset();

1238 1239
	if (is_kernel_in_hyp_mode()) {
		/*
1240
		 * __cpu_init_stage2() is safe to call even if the PM
1241 1242
		 * event was cancelled before the CPU was reset.
		 */
1243
		__cpu_init_stage2();
1244
		kvm_timer_init_vhe();
1245
	} else {
1246
		cpu_init_hyp_mode(NULL);
1247
	}
1248 1249 1250

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1251 1252
}

1253 1254 1255
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1256
		cpu_hyp_reinit();
1257
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1258
	}
1259
}
1260

1261 1262 1263 1264
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1265 1266
}

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1279

1280 1281 1282 1283 1284
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1300
		return NOTIFY_OK;
1301
	case CPU_PM_ENTER_FAILED:
1302 1303 1304 1305
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1306

1307 1308 1309 1310 1311
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1322 1323 1324 1325
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1326 1327 1328 1329
#else
static inline void hyp_cpu_pm_init(void)
{
}
1330 1331 1332
static inline void hyp_cpu_pm_exit(void)
{
}
1333 1334
#endif

1335 1336
static int init_common_resources(void)
{
1337 1338 1339 1340
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1341 1342 1343 1344 1345
	return 0;
}

static int init_subsystems(void)
{
1346
	int err = 0;
1347

1348
	/*
1349
	 * Enable hardware so that subsystem initialisation can access EL2.
1350
	 */
1351
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1352 1353 1354 1355 1356 1357

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1369
		err = 0;
1370 1371
		break;
	default:
1372
		goto out;
1373 1374 1375 1376 1377
	}

	/*
	 * Init HYP architected timer support
	 */
1378
	err = kvm_timer_hyp_init(vgic_present);
1379
	if (err)
1380
		goto out;
1381 1382 1383 1384

	kvm_perf_init();
	kvm_coproc_table_init();

1385 1386 1387 1388
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1389 1390 1391 1392 1393 1394 1395 1396 1397
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1398
	hyp_cpu_pm_exit();
1399 1400
}

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1425
			goto out_err;
1426 1427 1428 1429 1430 1431 1432 1433
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1434
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1435
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1436 1437
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1438
		goto out_err;
1439 1440
	}

1441
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1442
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1443 1444
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1445 1446 1447 1448 1449 1450 1451
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1452
		goto out_err;
1453 1454
	}

1455 1456 1457 1458 1459 1460
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1461 1462 1463 1464 1465
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1466 1467
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1468 1469 1470

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1471
			goto out_err;
1472 1473 1474 1475
		}
	}

	for_each_possible_cpu(cpu) {
1476
		kvm_cpu_context_t *cpu_ctxt;
1477

1478
		cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1479
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1480 1481

		if (err) {
1482
			kvm_err("Cannot map host CPU state: %d\n", err);
1483
			goto out_err;
1484 1485 1486 1487
		}
	}

	return 0;
1488

1489
out_err:
1490
	teardown_hyp_mode();
1491 1492 1493 1494
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1495 1496 1497 1498 1499
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1524 1525
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1526 1527 1528 1529 1530 1531 1532
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1533 1534
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1553 1554 1555
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1556 1557
int kvm_arch_init(void *opaque)
{
1558
	int err;
1559
	int ret, cpu;
1560
	bool in_hyp_mode;
1561 1562

	if (!is_hyp_mode_available()) {
1563
		kvm_info("HYP mode not available\n");
1564 1565 1566
		return -ENODEV;
	}

1567 1568 1569 1570 1571 1572
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1573 1574
	}

1575
	err = init_common_resources();
1576
	if (err)
1577
		return err;
1578

1579 1580 1581
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode) {
1582
		err = init_hyp_mode();
1583 1584 1585
		if (err)
			goto out_err;
	}
1586

1587 1588 1589
	err = init_subsystems();
	if (err)
		goto out_hyp;
1590

1591 1592 1593 1594 1595
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1596
	return 0;
1597 1598

out_hyp:
1599 1600
	if (!in_hyp_mode)
		teardown_hyp_mode();
1601 1602
out_err:
	return err;
1603 1604 1605 1606 1607
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1608
	kvm_perf_teardown();
1609 1610 1611 1612 1613 1614 1615 1616 1617
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);