arch_timer.c 24.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
23
#include <linux/irq.h>
24
#include <linux/uaccess.h>
25

26
#include <clocksource/arm_arch_timer.h>
27
#include <asm/arch_timer.h>
28
#include <asm/kvm_hyp.h>
29

30 31
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
32

33 34
#include "trace.h"

35
static struct timecounter *timecounter;
36
static unsigned int host_vtimer_irq;
37
static u32 host_vtimer_irq_flags;
38

39 40 41 42 43 44 45 46 47 48
static const struct kvm_irq_level default_ptimer_irq = {
	.irq	= 30,
	.level	= 1,
};

static const struct kvm_irq_level default_vtimer_irq = {
	.irq	= 27,
	.level	= 1,
};

49 50 51
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx);
52
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
53

54
u64 kvm_phys_timer_read(void)
55 56 57 58
{
	return timecounter->cc->read(timecounter->cc);
}

59
static void soft_timer_start(struct hrtimer *hrt, u64 ns)
60
{
61
	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
62 63 64
		      HRTIMER_MODE_ABS);
}

65
static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work)
66
{
67
	hrtimer_cancel(hrt);
68 69
	if (work)
		cancel_work_sync(work);
70 71
}

72
static void kvm_vtimer_update_mask_user(struct kvm_vcpu *vcpu)
73
{
74
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
75 76

	/*
77 78 79 80 81 82 83
	 * When using a userspace irqchip with the architected timers, we must
	 * prevent continuously exiting from the guest, and therefore mask the
	 * physical interrupt by disabling it on the host interrupt controller
	 * when the virtual level is high, such that the guest can make
	 * forward progress.  Once we detect the output level being
	 * de-asserted, we unmask the interrupt again so that we exit from the
	 * guest when the timer fires.
84
	 */
85 86 87 88 89 90 91 92 93 94
	if (vtimer->irq.level)
		disable_percpu_irq(host_vtimer_irq);
	else
		enable_percpu_irq(host_vtimer_irq, 0);
}

static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
	struct arch_timer_context *vtimer;
95
	u32 cnt_ctl;
96

97 98 99 100 101 102 103 104
	/*
	 * We may see a timer interrupt after vcpu_put() has been called which
	 * sets the CPU's vcpu pointer to NULL, because even though the timer
	 * has been disabled in vtimer_save_state(), the hardware interrupt
	 * signal may not have been retired from the interrupt controller yet.
	 */
	if (!vcpu)
		return IRQ_HANDLED;
105

106
	vtimer = vcpu_vtimer(vcpu);
107
	if (!vtimer->irq.level) {
108 109 110 111
		cnt_ctl = read_sysreg_el0(cntv_ctl);
		cnt_ctl &= ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT |
			   ARCH_TIMER_CTRL_IT_MASK;
		if (cnt_ctl == (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
112 113 114 115 116 117
			kvm_timer_update_irq(vcpu, true, vtimer);
	}

	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
		kvm_vtimer_update_mask_user(vcpu);

118 119 120
	return IRQ_HANDLED;
}

121 122 123 124
/*
 * Work function for handling the backup timer that we schedule when a vcpu is
 * no longer running, but had a timer programmed to fire in the future.
 */
125 126 127 128 129
static void kvm_timer_inject_irq_work(struct work_struct *work)
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
130

131 132 133 134
	/*
	 * If the vcpu is blocked we want to wake it up so that it will see
	 * the timer has expired when entering the guest.
	 */
135
	kvm_vcpu_wake_up(vcpu);
136 137
}

138
static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
139
{
140
	u64 cval, now;
141

142 143
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
144 145 146 147 148 149 150 151 152 153 154 155 156 157

	if (now < cval) {
		u64 ns;

		ns = cyclecounter_cyc2ns(timecounter->cc,
					 cval - now,
					 timecounter->mask,
					 &timecounter->frac);
		return ns;
	}

	return 0;
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
{
	return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
		(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
}

/*
 * Returns the earliest expiration time in ns among guest timers.
 * Note that it will return 0 if none of timers can fire.
 */
static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
{
	u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	if (kvm_timer_irq_can_fire(vtimer))
		min_virt = kvm_timer_compute_delta(vtimer);

	if (kvm_timer_irq_can_fire(ptimer))
		min_phys = kvm_timer_compute_delta(ptimer);

	/* If none of timers can fire, then return 0 */
	if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
		return 0;

	return min(min_virt, min_phys);
}

187
static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
188 189
{
	struct arch_timer_cpu *timer;
190 191 192
	struct kvm_vcpu *vcpu;
	u64 ns;

193
	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
194 195 196 197 198 199 200
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If we should have slept longer, restart it.
	 */
201
	ns = kvm_timer_earliest_exp(vcpu);
202 203 204 205 206
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

207
	schedule_work(&timer->expired);
208 209 210
	return HRTIMER_NORESTART;
}

211 212
static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
{
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
	struct arch_timer_context *ptimer;
	struct arch_timer_cpu *timer;
	struct kvm_vcpu *vcpu;
	u64 ns;

	timer = container_of(hrt, struct arch_timer_cpu, phys_timer);
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
	ptimer = vcpu_ptimer(vcpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If not ready, schedule for a later time.
	 */
	ns = kvm_timer_compute_delta(ptimer);
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

	kvm_timer_update_irq(vcpu, true, ptimer);
234 235 236
	return HRTIMER_NORESTART;
}

237
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
238
{
239
	u64 cval, now;
240

241
	if (!kvm_timer_irq_can_fire(timer_ctx))
242 243
		return false;

244 245
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
246 247 248 249

	return cval <= now;
}

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	if (vtimer->irq.level || ptimer->irq.level)
		return true;

	/*
	 * When this is called from withing the wait loop of kvm_vcpu_block(),
	 * the software view of the timer state is up to date (timer->loaded
	 * is false), and so we can simply check if the timer should fire now.
	 */
	if (!vtimer->loaded && kvm_timer_should_fire(vtimer))
		return true;

	return kvm_timer_should_fire(ptimer);
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
/*
 * Reflect the timer output level into the kvm_run structure
 */
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *regs = &vcpu->run->s.regs;

	/* Populate the device bitmap with the timer states */
	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
				    KVM_ARM_DEV_EL1_PTIMER);
	if (vtimer->irq.level)
		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
	if (ptimer->irq.level)
		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
}

287 288
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx)
289 290 291
{
	int ret;

292 293 294
	timer_ctx->irq.level = new_level;
	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
				   timer_ctx->irq.level);
295

296 297 298
	if (likely(irqchip_in_kernel(vcpu->kvm))) {
		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
					  timer_ctx->irq.irq,
299 300
					  timer_ctx->irq.level,
					  timer_ctx);
301 302
		WARN_ON(ret);
	}
303 304
}

305
/* Schedule the background timer for the emulated timer. */
306
static void phys_timer_emulate(struct kvm_vcpu *vcpu)
307 308
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
309
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
310

311 312 313 314 315 316 317
	/*
	 * If the timer can fire now we have just raised the IRQ line and we
	 * don't need to have a soft timer scheduled for the future.  If the
	 * timer cannot fire at all, then we also don't need a soft timer.
	 */
	if (kvm_timer_should_fire(ptimer) || !kvm_timer_irq_can_fire(ptimer)) {
		soft_timer_cancel(&timer->phys_timer, NULL);
318
		return;
319
	}
320

321
	soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(ptimer));
322 323
}

324
/*
325 326 327
 * Check if there was a change in the timer state, so that we should either
 * raise or lower the line level to the GIC or schedule a background timer to
 * emulate the physical timer.
328
 */
329
static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
330 331
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
332
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
333
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
334

335
	if (unlikely(!timer->enabled))
336
		return;
337

338 339
	if (kvm_timer_should_fire(vtimer) != vtimer->irq.level)
		kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer);
340

341 342
	if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
		kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
343 344

	phys_timer_emulate(vcpu);
345 346
}

347
static void vtimer_save_state(struct kvm_vcpu *vcpu)
348 349 350
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
351 352 353 354 355 356
	unsigned long flags;

	local_irq_save(flags);

	if (!vtimer->loaded)
		goto out;
357 358 359 360 361 362 363 364

	if (timer->enabled) {
		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
		vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
	}

	/* Disable the virtual timer */
	write_sysreg_el0(0, cntv_ctl);
365
	isb();
366 367 368 369

	vtimer->loaded = false;
out:
	local_irq_restore(flags);
370 371
}

372 373 374 375 376 377 378 379
/*
 * Schedule the background timer before calling kvm_vcpu_block, so that this
 * thread is removed from its waitqueue and made runnable when there's a timer
 * interrupt to handle.
 */
void kvm_timer_schedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
380
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
381
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
382

383 384
	vtimer_save_state(vcpu);

385
	/*
386
	 * No need to schedule a background timer if any guest timer has
387 388 389
	 * already expired, because kvm_vcpu_block will return before putting
	 * the thread to sleep.
	 */
390
	if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
391 392 393
		return;

	/*
394
	 * If both timers are not capable of raising interrupts (disabled or
395 396
	 * masked), then there's no more work for us to do.
	 */
397
	if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
398 399
		return;

400 401 402 403
	/*
	 * The guest timers have not yet expired, schedule a background timer.
	 * Set the earliest expiration time among the guest timers.
	 */
404
	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
405 406
}

407
static void vtimer_restore_state(struct kvm_vcpu *vcpu)
408 409 410
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
411 412 413 414 415 416
	unsigned long flags;

	local_irq_save(flags);

	if (vtimer->loaded)
		goto out;
417 418 419 420 421 422

	if (timer->enabled) {
		write_sysreg_el0(vtimer->cnt_cval, cntv_cval);
		isb();
		write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl);
	}
423 424 425 426

	vtimer->loaded = true;
out:
	local_irq_restore(flags);
427 428
}

429 430 431
void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
432

433 434
	vtimer_restore_state(vcpu);

435
	soft_timer_cancel(&timer->bg_timer, &timer->expired);
436 437
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
static void set_cntvoff(u64 cntvoff)
{
	u32 low = lower_32_bits(cntvoff);
	u32 high = upper_32_bits(cntvoff);

	/*
	 * Since kvm_call_hyp doesn't fully support the ARM PCS especially on
	 * 32-bit systems, but rather passes register by register shifted one
	 * place (we put the function address in r0/x0), we cannot simply pass
	 * a 64-bit value as an argument, but have to split the value in two
	 * 32-bit halves.
	 */
	kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
}

453
static void kvm_timer_vcpu_load_vgic(struct kvm_vcpu *vcpu)
454
{
455
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
456 457
	bool phys_active;
	int ret;
458

459
	phys_active = vtimer->irq.level ||
460
		      kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
461

462
	ret = irq_set_irqchip_state(host_vtimer_irq,
463 464 465
				    IRQCHIP_STATE_ACTIVE,
				    phys_active);
	WARN_ON(ret);
466
}
467

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
static void kvm_timer_vcpu_load_user(struct kvm_vcpu *vcpu)
{
	kvm_vtimer_update_mask_user(vcpu);
}

void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	if (unlikely(!timer->enabled))
		return;

	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
		kvm_timer_vcpu_load_user(vcpu);
	else
		kvm_timer_vcpu_load_vgic(vcpu);

	set_cntvoff(vtimer->cntvoff);

	vtimer_restore_state(vcpu);

490 491
	/* Set the background timer for the physical timer emulation. */
	phys_timer_emulate(vcpu);
492 493
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
	bool vlevel, plevel;

	if (likely(irqchip_in_kernel(vcpu->kvm)))
		return false;

	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;

	return vtimer->irq.level != vlevel ||
	       ptimer->irq.level != plevel;
}

511 512 513
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
514

515 516 517 518 519
	if (unlikely(!timer->enabled))
		return;

	vtimer_save_state(vcpu);

520 521 522 523 524 525 526 527 528 529 530
	/*
	 * Cancel the physical timer emulation, because the only case where we
	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
	 * in that case we already factor in the deadline for the physical
	 * timer when scheduling the bg_timer.
	 *
	 * In any case, we re-schedule the hrtimer for the physical timer when
	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
	 */
	soft_timer_cancel(&timer->phys_timer, NULL);

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	/*
	 * The kernel may decide to run userspace after calling vcpu_put, so
	 * we reset cntvoff to 0 to ensure a consistent read between user
	 * accesses to the virtual counter and kernel access to the physical
	 * counter.
	 */
	set_cntvoff(0);
}

static void unmask_vtimer_irq(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_vtimer_update_mask_user(vcpu);
		return;
	}

	/*
	 * If the guest disabled the timer without acking the interrupt, then
	 * we must make sure the physical and virtual active states are in
	 * sync by deactivating the physical interrupt, because otherwise we
	 * wouldn't see the next timer interrupt in the host.
	 */
	if (!kvm_vgic_map_is_active(vcpu, vtimer->irq.irq)) {
		int ret;
		ret = irq_set_irqchip_state(host_vtimer_irq,
					    IRQCHIP_STATE_ACTIVE,
					    false);
		WARN_ON(ret);
	}
562 563
}

564 565 566 567
/**
 * kvm_timer_sync_hwstate - sync timer state from cpu
 * @vcpu: The vcpu pointer
 *
568
 * Check if any of the timers have expired while we were running in the guest,
569
 * and inject an interrupt if that was the case.
570 571 572
 */
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
573
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
574

575
	/*
576 577 578
	 * If we entered the guest with the vtimer output asserted we have to
	 * check if the guest has modified the timer so that we should lower
	 * the line at this point.
579
	 */
580 581 582 583 584 585 586 587
	if (vtimer->irq.level) {
		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
		vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
		if (!kvm_timer_should_fire(vtimer)) {
			kvm_timer_update_irq(vcpu, false, vtimer);
			unmask_vtimer_irq(vcpu);
		}
	}
588 589
}

590
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
591
{
592
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
593
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
594

595 596 597 598 599 600
	/*
	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
	 * and to 0 for ARMv7.  We provide an implementation that always
	 * resets the timer to be disabled and unmasked and is compliant with
	 * the ARMv7 architecture.
	 */
601
	vtimer->cnt_ctl = 0;
602
	ptimer->cnt_ctl = 0;
603
	kvm_timer_update_state(vcpu);
604

605
	return 0;
606 607
}

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
/* Make the updates of cntvoff for all vtimer contexts atomic */
static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
{
	int i;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tmp;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(i, tmp, kvm)
		vcpu_vtimer(tmp)->cntvoff = cntvoff;

	/*
	 * When called from the vcpu create path, the CPU being created is not
	 * included in the loop above, so we just set it here as well.
	 */
	vcpu_vtimer(vcpu)->cntvoff = cntvoff;
	mutex_unlock(&kvm->lock);
}

627 628 629
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
630 631
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
632

633 634
	/* Synchronize cntvoff across all vtimers of a VM. */
	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
635
	vcpu_ptimer(vcpu)->cntvoff = 0;
636

637
	INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
638 639
	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->bg_timer.function = kvm_bg_timer_expire;
640

641 642 643
	hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->phys_timer.function = kvm_phys_timer_expire;

644 645
	vtimer->irq.irq = default_vtimer_irq.irq;
	ptimer->irq.irq = default_ptimer_irq.irq;
646 647 648 649
}

static void kvm_timer_init_interrupt(void *info)
{
650
	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
651 652
}

653 654
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
655
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
656
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
657 658 659

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
660
		vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
661 662
		break;
	case KVM_REG_ARM_TIMER_CNT:
663
		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
664 665
		break;
	case KVM_REG_ARM_TIMER_CVAL:
666
		vtimer->cnt_cval = value;
667
		break;
668 669 670 671 672 673 674
	case KVM_REG_ARM_PTIMER_CTL:
		ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
		break;
	case KVM_REG_ARM_PTIMER_CVAL:
		ptimer->cnt_cval = value;
		break;

675 676 677
	default:
		return -1;
	}
678 679

	kvm_timer_update_state(vcpu);
680 681 682
	return 0;
}

683 684 685 686 687 688 689 690 691 692 693 694 695 696
static u64 read_timer_ctl(struct arch_timer_context *timer)
{
	/*
	 * Set ISTATUS bit if it's expired.
	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
	 * regardless of ENABLE bit for our implementation convenience.
	 */
	if (!kvm_timer_compute_delta(timer))
		return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
	else
		return timer->cnt_ctl;
}

697 698
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
699
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
700
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
701 702 703

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
704
		return read_timer_ctl(vtimer);
705
	case KVM_REG_ARM_TIMER_CNT:
706
		return kvm_phys_timer_read() - vtimer->cntvoff;
707
	case KVM_REG_ARM_TIMER_CVAL:
708
		return vtimer->cnt_cval;
709 710 711 712 713 714
	case KVM_REG_ARM_PTIMER_CTL:
		return read_timer_ctl(ptimer);
	case KVM_REG_ARM_PTIMER_CVAL:
		return ptimer->cnt_cval;
	case KVM_REG_ARM_PTIMER_CNT:
		return kvm_phys_timer_read();
715 716 717
	}
	return (u64)-1;
}
718

719
static int kvm_timer_starting_cpu(unsigned int cpu)
720
{
721 722
	kvm_timer_init_interrupt(NULL);
	return 0;
723 724
}

725 726 727 728 729
static int kvm_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(host_vtimer_irq);
	return 0;
}
730

731
int kvm_timer_hyp_init(bool has_gic)
732
{
733
	struct arch_timer_kvm_info *info;
734 735
	int err;

736 737
	info = arch_timer_get_kvm_info();
	timecounter = &info->timecounter;
738

739 740 741 742 743
	if (!timecounter->cc) {
		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
		return -ENODEV;
	}

744 745 746
	if (info->virtual_irq <= 0) {
		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
			info->virtual_irq);
747 748
		return -ENODEV;
	}
749
	host_vtimer_irq = info->virtual_irq;
750

751 752 753 754 755 756 757 758
	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
		kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
			host_vtimer_irq);
		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
	}

759
	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
760 761 762
				 "kvm guest timer", kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
763
			host_vtimer_irq, err);
764
		return err;
765 766
	}

767 768 769 770 771 772 773
	if (has_gic) {
		err = irq_set_vcpu_affinity(host_vtimer_irq,
					    kvm_get_running_vcpus());
		if (err) {
			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
			goto out_free_irq;
		}
774 775
	}

776
	kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
777

778
	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
T
Thomas Gleixner 已提交
779
			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
780
			  kvm_timer_dying_cpu);
781 782 783
	return 0;
out_free_irq:
	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
784 785 786 787 788 789
	return err;
}

void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
790
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
791

792
	soft_timer_cancel(&timer->bg_timer, &timer->expired);
793
	soft_timer_cancel(&timer->phys_timer, NULL);
794
	kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
795 796
}

797
static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
798 799
{
	int vtimer_irq, ptimer_irq;
800
	int i, ret;
801 802

	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
803 804 805
	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
	if (ret)
		return false;
806

807 808 809
	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
	if (ret)
810 811
		return false;

812
	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
813 814 815 816 817 818 819 820
		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
			return false;
	}

	return true;
}

821
int kvm_timer_enable(struct kvm_vcpu *vcpu)
822
{
823
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
824
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
825 826 827 828 829
	int ret;

	if (timer->enabled)
		return 0;

830 831 832 833 834 835 836
	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
	if (!irqchip_in_kernel(vcpu->kvm))
		goto no_vgic;

	if (!vgic_initialized(vcpu->kvm))
		return -ENODEV;

837
	if (!timer_irqs_are_valid(vcpu)) {
838 839 840 841
		kvm_debug("incorrectly configured timer irqs\n");
		return -EINVAL;
	}

842
	ret = kvm_vgic_map_phys_irq(vcpu, host_vtimer_irq, vtimer->irq.irq);
843 844 845
	if (ret)
		return ret;

846
no_vgic:
847
	preempt_disable();
848
	timer->enabled = 1;
849
	kvm_timer_vcpu_load(vcpu);
850 851
	preempt_enable();

852
	return 0;
853
}
854

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
/*
 * On VHE system, we only need to configure trap on physical timer and counter
 * accesses in EL0 and EL1 once, not for every world switch.
 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
 * and this makes those bits have no effect for the host kernel execution.
 */
void kvm_timer_init_vhe(void)
{
	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
	u32 cnthctl_shift = 10;
	u64 val;

	/*
	 * Disallow physical timer access for the guest.
	 * Physical counter access is allowed.
	 */
	val = read_sysreg(cnthctl_el2);
	val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
	write_sysreg(val, cnthctl_el2);
}
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951

static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
{
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
	}
}

int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	int irq;

	if (!irqchip_in_kernel(vcpu->kvm))
		return -EINVAL;

	if (get_user(irq, uaddr))
		return -EFAULT;

	if (!(irq_is_ppi(irq)))
		return -EINVAL;

	if (vcpu->arch.timer_cpu.enabled)
		return -EBUSY;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
		break;
	default:
		return -ENXIO;
	}

	return 0;
}

int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *timer;
	int irq;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		timer = vcpu_vtimer(vcpu);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		timer = vcpu_ptimer(vcpu);
		break;
	default:
		return -ENXIO;
	}

	irq = timer->irq.irq;
	return put_user(irq, uaddr);
}

int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		return 0;
	}

	return -ENXIO;
}