arm.c 32.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu_pm.h>
20 21 22
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
23
#include <linux/list.h>
24 25 26 27 28
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30
#include <trace/events/kvm.h>
31
#include <kvm/arm_pmu.h>
32 33 34 35

#define CREATE_TRACE_POINTS
#include "trace.h"

36
#include <linux/uaccess.h>
37 38
#include <asm/ptrace.h>
#include <asm/mman.h>
39
#include <asm/tlbflush.h>
40
#include <asm/cacheflush.h>
41 42 43 44
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
45
#include <asm/kvm_emulate.h>
46
#include <asm/kvm_coproc.h>
47
#include <asm/kvm_psci.h>
48
#include <asm/sections.h>
49 50 51 52 53

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 57
static unsigned long hyp_default_vectors;

58 59 60
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

61 62
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 64
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
65
static DEFINE_SPINLOCK(kvm_vmid_lock);
66

67 68
static bool vgic_present;

69 70
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

71 72 73
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
74
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 76 77 78 79 80 81 82 83
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
84
	return __this_cpu_read(kvm_arm_running_vcpu);
85 86 87 88 89
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
90
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
91 92 93 94
{
	return &kvm_arm_running_vcpu;
}

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


111 112 113 114
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
115 116
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
117
	int ret, cpu;
118

119 120 121
	if (type)
		return -EINVAL;

122 123 124 125 126 127 128
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

129 130 131 132
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

133
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
134 135 136
	if (ret)
		goto out_free_stage2_pgd;

137
	kvm_vgic_early_init(kvm);
138

139 140 141
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

142
	/* The maximum number of VCPUs is limited by the host's GIC model */
143 144
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
145

146 147 148 149
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
150 151
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
152
	return ret;
153 154
}

155 156 157 158 159 160 161 162 163 164
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

165 166 167 168 169 170
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


171 172 173 174
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
175 176 177 178
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

179 180 181
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

182 183 184 185 186 187
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
188 189

	kvm_vgic_destroy(kvm);
190 191
}

192
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
193 194 195
{
	int r;
	switch (ext) {
196
	case KVM_CAP_IRQCHIP:
197 198
		r = vgic_present;
		break;
199
	case KVM_CAP_IOEVENTFD:
200
	case KVM_CAP_DEVICE_CTRL:
201 202 203 204
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
205
	case KVM_CAP_ARM_PSCI:
206
	case KVM_CAP_ARM_PSCI_0_2:
207
	case KVM_CAP_READONLY_MEM:
208
	case KVM_CAP_MP_STATE:
209
	case KVM_CAP_IMMEDIATE_EXIT:
210 211 212 213 214
		r = 1;
		break;
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
215 216
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
217
		break;
218 219 220 221 222 223
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
224 225 226
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
227 228 229 230 231 232
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
233
	default:
234
		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

252 253 254 255 256
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

257 258 259 260 261
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

262 263 264 265 266 267 268 269 270 271
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

272
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
273 274 275
	if (err)
		goto vcpu_uninit;

276
	return vcpu;
277 278
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
279 280 281 282 283 284
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

285
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
286
{
287
	kvm_vgic_vcpu_early_init(vcpu);
288 289 290 291
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
292
	kvm_mmu_free_memory_caches(vcpu);
293
	kvm_timer_vcpu_terminate(vcpu);
294
	kvm_vgic_vcpu_destroy(vcpu);
295
	kvm_pmu_vcpu_destroy(vcpu);
296
	kvm_vcpu_uninit(vcpu);
297
	kmem_cache_free(kvm_vcpu_cache, vcpu);
298 299 300 301 302 303 304 305 306
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
307 308
	return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
	       kvm_timer_should_fire(vcpu_ptimer(vcpu));
309 310
}

311 312 313 314 315 316 317 318 319 320
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
}

321 322
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
323 324
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
325
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
326

327 328 329
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

330 331
	kvm_arm_reset_debug_ptr(vcpu);

332 333 334 335 336
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
337 338 339 340 341 342 343 344 345 346 347 348 349
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

350
	vcpu->cpu = cpu;
351
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
352

353
	kvm_arm_set_running_vcpu(vcpu);
354 355

	kvm_vgic_load(vcpu);
356 357 358 359
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
360 361
	kvm_vgic_put(vcpu);

362 363
	vcpu->cpu = -1;

364
	kvm_arm_set_running_vcpu(NULL);
365
	kvm_timer_vcpu_put(vcpu);
366 367 368 369 370
}

int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
371
	if (vcpu->arch.power_off)
372 373 374 375 376
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
377 378 379 380 381
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
382 383
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
384
		vcpu->arch.power_off = false;
385 386
		break;
	case KVM_MP_STATE_STOPPED:
387
		vcpu->arch.power_off = true;
388 389 390 391 392 393
		break;
	default:
		return -EINVAL;
	}

	return 0;
394 395
}

396 397 398 399 400 401 402
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
403 404
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
405
	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
406
		&& !v->arch.power_off && !v->arch.pause);
407 408
}

409 410 411 412 413 414 415
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
416
	preempt_disable();
417
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
418
	preempt_enable();
419 420 421 422
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
423
 * @kvm: The VM's VMID to check
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
488
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
489 490

	/* update vttbr to be used with the new vmid */
491
	pgd_phys = virt_to_phys(kvm->arch.pgd);
492
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
493
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
494
	kvm->arch.vttbr = pgd_phys | vmid;
495 496 497 498 499 500

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
501
	struct kvm *kvm = vcpu->kvm;
502
	int ret = 0;
503

504 505 506 507
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
508

509
	/*
510 511
	 * Map the VGIC hardware resources before running a vcpu the first
	 * time on this VM.
512
	 */
513
	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
514
		ret = kvm_vgic_map_resources(kvm);
515 516 517 518
		if (ret)
			return ret;
	}

519 520 521 522 523 524
	/*
	 * Enable the arch timers only if we have an in-kernel VGIC
	 * and it has been properly initialized, since we cannot handle
	 * interrupts from the virtual timer with a userspace gic.
	 */
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
525
		ret = kvm_timer_enable(vcpu);
526

527
	return ret;
528 529
}

530 531 532 533 534
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

535
void kvm_arm_halt_guest(struct kvm *kvm)
536 537 538 539 540 541
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
542
	kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
543 544
}

545 546 547 548 549 550 551
void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
{
	vcpu->arch.pause = true;
	kvm_vcpu_kick(vcpu);
}

void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
552 553 554 555 556 557 558 559
{
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);

	vcpu->arch.pause = false;
	swake_up(wq);
}

void kvm_arm_resume_guest(struct kvm *kvm)
560 561 562 563
{
	int i;
	struct kvm_vcpu *vcpu;

564 565
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arm_resume_vcpu(vcpu);
566 567
}

568
static void vcpu_sleep(struct kvm_vcpu *vcpu)
569
{
570
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
571

572
	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
573
				       (!vcpu->arch.pause)));
574 575
}

576 577 578 579 580
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

581 582 583 584 585 586 587 588 589 590 591
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
592 593
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
594 595 596
	int ret;
	sigset_t sigsaved;

597
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
598 599 600 601 602 603
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
604 605 606 607 608 609
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

610 611 612
	if (run->immediate_exit)
		return -EINTR;

613 614 615 616 617 618 619 620 621 622 623 624 625
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

626
		if (vcpu->arch.power_off || vcpu->arch.pause)
627
			vcpu_sleep(vcpu);
628

629 630 631 632 633
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
634
		preempt_disable();
635

636
		kvm_pmu_flush_hwstate(vcpu);
637

638
		kvm_timer_flush_hwstate(vcpu);
639 640
		kvm_vgic_flush_hwstate(vcpu);

641 642 643 644 645 646 647 648 649 650
		local_irq_disable();

		/*
		 * Re-check atomic conditions
		 */
		if (signal_pending(current)) {
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

651
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
652
			vcpu->arch.power_off || vcpu->arch.pause) {
653
			local_irq_enable();
654
			kvm_pmu_sync_hwstate(vcpu);
655
			kvm_timer_sync_hwstate(vcpu);
656
			kvm_vgic_sync_hwstate(vcpu);
657
			preempt_enable();
658 659 660
			continue;
		}

661 662
		kvm_arm_setup_debug(vcpu);

663 664 665 666
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
667
		guest_enter_irqoff();
668 669 670 671 672
		vcpu->mode = IN_GUEST_MODE;

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
673
		vcpu->stat.exits++;
674 675 676 677
		/*
		 * Back from guest
		 *************************************************************/

678 679
		kvm_arm_clear_debug(vcpu);

680 681 682 683 684 685 686 687 688 689 690 691 692
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
693
		 * We do local_irq_enable() before calling guest_exit() so
694 695
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
696
		 * preemption after calling guest_exit() so that if we get
697 698 699
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
700
		guest_exit();
701
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
702

703
		/*
704 705
		 * We must sync the PMU and timer state before the vgic state so
		 * that the vgic can properly sample the updated state of the
706 707
		 * interrupt line.
		 */
708
		kvm_pmu_sync_hwstate(vcpu);
709 710
		kvm_timer_sync_hwstate(vcpu);

711
		kvm_vgic_sync_hwstate(vcpu);
712 713 714

		preempt_enable();

715 716 717 718 719 720
		ret = handle_exit(vcpu, run, ret);
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
721 722
}

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
	kvm_vcpu_kick(vcpu);

	return 0;
}

756 757
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
758 759 760 761 762 763 764 765 766 767 768 769 770
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

771 772 773 774
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
775

776 777
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
778

779 780 781
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
782

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
800

801 802 803 804 805
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

806
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
807 808 809 810 811 812
			return -EINVAL;

		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
	}

	return -EINVAL;
813 814
}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


857 858 859 860 861 862 863 864 865
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

866 867 868 869 870 871 872
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

873 874
	vcpu_reset_hcr(vcpu);

875
	/*
876
	 * Handle the "start in power-off" case.
877
	 */
878
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
879
		vcpu->arch.power_off = true;
880
	else
881
		vcpu->arch.power_off = false;
882 883 884 885

	return 0;
}

886 887 888 889 890 891 892
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
893
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
894 895 896 897 898 899 900 901 902 903 904 905 906
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
907
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
908 909 910 911 912 913 914 915 916 917 918 919 920
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
921
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
922 923 924 925 926 927
		break;
	}

	return ret;
}

928 929 930 931 932
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
933
	struct kvm_device_attr attr;
934 935 936 937 938 939 940 941

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

942
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
943 944 945 946
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
947 948 949 950

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

951 952 953 954 955 956 957 958 959 960 961 962
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

963 964 965
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

966 967 968 969 970 971 972 973 974 975
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	case KVM_SET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_set_attr(vcpu, &attr);
	}
	case KVM_GET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_get_attr(vcpu, &attr);
	}
	case KVM_HAS_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_has_attr(vcpu, &attr);
	}
991 992 993 994 995
	default:
		return -EINVAL;
	}
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1015 1016
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1029 1030
}

1031 1032 1033
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1034 1035 1036 1037 1038 1039 1040 1041 1042
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1043 1044
		if (!vgic_present)
			return -ENXIO;
1045
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1046 1047 1048
	default:
		return -ENODEV;
	}
1049 1050
}

1051 1052 1053
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1054 1055 1056 1057
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1058
	case KVM_CREATE_IRQCHIP: {
1059
		int ret;
1060 1061
		if (!vgic_present)
			return -ENXIO;
1062 1063 1064 1065
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1066
	}
1067 1068 1069 1070 1071 1072 1073
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1087 1088 1089
	default:
		return -EINVAL;
	}
1090 1091
}

1092
static void cpu_init_hyp_mode(void *dummy)
1093
{
1094
	phys_addr_t pgd_ptr;
1095 1096 1097 1098 1099
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1100
	__hyp_set_vectors(kvm_get_idmap_vector());
1101

1102
	pgd_ptr = kvm_mmu_get_httbr();
1103
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1104
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1105
	vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1106

M
Marc Zyngier 已提交
1107
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1108
	__cpu_init_stage2();
1109

1110 1111 1112
	if (is_kernel_in_hyp_mode())
		kvm_timer_init_vhe();

1113
	kvm_arm_init_debug();
1114 1115
}

1116 1117 1118 1119
static void cpu_hyp_reinit(void)
{
	if (is_kernel_in_hyp_mode()) {
		/*
1120
		 * __cpu_init_stage2() is safe to call even if the PM
1121 1122
		 * event was cancelled before the CPU was reset.
		 */
1123
		__cpu_init_stage2();
1124 1125 1126 1127 1128 1129
	} else {
		if (__hyp_get_vectors() == hyp_default_vectors)
			cpu_init_hyp_mode(NULL);
	}
}

1130
static void cpu_hyp_reset(void)
1131
{
M
Marc Zyngier 已提交
1132
	if (!is_kernel_in_hyp_mode())
M
Marc Zyngier 已提交
1133 1134
		__cpu_reset_hyp_mode(hyp_default_vectors,
				     kvm_get_idmap_start());
1135 1136 1137 1138 1139
}

static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1140
		cpu_hyp_reinit();
1141
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1142
	}
1143
}
1144

1145 1146 1147 1148
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1149 1150
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1163

1164 1165 1166 1167 1168
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1184
		return NOTIFY_OK;
1185 1186 1187 1188
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1189

1190 1191 1192 1193 1194
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1205 1206 1207 1208
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1209 1210 1211 1212
#else
static inline void hyp_cpu_pm_init(void)
{
}
1213 1214 1215
static inline void hyp_cpu_pm_exit(void)
{
}
1216 1217
#endif

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static void teardown_common_resources(void)
{
	free_percpu(kvm_host_cpu_state);
}

static int init_common_resources(void)
{
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
		kvm_err("Cannot allocate host CPU state\n");
		return -ENOMEM;
	}

1231 1232 1233 1234
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1235 1236 1237 1238 1239
	return 0;
}

static int init_subsystems(void)
{
1240
	int err = 0;
1241

1242
	/*
1243
	 * Enable hardware so that subsystem initialisation can access EL2.
1244
	 */
1245
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1246 1247 1248 1249 1250 1251

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1263
		err = 0;
1264 1265
		break;
	default:
1266
		goto out;
1267 1268 1269 1270 1271 1272 1273
	}

	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
1274
		goto out;
1275 1276 1277 1278

	kvm_perf_init();
	kvm_coproc_table_init();

1279 1280 1281 1282
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
}

static void teardown_hyp_mode(void)
{
	int cpu;

	if (is_kernel_in_hyp_mode())
		return;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1295
	hyp_cpu_pm_exit();
1296 1297 1298 1299 1300 1301 1302 1303
}

static int init_vhe_mode(void)
{
	kvm_info("VHE mode initialized successfully\n");
	return 0;
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * It is probably enough to obtain the default on one
	 * CPU. It's unlikely to be different on the others.
	 */
	hyp_default_vectors = __hyp_get_vectors();

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1334
			goto out_err;
1335 1336 1337 1338 1339 1340 1341 1342
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1343
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1344
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1345 1346
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1347
		goto out_err;
1348 1349
	}

1350
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1351
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1352 1353
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1354 1355 1356 1357 1358 1359 1360
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1361
		goto out_err;
1362 1363
	}

1364 1365 1366 1367 1368
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1369 1370
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1371 1372 1373

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1374
			goto out_err;
1375 1376 1377 1378
		}
	}

	for_each_possible_cpu(cpu) {
1379
		kvm_cpu_context_t *cpu_ctxt;
1380

1381
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1382
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1383 1384

		if (err) {
1385
			kvm_err("Cannot map host CPU state: %d\n", err);
1386
			goto out_err;
1387 1388 1389 1390
		}
	}

	kvm_info("Hyp mode initialized successfully\n");
1391

1392
	return 0;
1393

1394
out_err:
1395
	teardown_hyp_mode();
1396 1397 1398 1399
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1400 1401 1402 1403 1404
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1418 1419 1420
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1421 1422
int kvm_arch_init(void *opaque)
{
1423
	int err;
1424
	int ret, cpu;
1425 1426 1427 1428 1429 1430

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1431 1432 1433 1434 1435 1436
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1437 1438
	}

1439
	err = init_common_resources();
1440
	if (err)
1441
		return err;
1442

1443 1444 1445 1446 1447
	if (is_kernel_in_hyp_mode())
		err = init_vhe_mode();
	else
		err = init_hyp_mode();
	if (err)
1448
		goto out_err;
1449

1450 1451 1452
	err = init_subsystems();
	if (err)
		goto out_hyp;
1453

1454
	return 0;
1455 1456 1457

out_hyp:
	teardown_hyp_mode();
1458
out_err:
1459
	teardown_common_resources();
1460
	return err;
1461 1462 1463 1464 1465
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1466
	kvm_perf_teardown();
1467 1468 1469 1470 1471 1472 1473 1474 1475
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);