arm.c 27.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu.h>
20
#include <linux/cpu_pm.h>
21 22 23 24 25 26 27 28
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30 31 32 33 34 35 36 37
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
#include "trace.h"

#include <asm/uaccess.h>
#include <asm/ptrace.h>
#include <asm/mman.h>
38
#include <asm/tlbflush.h>
39
#include <asm/cacheflush.h>
40 41 42 43
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
44
#include <asm/kvm_emulate.h>
45
#include <asm/kvm_coproc.h>
46
#include <asm/kvm_psci.h>
47 48 49 50 51

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

52
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 55
static unsigned long hyp_default_vectors;

56 57 58
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

59 60 61 62
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
static u8 kvm_next_vmid;
static DEFINE_SPINLOCK(kvm_vmid_lock);
63

64 65 66
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
67
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 69 70 71 72 73 74 75 76
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
77
	return __this_cpu_read(kvm_arm_running_vcpu);
78 79 80 81 82
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
83
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 85 86 87
{
	return &kvm_arm_running_vcpu;
}

88
int kvm_arch_hardware_enable(void)
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
{
	return 0;
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


109 110 111 112
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
113 114
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
115 116
	int ret = 0;

117 118 119
	if (type)
		return -EINVAL;

120 121 122 123 124 125 126 127
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

	ret = create_hyp_mappings(kvm, kvm + 1);
	if (ret)
		goto out_free_stage2_pgd;

128
	kvm_vgic_early_init(kvm);
129 130
	kvm_timer_init(kvm);

131 132 133
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

134 135 136
	/* The maximum number of VCPUs is limited by the host's GIC model */
	kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();

137 138 139 140 141
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
	return ret;
142 143 144 145 146 147 148 149
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


150 151 152 153
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
154 155 156 157
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

158 159
	kvm_free_stage2_pgd(kvm);

160 161 162 163 164 165
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
166 167

	kvm_vgic_destroy(kvm);
168 169
}

170
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
171 172 173
{
	int r;
	switch (ext) {
174
	case KVM_CAP_IRQCHIP:
175
	case KVM_CAP_IOEVENTFD:
176
	case KVM_CAP_DEVICE_CTRL:
177 178 179 180
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
181
	case KVM_CAP_ARM_PSCI:
182
	case KVM_CAP_ARM_PSCI_0_2:
183
	case KVM_CAP_READONLY_MEM:
184
	case KVM_CAP_MP_STATE:
185 186 187 188 189
		r = 1;
		break;
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
190 191
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
192
		break;
193 194 195 196 197 198 199
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
	default:
200
		r = kvm_arch_dev_ioctl_check_extension(ext);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

218 219 220 221 222
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

223 224 225 226 227
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

228 229 230 231 232 233 234 235 236 237
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

238 239 240 241
	err = create_hyp_mappings(vcpu, vcpu + 1);
	if (err)
		goto vcpu_uninit;

242
	return vcpu;
243 244
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
245 246 247 248 249 250
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

251
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
252
{
253
	kvm_vgic_vcpu_early_init(vcpu);
254 255 256 257
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
258
	kvm_mmu_free_memory_caches(vcpu);
259
	kvm_timer_vcpu_terminate(vcpu);
260
	kvm_vgic_vcpu_destroy(vcpu);
261
	kmem_cache_free(kvm_vcpu_cache, vcpu);
262 263 264 265 266 267 268 269 270
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
271
	return kvm_timer_should_fire(vcpu);
272 273
}

274 275 276 277 278 279 280 281 282 283
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
}

284 285
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
286 287
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
288
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
289

290 291 292
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

293 294
	kvm_arm_reset_debug_ptr(vcpu);

295 296 297 298 299
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
300
	vcpu->cpu = cpu;
301
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
302

303
	kvm_arm_set_running_vcpu(vcpu);
304 305 306 307
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
308 309 310 311 312 313 314
	/*
	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
	 * if the vcpu is no longer assigned to a cpu.  This is used for the
	 * optimized make_all_cpus_request path.
	 */
	vcpu->cpu = -1;

315
	kvm_arm_set_running_vcpu(NULL);
316 317 318 319 320
}

int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
321
	if (vcpu->arch.power_off)
322 323 324 325 326
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
327 328 329 330 331
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
332 333
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
334
		vcpu->arch.power_off = false;
335 336
		break;
	case KVM_MP_STATE_STOPPED:
337
		vcpu->arch.power_off = true;
338 339 340 341 342 343
		break;
	default:
		return -EINVAL;
	}

	return 0;
344 345
}

346 347 348 349 350 351 352
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
353 354
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
355
	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
356
		&& !v->arch.power_off && !v->arch.pause);
357 358
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
 * @kvm: The VM's VMID to checkt
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;

	/* update vttbr to be used with the new vmid */
438
	pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
439
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
440
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
441
	kvm->arch.vttbr = pgd_phys | vmid;
442 443 444 445 446 447

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
448
	struct kvm *kvm = vcpu->kvm;
449 450
	int ret;

451 452 453 454
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
455

456
	/*
457 458
	 * Map the VGIC hardware resources before running a vcpu the first
	 * time on this VM.
459
	 */
460
	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
461
		ret = kvm_vgic_map_resources(kvm);
462 463 464 465
		if (ret)
			return ret;
	}

466 467 468 469 470 471 472 473
	/*
	 * Enable the arch timers only if we have an in-kernel VGIC
	 * and it has been properly initialized, since we cannot handle
	 * interrupts from the virtual timer with a userspace gic.
	 */
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		kvm_timer_enable(kvm);

474 475 476
	return 0;
}

477 478 479 480 481
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;

static void kvm_arm_halt_guest(struct kvm *kvm)
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
	force_vm_exit(cpu_all_mask);
}

static void kvm_arm_resume_guest(struct kvm *kvm)
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);

		vcpu->arch.pause = false;
		wake_up_interruptible(wq);
	}
}

508
static void vcpu_sleep(struct kvm_vcpu *vcpu)
509 510 511
{
	wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);

512 513
	wait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
				       (!vcpu->arch.pause)));
514 515
}

516 517 518 519 520
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

521 522 523 524 525 526 527 528 529 530 531
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
532 533
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
534 535 536
	int ret;
	sigset_t sigsaved;

537
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
538 539 540 541 542 543
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
544 545 546 547 548 549
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

550 551 552 553 554 555 556 557 558 559 560 561 562
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

563
		if (vcpu->arch.power_off || vcpu->arch.pause)
564
			vcpu_sleep(vcpu);
565

566 567 568 569
		/*
		 * Disarming the background timer must be done in a
		 * preemptible context, as this call may sleep.
		 */
570
		kvm_timer_flush_hwstate(vcpu);
571

572 573 574 575 576
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
577
		preempt_disable();
578 579
		kvm_vgic_flush_hwstate(vcpu);

580 581 582 583 584 585 586 587 588 589
		local_irq_disable();

		/*
		 * Re-check atomic conditions
		 */
		if (signal_pending(current)) {
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

590
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
591
			vcpu->arch.power_off || vcpu->arch.pause) {
592
			local_irq_enable();
593
			kvm_timer_sync_hwstate(vcpu);
594
			kvm_vgic_sync_hwstate(vcpu);
595
			preempt_enable();
596 597 598
			continue;
		}

599 600
		kvm_arm_setup_debug(vcpu);

601 602 603 604
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
605
		__kvm_guest_enter();
606 607 608 609 610
		vcpu->mode = IN_GUEST_MODE;

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
611 612 613 614
		/*
		 * Back from guest
		 *************************************************************/

615 616
		kvm_arm_clear_debug(vcpu);

617 618 619 620 621 622 623 624 625 626 627 628 629
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
630 631 632 633 634 635 636 637 638 639
		 * We do local_irq_enable() before calling kvm_guest_exit() so
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
		 * preemption after calling kvm_guest_exit() so that if we get
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
		kvm_guest_exit();
		trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));

640 641 642 643 644 645 646
		/*
		 * We must sync the timer state before the vgic state so that
		 * the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_timer_sync_hwstate(vcpu);

647
		kvm_vgic_sync_hwstate(vcpu);
648 649 650

		preempt_enable();

651 652 653 654 655 656
		ret = handle_exit(vcpu, run, ret);
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
657 658
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
	kvm_vcpu_kick(vcpu);

	return 0;
}

692 693
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
694 695 696 697 698 699 700 701 702 703 704 705 706
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

707 708 709 710
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
711

712 713
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
714

715 716 717
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
718

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
736

737 738 739 740 741
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

742
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
743 744 745 746 747 748
			return -EINVAL;

		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
	}

	return -EINVAL;
749 750
}

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


793 794 795 796 797 798 799 800 801
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

802 803 804 805 806 807 808
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

809 810
	vcpu_reset_hcr(vcpu);

811
	/*
812
	 * Handle the "start in power-off" case.
813
	 */
814
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
815
		vcpu->arch.power_off = true;
816
	else
817
		vcpu->arch.power_off = false;
818 819 820 821

	return 0;
}

822 823 824 825 826 827 828 829 830 831 832 833 834
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

835
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
836 837 838 839
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
840 841 842 843

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

844 845 846 847 848 849 850 851 852 853 854 855
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

856 857 858
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
	default:
		return -EINVAL;
	}
}

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
893 894
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
895 896 897 898 899 900 901 902 903 904 905 906
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
907 908
}

909 910 911
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
912 913 914 915 916 917 918 919 920
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
921
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
922 923 924
	default:
		return -ENODEV;
	}
925 926
}

927 928 929
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
930 931 932 933
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
934
	case KVM_CREATE_IRQCHIP: {
935
		return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
936
	}
937 938 939 940 941 942 943
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
944 945 946 947 948 949 950 951 952 953 954 955 956
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
957 958 959
	default:
		return -EINVAL;
	}
960 961
}

962
static void cpu_init_hyp_mode(void *dummy)
963
{
964 965
	phys_addr_t boot_pgd_ptr;
	phys_addr_t pgd_ptr;
966 967 968 969 970
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
971
	__hyp_set_vectors(kvm_get_idmap_vector());
972

973 974
	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
	pgd_ptr = kvm_mmu_get_httbr();
975
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
976 977 978
	hyp_stack_ptr = stack_page + PAGE_SIZE;
	vector_ptr = (unsigned long)__kvm_hyp_vector;

979
	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
980 981

	kvm_arm_init_debug();
982 983
}

984 985 986 987 988 989
static int hyp_init_cpu_notify(struct notifier_block *self,
			       unsigned long action, void *cpu)
{
	switch (action) {
	case CPU_STARTING:
	case CPU_STARTING_FROZEN:
V
Vladimir Murzin 已提交
990 991
		if (__hyp_get_vectors() == hyp_default_vectors)
			cpu_init_hyp_mode(NULL);
992 993 994 995
		break;
	}

	return NOTIFY_OK;
996 997
}

998 999 1000 1001
static struct notifier_block hyp_init_cpu_nb = {
	.notifier_call = hyp_init_cpu_notify,
};

1002 1003 1004 1005 1006
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1007 1008
	if (cmd == CPU_PM_EXIT &&
	    __hyp_get_vectors() == hyp_default_vectors) {
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
		cpu_init_hyp_mode(NULL);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
#else
static inline void hyp_cpu_pm_init(void)
{
}
#endif

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * It is probably enough to obtain the default on one
	 * CPU. It's unlikely to be different on the others.
	 */
	hyp_default_vectors = __hyp_get_vectors();

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
			goto out_free_stack_pages;
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
	err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
	if (err) {
		kvm_err("Cannot map world-switch code\n");
		goto out_free_mappings;
	}

	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);

		if (err) {
			kvm_err("Cannot map hyp stack\n");
			goto out_free_mappings;
		}
	}

	/*
1089
	 * Map the host CPU structures
1090
	 */
1091 1092
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
1093
		err = -ENOMEM;
1094
		kvm_err("Cannot allocate host CPU state\n");
1095 1096 1097 1098
		goto out_free_mappings;
	}

	for_each_possible_cpu(cpu) {
1099
		kvm_cpu_context_t *cpu_ctxt;
1100

1101 1102
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1103 1104

		if (err) {
1105 1106
			kvm_err("Cannot map host CPU state: %d\n", err);
			goto out_free_context;
1107 1108 1109
		}
	}

1110 1111 1112 1113 1114
	/*
	 * Execute the init code on each CPU.
	 */
	on_each_cpu(cpu_init_hyp_mode, NULL, 1);

1115 1116 1117 1118 1119
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	if (err)
1120
		goto out_free_context;
1121

1122 1123 1124 1125 1126
	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
1127
		goto out_free_context;
1128

1129 1130 1131 1132
#ifndef CONFIG_HOTPLUG_CPU
	free_boot_hyp_pgd();
#endif

1133 1134
	kvm_perf_init();

1135
	kvm_info("Hyp mode initialized successfully\n");
1136

1137
	return 0;
1138 1139
out_free_context:
	free_percpu(kvm_host_cpu_state);
1140
out_free_mappings:
1141
	free_hyp_pgds();
1142 1143 1144 1145 1146 1147 1148 1149
out_free_stack_pages:
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
out_err:
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1150 1151 1152 1153 1154
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1168 1169 1170
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1171 1172
int kvm_arch_init(void *opaque)
{
1173
	int err;
1174
	int ret, cpu;
1175 1176 1177 1178 1179 1180

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1181 1182 1183 1184 1185 1186
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1187 1188
	}

1189 1190
	cpu_notifier_register_begin();

1191 1192 1193 1194
	err = init_hyp_mode();
	if (err)
		goto out_err;

1195
	err = __register_cpu_notifier(&hyp_init_cpu_nb);
1196 1197 1198 1199 1200
	if (err) {
		kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
		goto out_err;
	}

1201 1202
	cpu_notifier_register_done();

1203 1204
	hyp_cpu_pm_init();

1205
	kvm_coproc_table_init();
1206
	return 0;
1207
out_err:
1208
	cpu_notifier_register_done();
1209
	return err;
1210 1211 1212 1213 1214
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1215
	kvm_perf_teardown();
1216 1217 1218 1219 1220 1221 1222 1223 1224
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);