arm.c 32.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu_pm.h>
20 21 22
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
23
#include <linux/list.h>
24 25 26 27 28
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30
#include <trace/events/kvm.h>
31
#include <kvm/arm_pmu.h>
32 33 34 35

#define CREATE_TRACE_POINTS
#include "trace.h"

36
#include <linux/uaccess.h>
37 38
#include <asm/ptrace.h>
#include <asm/mman.h>
39
#include <asm/tlbflush.h>
40
#include <asm/cacheflush.h>
41 42 43 44
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
45
#include <asm/kvm_emulate.h>
46
#include <asm/kvm_coproc.h>
47
#include <asm/kvm_psci.h>
48
#include <asm/sections.h>
49 50 51 52 53

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 57
static unsigned long hyp_default_vectors;

58 59 60
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

61 62
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 64
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
65
static DEFINE_SPINLOCK(kvm_vmid_lock);
66

67 68
static bool vgic_present;

69 70
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

71 72 73
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
74
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 76 77 78 79 80 81 82 83
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
84
	return __this_cpu_read(kvm_arm_running_vcpu);
85 86 87 88 89
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
90
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
91 92 93 94
{
	return &kvm_arm_running_vcpu;
}

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


111 112 113 114
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
115 116
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
117
	int ret, cpu;
118

119 120 121
	if (type)
		return -EINVAL;

122 123 124 125 126 127 128
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

129 130 131 132
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

133
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
134 135 136
	if (ret)
		goto out_free_stage2_pgd;

137
	kvm_vgic_early_init(kvm);
138

139 140 141
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

142
	/* The maximum number of VCPUs is limited by the host's GIC model */
143 144
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
145

146 147 148 149
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
150 151
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
152
	return ret;
153 154
}

155 156 157 158 159 160 161 162 163 164
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

165 166 167 168 169 170
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


171 172 173 174
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
175 176 177 178
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

179 180 181
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

182 183 184 185 186 187
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
188 189

	kvm_vgic_destroy(kvm);
190 191
}

192
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
193 194 195
{
	int r;
	switch (ext) {
196
	case KVM_CAP_IRQCHIP:
197 198
		r = vgic_present;
		break;
199
	case KVM_CAP_IOEVENTFD:
200
	case KVM_CAP_DEVICE_CTRL:
201 202 203 204
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
205
	case KVM_CAP_ARM_PSCI:
206
	case KVM_CAP_ARM_PSCI_0_2:
207
	case KVM_CAP_READONLY_MEM:
208
	case KVM_CAP_MP_STATE:
209 210 211 212 213
		r = 1;
		break;
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
214 215
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
216
		break;
217 218 219 220 221 222
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
V
Vladimir Murzin 已提交
223 224 225 226 227 228
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
229
	default:
230
		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

248 249 250 251 252
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

253 254 255 256 257
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

258 259 260 261 262 263 264 265 266 267
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

268
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
269 270 271
	if (err)
		goto vcpu_uninit;

272
	return vcpu;
273 274
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
275 276 277 278 279 280
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

281
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
282
{
283
	kvm_vgic_vcpu_early_init(vcpu);
284 285 286 287
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
288
	kvm_mmu_free_memory_caches(vcpu);
289
	kvm_timer_vcpu_terminate(vcpu);
290
	kvm_vgic_vcpu_destroy(vcpu);
291
	kvm_pmu_vcpu_destroy(vcpu);
292
	kvm_vcpu_uninit(vcpu);
293
	kmem_cache_free(kvm_vcpu_cache, vcpu);
294 295 296 297 298 299 300 301 302
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
303
	return kvm_timer_should_fire(vcpu_vtimer(vcpu));
304 305
}

306 307 308 309 310 311 312 313 314 315
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
}

316 317
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
318 319
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
320
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
321

322 323 324
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

325 326
	kvm_arm_reset_debug_ptr(vcpu);

327 328 329 330 331
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
332 333 334 335 336 337 338 339 340 341 342 343 344
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

345
	vcpu->cpu = cpu;
346
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
347

348
	kvm_arm_set_running_vcpu(vcpu);
349 350 351 352
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
353 354 355 356 357 358 359
	/*
	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
	 * if the vcpu is no longer assigned to a cpu.  This is used for the
	 * optimized make_all_cpus_request path.
	 */
	vcpu->cpu = -1;

360
	kvm_arm_set_running_vcpu(NULL);
361
	kvm_timer_vcpu_put(vcpu);
362 363 364 365 366
}

int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
367
	if (vcpu->arch.power_off)
368 369 370 371 372
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
373 374 375 376 377
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
378 379
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
380
		vcpu->arch.power_off = false;
381 382
		break;
	case KVM_MP_STATE_STOPPED:
383
		vcpu->arch.power_off = true;
384 385 386 387 388 389
		break;
	default:
		return -EINVAL;
	}

	return 0;
390 391
}

392 393 394 395 396 397 398
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
399 400
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
401
	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
402
		&& !v->arch.power_off && !v->arch.pause);
403 404
}

405 406 407 408 409 410 411
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
412
	preempt_disable();
413
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
414
	preempt_enable();
415 416 417 418
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
419
 * @kvm: The VM's VMID to check
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
484
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
485 486

	/* update vttbr to be used with the new vmid */
487
	pgd_phys = virt_to_phys(kvm->arch.pgd);
488
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
489
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
490
	kvm->arch.vttbr = pgd_phys | vmid;
491 492 493 494 495 496

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
497
	struct kvm *kvm = vcpu->kvm;
498
	int ret = 0;
499

500 501 502 503
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
504

505
	/*
506 507
	 * Map the VGIC hardware resources before running a vcpu the first
	 * time on this VM.
508
	 */
509
	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
510
		ret = kvm_vgic_map_resources(kvm);
511 512 513 514
		if (ret)
			return ret;
	}

515 516 517 518 519 520
	/*
	 * Enable the arch timers only if we have an in-kernel VGIC
	 * and it has been properly initialized, since we cannot handle
	 * interrupts from the virtual timer with a userspace gic.
	 */
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
521
		ret = kvm_timer_enable(vcpu);
522

523
	return ret;
524 525
}

526 527 528 529 530
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

531
void kvm_arm_halt_guest(struct kvm *kvm)
532 533 534 535 536 537
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
538
	kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
539 540
}

541 542 543 544 545 546 547
void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
{
	vcpu->arch.pause = true;
	kvm_vcpu_kick(vcpu);
}

void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
548 549 550 551 552 553 554 555
{
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);

	vcpu->arch.pause = false;
	swake_up(wq);
}

void kvm_arm_resume_guest(struct kvm *kvm)
556 557 558 559
{
	int i;
	struct kvm_vcpu *vcpu;

560 561
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arm_resume_vcpu(vcpu);
562 563
}

564
static void vcpu_sleep(struct kvm_vcpu *vcpu)
565
{
566
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
567

568
	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
569
				       (!vcpu->arch.pause)));
570 571
}

572 573 574 575 576
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

577 578 579 580 581 582 583 584 585 586 587
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
588 589
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
590 591 592
	int ret;
	sigset_t sigsaved;

593
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
594 595 596 597 598 599
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
600 601 602 603 604 605
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

606 607 608 609 610 611 612 613 614 615 616 617 618
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

619
		if (vcpu->arch.power_off || vcpu->arch.pause)
620
			vcpu_sleep(vcpu);
621

622 623 624 625 626
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
627
		preempt_disable();
628
		kvm_pmu_flush_hwstate(vcpu);
629
		kvm_timer_flush_hwstate(vcpu);
630 631
		kvm_vgic_flush_hwstate(vcpu);

632 633 634 635 636 637 638 639 640 641
		local_irq_disable();

		/*
		 * Re-check atomic conditions
		 */
		if (signal_pending(current)) {
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

642
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
643
			vcpu->arch.power_off || vcpu->arch.pause) {
644
			local_irq_enable();
645
			kvm_pmu_sync_hwstate(vcpu);
646
			kvm_timer_sync_hwstate(vcpu);
647
			kvm_vgic_sync_hwstate(vcpu);
648
			preempt_enable();
649 650 651
			continue;
		}

652 653
		kvm_arm_setup_debug(vcpu);

654 655 656 657
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
658
		guest_enter_irqoff();
659 660 661 662 663
		vcpu->mode = IN_GUEST_MODE;

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
664
		vcpu->stat.exits++;
665 666 667 668
		/*
		 * Back from guest
		 *************************************************************/

669 670
		kvm_arm_clear_debug(vcpu);

671 672 673 674 675 676 677 678 679 680 681 682 683
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
684
		 * We do local_irq_enable() before calling guest_exit() so
685 686
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
687
		 * preemption after calling guest_exit() so that if we get
688 689 690
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
691
		guest_exit();
692
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
693

694
		/*
695 696
		 * We must sync the PMU and timer state before the vgic state so
		 * that the vgic can properly sample the updated state of the
697 698
		 * interrupt line.
		 */
699
		kvm_pmu_sync_hwstate(vcpu);
700 701
		kvm_timer_sync_hwstate(vcpu);

702
		kvm_vgic_sync_hwstate(vcpu);
703 704 705

		preempt_enable();

706 707 708 709 710 711
		ret = handle_exit(vcpu, run, ret);
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
712 713
}

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
	kvm_vcpu_kick(vcpu);

	return 0;
}

747 748
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
749 750 751 752 753 754 755 756 757 758 759 760 761
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

762 763 764 765
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
766

767 768
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
769

770 771 772
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
773

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
791

792 793 794 795 796
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

797
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
798 799 800 801 802 803
			return -EINVAL;

		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
	}

	return -EINVAL;
804 805
}

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


848 849 850 851 852 853 854 855 856
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

857 858 859 860 861 862 863
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

864 865
	vcpu_reset_hcr(vcpu);

866
	/*
867
	 * Handle the "start in power-off" case.
868
	 */
869
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
870
		vcpu->arch.power_off = true;
871
	else
872
		vcpu->arch.power_off = false;
873 874 875 876

	return 0;
}

877 878 879 880 881 882 883
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
884
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
885 886 887 888 889 890 891 892 893 894 895 896 897
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
898
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
899 900 901 902 903 904 905 906 907 908 909 910 911
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
912
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
913 914 915 916 917 918
		break;
	}

	return ret;
}

919 920 921 922 923
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
924
	struct kvm_device_attr attr;
925 926 927 928 929 930 931 932

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

933
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
934 935 936 937
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
938 939 940 941

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

942 943 944 945 946 947 948 949 950 951 952 953
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

954 955 956
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

957 958 959 960 961 962 963 964 965 966
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	case KVM_SET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_set_attr(vcpu, &attr);
	}
	case KVM_GET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_get_attr(vcpu, &attr);
	}
	case KVM_HAS_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_has_attr(vcpu, &attr);
	}
982 983 984 985 986
	default:
		return -EINVAL;
	}
}

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1006 1007
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1020 1021
}

1022 1023 1024
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1025 1026 1027 1028 1029 1030 1031 1032 1033
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1034 1035
		if (!vgic_present)
			return -ENXIO;
1036
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1037 1038 1039
	default:
		return -ENODEV;
	}
1040 1041
}

1042 1043 1044
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1045 1046 1047 1048
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1049
	case KVM_CREATE_IRQCHIP: {
1050
		int ret;
1051 1052
		if (!vgic_present)
			return -ENXIO;
1053 1054 1055 1056
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1057
	}
1058 1059 1060 1061 1062 1063 1064
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1078 1079 1080
	default:
		return -EINVAL;
	}
1081 1082
}

1083
static void cpu_init_hyp_mode(void *dummy)
1084
{
1085
	phys_addr_t pgd_ptr;
1086 1087 1088 1089 1090
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1091
	__hyp_set_vectors(kvm_get_idmap_vector());
1092

1093
	pgd_ptr = kvm_mmu_get_httbr();
1094
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1095
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1096
	vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1097

M
Marc Zyngier 已提交
1098
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1099
	__cpu_init_stage2();
1100

1101 1102 1103
	if (is_kernel_in_hyp_mode())
		kvm_timer_init_vhe();

1104
	kvm_arm_init_debug();
1105 1106
}

1107 1108 1109 1110
static void cpu_hyp_reinit(void)
{
	if (is_kernel_in_hyp_mode()) {
		/*
1111
		 * __cpu_init_stage2() is safe to call even if the PM
1112 1113
		 * event was cancelled before the CPU was reset.
		 */
1114
		__cpu_init_stage2();
1115 1116 1117 1118 1119 1120
	} else {
		if (__hyp_get_vectors() == hyp_default_vectors)
			cpu_init_hyp_mode(NULL);
	}
}

1121
static void cpu_hyp_reset(void)
1122
{
M
Marc Zyngier 已提交
1123
	if (!is_kernel_in_hyp_mode())
M
Marc Zyngier 已提交
1124 1125
		__cpu_reset_hyp_mode(hyp_default_vectors,
				     kvm_get_idmap_start());
1126 1127 1128 1129 1130
}

static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1131
		cpu_hyp_reinit();
1132
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1133
	}
1134
}
1135

1136 1137 1138 1139
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1140 1141
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1154

1155 1156 1157 1158 1159
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1175
		return NOTIFY_OK;
1176 1177 1178 1179
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1180

1181 1182 1183 1184 1185
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1196 1197 1198 1199
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1200 1201 1202 1203
#else
static inline void hyp_cpu_pm_init(void)
{
}
1204 1205 1206
static inline void hyp_cpu_pm_exit(void)
{
}
1207 1208
#endif

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
static void teardown_common_resources(void)
{
	free_percpu(kvm_host_cpu_state);
}

static int init_common_resources(void)
{
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
		kvm_err("Cannot allocate host CPU state\n");
		return -ENOMEM;
	}

1222 1223 1224 1225
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1226 1227 1228 1229 1230
	return 0;
}

static int init_subsystems(void)
{
1231
	int err = 0;
1232

1233
	/*
1234
	 * Enable hardware so that subsystem initialisation can access EL2.
1235
	 */
1236
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1237 1238 1239 1240 1241 1242

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1254
		err = 0;
1255 1256
		break;
	default:
1257
		goto out;
1258 1259 1260 1261 1262 1263 1264
	}

	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
1265
		goto out;
1266 1267 1268 1269

	kvm_perf_init();
	kvm_coproc_table_init();

1270 1271 1272 1273
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
}

static void teardown_hyp_mode(void)
{
	int cpu;

	if (is_kernel_in_hyp_mode())
		return;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1286
	hyp_cpu_pm_exit();
1287 1288 1289 1290 1291 1292 1293 1294
}

static int init_vhe_mode(void)
{
	kvm_info("VHE mode initialized successfully\n");
	return 0;
}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * It is probably enough to obtain the default on one
	 * CPU. It's unlikely to be different on the others.
	 */
	hyp_default_vectors = __hyp_get_vectors();

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1325
			goto out_err;
1326 1327 1328 1329 1330 1331 1332 1333
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1334
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1335
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1336 1337
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1338
		goto out_err;
1339 1340
	}

1341
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1342
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1343 1344
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1345 1346 1347 1348 1349 1350 1351
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1352
		goto out_err;
1353 1354
	}

1355 1356 1357 1358 1359
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1360 1361
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1362 1363 1364

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1365
			goto out_err;
1366 1367 1368 1369
		}
	}

	for_each_possible_cpu(cpu) {
1370
		kvm_cpu_context_t *cpu_ctxt;
1371

1372
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1373
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1374 1375

		if (err) {
1376
			kvm_err("Cannot map host CPU state: %d\n", err);
1377
			goto out_err;
1378 1379 1380 1381
		}
	}

	kvm_info("Hyp mode initialized successfully\n");
1382

1383
	return 0;
1384

1385
out_err:
1386
	teardown_hyp_mode();
1387 1388 1389 1390
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1391 1392 1393 1394 1395
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1409 1410 1411
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1412 1413
int kvm_arch_init(void *opaque)
{
1414
	int err;
1415
	int ret, cpu;
1416 1417 1418 1419 1420 1421

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1422 1423 1424 1425 1426 1427
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1428 1429
	}

1430
	err = init_common_resources();
1431
	if (err)
1432
		return err;
1433

1434 1435 1436 1437 1438
	if (is_kernel_in_hyp_mode())
		err = init_vhe_mode();
	else
		err = init_hyp_mode();
	if (err)
1439
		goto out_err;
1440

1441 1442 1443
	err = init_subsystems();
	if (err)
		goto out_hyp;
1444

1445
	return 0;
1446 1447 1448

out_hyp:
	teardown_hyp_mode();
1449
out_err:
1450
	teardown_common_resources();
1451
	return err;
1452 1453 1454 1455 1456
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1457
	kvm_perf_teardown();
1458 1459 1460 1461 1462 1463 1464 1465 1466
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);