arm.c 30.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu.h>
20
#include <linux/cpu_pm.h>
21 22 23 24 25 26 27 28
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30
#include <trace/events/kvm.h>
31
#include <kvm/arm_pmu.h>
32 33 34 35 36 37 38

#define CREATE_TRACE_POINTS
#include "trace.h"

#include <asm/uaccess.h>
#include <asm/ptrace.h>
#include <asm/mman.h>
39
#include <asm/tlbflush.h>
40
#include <asm/cacheflush.h>
41 42 43 44
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
45
#include <asm/kvm_emulate.h>
46
#include <asm/kvm_coproc.h>
47
#include <asm/kvm_psci.h>
48
#include <asm/sections.h>
49 50 51 52 53

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 57
static unsigned long hyp_default_vectors;

58 59 60
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

61 62
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 64
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
65
static DEFINE_SPINLOCK(kvm_vmid_lock);
66

67 68
static bool vgic_present;

69 70 71
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
72
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
73 74 75 76 77 78 79 80 81
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
82
	return __this_cpu_read(kvm_arm_running_vcpu);
83 84 85 86 87
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
88
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
89 90 91 92
{
	return &kvm_arm_running_vcpu;
}

93
int kvm_arch_hardware_enable(void)
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
{
	return 0;
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


114 115 116 117
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
118 119
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
120 121
	int ret = 0;

122 123 124
	if (type)
		return -EINVAL;

125 126 127 128 129 130 131 132
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

	ret = create_hyp_mappings(kvm, kvm + 1);
	if (ret)
		goto out_free_stage2_pgd;

133
	kvm_vgic_early_init(kvm);
134 135
	kvm_timer_init(kvm);

136 137 138
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

139
	/* The maximum number of VCPUs is limited by the host's GIC model */
140 141
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
142

143 144 145 146 147
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
	return ret;
148 149 150 151 152 153 154 155
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


156 157 158 159
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
160 161 162 163
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

164 165
	kvm_free_stage2_pgd(kvm);

166 167 168 169 170 171
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
172 173

	kvm_vgic_destroy(kvm);
174 175
}

176
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
177 178 179
{
	int r;
	switch (ext) {
180
	case KVM_CAP_IRQCHIP:
181 182
		r = vgic_present;
		break;
183
	case KVM_CAP_IOEVENTFD:
184
	case KVM_CAP_DEVICE_CTRL:
185 186 187 188
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
189
	case KVM_CAP_ARM_PSCI:
190
	case KVM_CAP_ARM_PSCI_0_2:
191
	case KVM_CAP_READONLY_MEM:
192
	case KVM_CAP_MP_STATE:
193 194 195 196 197
		r = 1;
		break;
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
198 199
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
200
		break;
201 202 203 204 205 206 207
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
	default:
208
		r = kvm_arch_dev_ioctl_check_extension(ext);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

226 227 228 229 230
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

231 232 233 234 235
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

236 237 238 239 240 241 242 243 244 245
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

246 247 248 249
	err = create_hyp_mappings(vcpu, vcpu + 1);
	if (err)
		goto vcpu_uninit;

250
	return vcpu;
251 252
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
253 254 255 256 257 258
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

259
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
260
{
261
	kvm_vgic_vcpu_early_init(vcpu);
262 263 264 265
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
266
	kvm_mmu_free_memory_caches(vcpu);
267
	kvm_timer_vcpu_terminate(vcpu);
268
	kvm_vgic_vcpu_destroy(vcpu);
269
	kvm_pmu_vcpu_destroy(vcpu);
270
	kmem_cache_free(kvm_vcpu_cache, vcpu);
271 272 273 274 275 276 277 278 279
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
280
	return kvm_timer_should_fire(vcpu);
281 282
}

283 284 285 286 287 288 289 290 291 292
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
}

293 294
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
295 296
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
297
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
298

299 300 301
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

302 303
	kvm_arm_reset_debug_ptr(vcpu);

304 305 306 307 308
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
309
	vcpu->cpu = cpu;
310
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
311

312
	kvm_arm_set_running_vcpu(vcpu);
313 314 315 316
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
317 318 319 320 321 322 323
	/*
	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
	 * if the vcpu is no longer assigned to a cpu.  This is used for the
	 * optimized make_all_cpus_request path.
	 */
	vcpu->cpu = -1;

324
	kvm_arm_set_running_vcpu(NULL);
325
	kvm_timer_vcpu_put(vcpu);
326 327 328 329 330
}

int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
331
	if (vcpu->arch.power_off)
332 333 334 335 336
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
337 338 339 340 341
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
342 343
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
344
		vcpu->arch.power_off = false;
345 346
		break;
	case KVM_MP_STATE_STOPPED:
347
		vcpu->arch.power_off = true;
348 349 350 351 352 353
		break;
	default:
		return -EINVAL;
	}

	return 0;
354 355
}

356 357 358 359 360 361 362
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
363 364
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
365
	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
366
		&& !v->arch.power_off && !v->arch.pause);
367 368
}

369 370 371 372 373 374 375
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
376
	preempt_disable();
377
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
378
	preempt_enable();
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
 * @kvm: The VM's VMID to checkt
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
448
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
449 450

	/* update vttbr to be used with the new vmid */
451
	pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
452
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
453
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
454
	kvm->arch.vttbr = pgd_phys | vmid;
455 456 457 458 459 460

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
461
	struct kvm *kvm = vcpu->kvm;
462 463
	int ret;

464 465 466 467
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
468

469
	/*
470 471
	 * Map the VGIC hardware resources before running a vcpu the first
	 * time on this VM.
472
	 */
473
	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
474
		ret = kvm_vgic_map_resources(kvm);
475 476 477 478
		if (ret)
			return ret;
	}

479 480 481 482 483 484 485 486
	/*
	 * Enable the arch timers only if we have an in-kernel VGIC
	 * and it has been properly initialized, since we cannot handle
	 * interrupts from the virtual timer with a userspace gic.
	 */
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		kvm_timer_enable(kvm);

487 488 489
	return 0;
}

490 491 492 493 494
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;

static void kvm_arm_halt_guest(struct kvm *kvm)
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
	force_vm_exit(cpu_all_mask);
}

static void kvm_arm_resume_guest(struct kvm *kvm)
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
514
		struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
515 516

		vcpu->arch.pause = false;
517
		swake_up(wq);
518 519 520
	}
}

521
static void vcpu_sleep(struct kvm_vcpu *vcpu)
522
{
523
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
524

525
	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
526
				       (!vcpu->arch.pause)));
527 528
}

529 530 531 532 533
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

534 535 536 537 538 539 540 541 542 543 544
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
545 546
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
547 548 549
	int ret;
	sigset_t sigsaved;

550
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
551 552 553 554 555 556
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
557 558 559 560 561 562
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

563 564 565 566 567 568 569 570 571 572 573 574 575
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

576
		if (vcpu->arch.power_off || vcpu->arch.pause)
577
			vcpu_sleep(vcpu);
578

579 580 581 582 583
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
584
		preempt_disable();
585
		kvm_pmu_flush_hwstate(vcpu);
586
		kvm_timer_flush_hwstate(vcpu);
587 588
		kvm_vgic_flush_hwstate(vcpu);

589 590 591 592 593 594 595 596 597 598
		local_irq_disable();

		/*
		 * Re-check atomic conditions
		 */
		if (signal_pending(current)) {
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

599
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
600
			vcpu->arch.power_off || vcpu->arch.pause) {
601
			local_irq_enable();
602
			kvm_pmu_sync_hwstate(vcpu);
603
			kvm_timer_sync_hwstate(vcpu);
604
			kvm_vgic_sync_hwstate(vcpu);
605
			preempt_enable();
606 607 608
			continue;
		}

609 610
		kvm_arm_setup_debug(vcpu);

611 612 613 614
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
615
		__kvm_guest_enter();
616 617 618 619 620
		vcpu->mode = IN_GUEST_MODE;

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
621
		vcpu->stat.exits++;
622 623 624 625
		/*
		 * Back from guest
		 *************************************************************/

626 627
		kvm_arm_clear_debug(vcpu);

628 629 630 631 632 633 634 635 636 637 638 639 640
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
641 642 643 644 645 646 647 648
		 * We do local_irq_enable() before calling kvm_guest_exit() so
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
		 * preemption after calling kvm_guest_exit() so that if we get
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
		kvm_guest_exit();
649
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
650

651
		/*
652 653
		 * We must sync the PMU and timer state before the vgic state so
		 * that the vgic can properly sample the updated state of the
654 655
		 * interrupt line.
		 */
656
		kvm_pmu_sync_hwstate(vcpu);
657 658
		kvm_timer_sync_hwstate(vcpu);

659
		kvm_vgic_sync_hwstate(vcpu);
660 661 662

		preempt_enable();

663 664 665 666 667 668
		ret = handle_exit(vcpu, run, ret);
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
669 670
}

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
	kvm_vcpu_kick(vcpu);

	return 0;
}

704 705
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
706 707 708 709 710 711 712 713 714 715 716 717 718
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

719 720 721 722
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
723

724 725
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
726

727 728 729
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
730

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
748

749 750 751 752 753
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

754
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
755 756 757 758 759 760
			return -EINVAL;

		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
	}

	return -EINVAL;
761 762
}

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


805 806 807 808 809 810 811 812 813
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

814 815 816 817 818 819 820
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

821 822
	vcpu_reset_hcr(vcpu);

823
	/*
824
	 * Handle the "start in power-off" case.
825
	 */
826
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
827
		vcpu->arch.power_off = true;
828
	else
829
		vcpu->arch.power_off = false;
830 831 832 833

	return 0;
}

834 835 836 837 838 839 840
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
841
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
842 843 844 845 846 847 848 849 850 851 852 853 854
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
855
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
856 857 858 859 860 861 862 863 864 865 866 867 868
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
869
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
870 871 872 873 874 875
		break;
	}

	return ret;
}

876 877 878 879 880
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
881
	struct kvm_device_attr attr;
882 883 884 885 886 887 888 889

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

890
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
891 892 893 894
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
895 896 897 898

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

899 900 901 902 903 904 905 906 907 908 909 910
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

911 912 913
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

914 915 916 917 918 919 920 921 922 923
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
	case KVM_SET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_set_attr(vcpu, &attr);
	}
	case KVM_GET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_get_attr(vcpu, &attr);
	}
	case KVM_HAS_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_has_attr(vcpu, &attr);
	}
939 940 941 942 943
	default:
		return -EINVAL;
	}
}

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
963 964
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
965 966 967 968 969 970 971 972 973 974 975 976
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
977 978
}

979 980 981
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
982 983 984 985 986 987 988 989 990
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
991 992
		if (!vgic_present)
			return -ENXIO;
993
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
994 995 996
	default:
		return -ENODEV;
	}
997 998
}

999 1000 1001
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1002 1003 1004 1005
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1006
	case KVM_CREATE_IRQCHIP: {
1007 1008
		if (!vgic_present)
			return -ENXIO;
1009
		return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1010
	}
1011 1012 1013 1014 1015 1016 1017
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1031 1032 1033
	default:
		return -EINVAL;
	}
1034 1035
}

1036 1037 1038 1039 1040
static void cpu_init_stage2(void *dummy)
{
	__cpu_init_stage2();
}

1041
static void cpu_init_hyp_mode(void *dummy)
1042
{
1043 1044
	phys_addr_t boot_pgd_ptr;
	phys_addr_t pgd_ptr;
1045 1046 1047 1048 1049
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1050
	__hyp_set_vectors(kvm_get_idmap_vector());
1051

1052 1053
	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
	pgd_ptr = kvm_mmu_get_httbr();
1054
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1055
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1056
	vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1057

1058
	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
1059
	__cpu_init_stage2();
1060 1061

	kvm_arm_init_debug();
1062 1063
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
static void cpu_hyp_reinit(void)
{
	if (is_kernel_in_hyp_mode()) {
		/*
		 * cpu_init_stage2() is safe to call even if the PM
		 * event was cancelled before the CPU was reset.
		 */
		cpu_init_stage2(NULL);
	} else {
		if (__hyp_get_vectors() == hyp_default_vectors)
			cpu_init_hyp_mode(NULL);
	}
}

1078 1079 1080 1081 1082 1083
static int hyp_init_cpu_notify(struct notifier_block *self,
			       unsigned long action, void *cpu)
{
	switch (action) {
	case CPU_STARTING:
	case CPU_STARTING_FROZEN:
1084
		cpu_hyp_reinit();
1085 1086 1087
	}

	return NOTIFY_OK;
1088 1089
}

1090 1091 1092 1093
static struct notifier_block hyp_init_cpu_nb = {
	.notifier_call = hyp_init_cpu_notify,
};

1094 1095 1096 1097 1098
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1099 1100
	if (cmd == CPU_PM_EXIT) {
		cpu_hyp_reinit();
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
#else
static inline void hyp_cpu_pm_init(void)
{
}
#endif

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
static void teardown_common_resources(void)
{
	free_percpu(kvm_host_cpu_state);
}

static int init_common_resources(void)
{
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
		kvm_err("Cannot allocate host CPU state\n");
		return -ENOMEM;
	}

	return 0;
}

static int init_subsystems(void)
{
	int err;

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	/*
	 * Register CPU Hotplug notifier
	 */
	cpu_notifier_register_begin();
	err = __register_cpu_notifier(&hyp_init_cpu_nb);
	cpu_notifier_register_done();
	if (err) {
		kvm_err("Cannot register KVM init CPU notifier (%d)\n", err);
		return err;
	}

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
		break;
	default:
		return err;
	}

	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
		return err;

	kvm_perf_init();
	kvm_coproc_table_init();

	return 0;
}

static void teardown_hyp_mode(void)
{
	int cpu;

	if (is_kernel_in_hyp_mode())
		return;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
}

static int init_vhe_mode(void)
{
	/*
	 * Execute the init code on each CPU.
	 */
	on_each_cpu(cpu_init_stage2, NULL, 1);

	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

	kvm_info("VHE mode initialized successfully\n");
	return 0;
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * It is probably enough to obtain the default on one
	 * CPU. It's unlikely to be different on the others.
	 */
	hyp_default_vectors = __hyp_get_vectors();

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1243
			goto out_err;
1244 1245 1246 1247 1248 1249 1250 1251
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1252 1253
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
				  kvm_ksym_ref(__hyp_text_end));
1254 1255
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1256
		goto out_err;
1257 1258
	}

1259 1260
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
				  kvm_ksym_ref(__end_rodata));
1261 1262
	if (err) {
		kvm_err("Cannot map rodata section\n");
1263
		goto out_err;
1264 1265
	}

1266 1267 1268 1269 1270 1271 1272 1273 1274
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1275
			goto out_err;
1276 1277 1278 1279
		}
	}

	for_each_possible_cpu(cpu) {
1280
		kvm_cpu_context_t *cpu_ctxt;
1281

1282 1283
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1284 1285

		if (err) {
1286
			kvm_err("Cannot map host CPU state: %d\n", err);
1287
			goto out_err;
1288 1289 1290
		}
	}

1291 1292 1293 1294 1295 1296 1297 1298 1299
	/*
	 * Execute the init code on each CPU.
	 */
	on_each_cpu(cpu_init_hyp_mode, NULL, 1);

#ifndef CONFIG_HOTPLUG_CPU
	free_boot_hyp_pgd();
#endif

1300 1301 1302 1303
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1304
	kvm_info("Hyp mode initialized successfully\n");
1305

1306
	return 0;
1307

1308
out_err:
1309
	teardown_hyp_mode();
1310 1311 1312 1313
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1314 1315 1316 1317 1318
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1332 1333 1334
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1335 1336
int kvm_arch_init(void *opaque)
{
1337
	int err;
1338
	int ret, cpu;
1339 1340 1341 1342 1343 1344

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1345 1346 1347 1348 1349 1350
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1351 1352
	}

1353
	err = init_common_resources();
1354
	if (err)
1355
		return err;
1356

1357 1358 1359 1360 1361
	if (is_kernel_in_hyp_mode())
		err = init_vhe_mode();
	else
		err = init_hyp_mode();
	if (err)
1362
		goto out_err;
1363

1364 1365 1366
	err = init_subsystems();
	if (err)
		goto out_hyp;
1367

1368
	return 0;
1369 1370 1371

out_hyp:
	teardown_hyp_mode();
1372
out_err:
1373
	teardown_common_resources();
1374
	return err;
1375 1376 1377 1378 1379
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1380
	kvm_perf_teardown();
1381 1382 1383 1384 1385 1386 1387 1388 1389
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);