arm.c 31.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu_pm.h>
20 21 22
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
23
#include <linux/list.h>
24 25 26 27 28
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30
#include <trace/events/kvm.h>
31
#include <kvm/arm_pmu.h>
32 33 34 35 36 37 38

#define CREATE_TRACE_POINTS
#include "trace.h"

#include <asm/uaccess.h>
#include <asm/ptrace.h>
#include <asm/mman.h>
39
#include <asm/tlbflush.h>
40
#include <asm/cacheflush.h>
41 42 43 44
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
45
#include <asm/kvm_emulate.h>
46
#include <asm/kvm_coproc.h>
47
#include <asm/kvm_psci.h>
48
#include <asm/sections.h>
49 50 51 52 53

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 57
static unsigned long hyp_default_vectors;

58 59 60
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

61 62
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 64
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
65
static DEFINE_SPINLOCK(kvm_vmid_lock);
66

67 68
static bool vgic_present;

69 70
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

71 72 73
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
74
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 76 77 78 79 80 81 82 83
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
84
	return __this_cpu_read(kvm_arm_running_vcpu);
85 86 87 88 89
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
90
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
91 92 93 94
{
	return &kvm_arm_running_vcpu;
}

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


111 112 113 114
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
115 116
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
117 118
	int ret = 0;

119 120 121
	if (type)
		return -EINVAL;

122 123 124 125
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

126
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
127 128 129
	if (ret)
		goto out_free_stage2_pgd;

130
	kvm_vgic_early_init(kvm);
131 132
	kvm_timer_init(kvm);

133 134 135
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

136
	/* The maximum number of VCPUs is limited by the host's GIC model */
137 138
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
139

140 141 142 143 144
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
	return ret;
145 146 147 148 149 150 151 152
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


153 154 155 156
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
157 158 159 160
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

161 162
	kvm_free_stage2_pgd(kvm);

163 164 165 166 167 168
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
169 170

	kvm_vgic_destroy(kvm);
171 172
}

173
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
174 175 176
{
	int r;
	switch (ext) {
177
	case KVM_CAP_IRQCHIP:
178 179
		r = vgic_present;
		break;
180
	case KVM_CAP_IOEVENTFD:
181
	case KVM_CAP_DEVICE_CTRL:
182 183 184 185
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
186
	case KVM_CAP_ARM_PSCI:
187
	case KVM_CAP_ARM_PSCI_0_2:
188
	case KVM_CAP_READONLY_MEM:
189
	case KVM_CAP_MP_STATE:
190 191 192 193 194
		r = 1;
		break;
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
195 196
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
197
		break;
198 199 200 201 202 203 204
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
	default:
205
		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

223 224 225 226 227
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

228 229 230 231 232
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

233 234 235 236 237 238 239 240 241 242
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

243
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
244 245 246
	if (err)
		goto vcpu_uninit;

247
	return vcpu;
248 249
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
250 251 252 253 254 255
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

256
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
257
{
258
	kvm_vgic_vcpu_early_init(vcpu);
259 260 261 262
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
263
	kvm_mmu_free_memory_caches(vcpu);
264
	kvm_timer_vcpu_terminate(vcpu);
265
	kvm_vgic_vcpu_destroy(vcpu);
266
	kvm_pmu_vcpu_destroy(vcpu);
267
	kvm_vcpu_uninit(vcpu);
268
	kmem_cache_free(kvm_vcpu_cache, vcpu);
269 270 271 272 273 274 275 276 277
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
278
	return kvm_timer_should_fire(vcpu);
279 280
}

281 282 283 284 285 286 287 288 289 290
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
}

291 292
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
293 294
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
295
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
296

297 298 299
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

300 301
	kvm_arm_reset_debug_ptr(vcpu);

302 303 304 305 306
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
307
	vcpu->cpu = cpu;
308
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
309

310
	kvm_arm_set_running_vcpu(vcpu);
311 312 313 314
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
315 316 317 318 319 320 321
	/*
	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
	 * if the vcpu is no longer assigned to a cpu.  This is used for the
	 * optimized make_all_cpus_request path.
	 */
	vcpu->cpu = -1;

322
	kvm_arm_set_running_vcpu(NULL);
323
	kvm_timer_vcpu_put(vcpu);
324 325 326 327 328
}

int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
329
	if (vcpu->arch.power_off)
330 331 332 333 334
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
335 336 337 338 339
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
340 341
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
342
		vcpu->arch.power_off = false;
343 344
		break;
	case KVM_MP_STATE_STOPPED:
345
		vcpu->arch.power_off = true;
346 347 348 349 350 351
		break;
	default:
		return -EINVAL;
	}

	return 0;
352 353
}

354 355 356 357 358 359 360
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
361 362
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
363
	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
364
		&& !v->arch.power_off && !v->arch.pause);
365 366
}

367 368 369 370 371 372 373
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
374
	preempt_disable();
375
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
376
	preempt_enable();
377 378 379 380
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
381
 * @kvm: The VM's VMID to check
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
446
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
447 448

	/* update vttbr to be used with the new vmid */
449
	pgd_phys = virt_to_phys(kvm->arch.pgd);
450
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
451
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
452
	kvm->arch.vttbr = pgd_phys | vmid;
453 454 455 456 457 458

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
459
	struct kvm *kvm = vcpu->kvm;
460
	int ret = 0;
461

462 463 464 465
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
466

467
	/*
468 469
	 * Map the VGIC hardware resources before running a vcpu the first
	 * time on this VM.
470
	 */
471
	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
472
		ret = kvm_vgic_map_resources(kvm);
473 474 475 476
		if (ret)
			return ret;
	}

477 478 479 480 481 482
	/*
	 * Enable the arch timers only if we have an in-kernel VGIC
	 * and it has been properly initialized, since we cannot handle
	 * interrupts from the virtual timer with a userspace gic.
	 */
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
483
		ret = kvm_timer_enable(vcpu);
484

485
	return ret;
486 487
}

488 489 490 491 492
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

493
void kvm_arm_halt_guest(struct kvm *kvm)
494 495 496 497 498 499
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
500
	kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
501 502
}

503 504 505 506 507 508 509
void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
{
	vcpu->arch.pause = true;
	kvm_vcpu_kick(vcpu);
}

void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
510 511 512 513 514 515 516 517
{
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);

	vcpu->arch.pause = false;
	swake_up(wq);
}

void kvm_arm_resume_guest(struct kvm *kvm)
518 519 520 521
{
	int i;
	struct kvm_vcpu *vcpu;

522 523
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arm_resume_vcpu(vcpu);
524 525
}

526
static void vcpu_sleep(struct kvm_vcpu *vcpu)
527
{
528
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
529

530
	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
531
				       (!vcpu->arch.pause)));
532 533
}

534 535 536 537 538
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

539 540 541 542 543 544 545 546 547 548 549
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
550 551
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
552 553 554
	int ret;
	sigset_t sigsaved;

555
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
556 557 558 559 560 561
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
562 563 564 565 566 567
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

568 569 570 571 572 573 574 575 576 577 578 579 580
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

581
		if (vcpu->arch.power_off || vcpu->arch.pause)
582
			vcpu_sleep(vcpu);
583

584 585 586 587 588
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
589
		preempt_disable();
590
		kvm_pmu_flush_hwstate(vcpu);
591
		kvm_timer_flush_hwstate(vcpu);
592 593
		kvm_vgic_flush_hwstate(vcpu);

594 595 596 597 598 599 600 601 602 603
		local_irq_disable();

		/*
		 * Re-check atomic conditions
		 */
		if (signal_pending(current)) {
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

604
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
605
			vcpu->arch.power_off || vcpu->arch.pause) {
606
			local_irq_enable();
607
			kvm_pmu_sync_hwstate(vcpu);
608
			kvm_timer_sync_hwstate(vcpu);
609
			kvm_vgic_sync_hwstate(vcpu);
610
			preempt_enable();
611 612 613
			continue;
		}

614 615
		kvm_arm_setup_debug(vcpu);

616 617 618 619
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
620
		guest_enter_irqoff();
621 622 623 624 625
		vcpu->mode = IN_GUEST_MODE;

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
626
		vcpu->stat.exits++;
627 628 629 630
		/*
		 * Back from guest
		 *************************************************************/

631 632
		kvm_arm_clear_debug(vcpu);

633 634 635 636 637 638 639 640 641 642 643 644 645
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
646
		 * We do local_irq_enable() before calling guest_exit() so
647 648
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
649
		 * preemption after calling guest_exit() so that if we get
650 651 652
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
653
		guest_exit();
654
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
655

656
		/*
657 658
		 * We must sync the PMU and timer state before the vgic state so
		 * that the vgic can properly sample the updated state of the
659 660
		 * interrupt line.
		 */
661
		kvm_pmu_sync_hwstate(vcpu);
662 663
		kvm_timer_sync_hwstate(vcpu);

664
		kvm_vgic_sync_hwstate(vcpu);
665 666 667

		preempt_enable();

668 669 670 671 672 673
		ret = handle_exit(vcpu, run, ret);
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
674 675
}

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
	kvm_vcpu_kick(vcpu);

	return 0;
}

709 710
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
711 712 713 714 715 716 717 718 719 720 721 722 723
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

724 725 726 727
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
728

729 730
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
731

732 733 734
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
735

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
753

754 755 756 757 758
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

759
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
760 761 762 763 764 765
			return -EINVAL;

		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
	}

	return -EINVAL;
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


810 811 812 813 814 815 816 817 818
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

819 820 821 822 823 824 825
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

826 827
	vcpu_reset_hcr(vcpu);

828
	/*
829
	 * Handle the "start in power-off" case.
830
	 */
831
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
832
		vcpu->arch.power_off = true;
833
	else
834
		vcpu->arch.power_off = false;
835 836 837 838

	return 0;
}

839 840 841 842 843 844 845
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
846
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
847 848 849 850 851 852 853 854 855 856 857 858 859
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
860
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
861 862 863 864 865 866 867 868 869 870 871 872 873
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
874
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
875 876 877 878 879 880
		break;
	}

	return ret;
}

881 882 883 884 885
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
886
	struct kvm_device_attr attr;
887 888 889 890 891 892 893 894

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

895
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
896 897 898 899
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
900 901 902 903

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

904 905 906 907 908 909 910 911 912 913 914 915
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

916 917 918
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

919 920 921 922 923 924 925 926 927 928
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	case KVM_SET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_set_attr(vcpu, &attr);
	}
	case KVM_GET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_get_attr(vcpu, &attr);
	}
	case KVM_HAS_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_has_attr(vcpu, &attr);
	}
944 945 946 947 948
	default:
		return -EINVAL;
	}
}

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
968 969
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
970 971 972 973 974 975 976 977 978 979 980 981
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
982 983
}

984 985 986
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
987 988 989 990 991 992 993 994 995
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
996 997
		if (!vgic_present)
			return -ENXIO;
998
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
999 1000 1001
	default:
		return -ENODEV;
	}
1002 1003
}

1004 1005 1006
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1007 1008 1009 1010
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1011
	case KVM_CREATE_IRQCHIP: {
1012
		int ret;
1013 1014
		if (!vgic_present)
			return -ENXIO;
1015 1016 1017 1018
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1019
	}
1020 1021 1022 1023 1024 1025 1026
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1040 1041 1042
	default:
		return -EINVAL;
	}
1043 1044
}

1045
static void cpu_init_hyp_mode(void *dummy)
1046
{
1047
	phys_addr_t pgd_ptr;
1048 1049 1050 1051 1052
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1053
	__hyp_set_vectors(kvm_get_idmap_vector());
1054

1055
	pgd_ptr = kvm_mmu_get_httbr();
1056
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1057
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1058
	vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1059

M
Marc Zyngier 已提交
1060
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1061
	__cpu_init_stage2();
1062 1063

	kvm_arm_init_debug();
1064 1065
}

1066 1067 1068 1069
static void cpu_hyp_reinit(void)
{
	if (is_kernel_in_hyp_mode()) {
		/*
1070
		 * __cpu_init_stage2() is safe to call even if the PM
1071 1072
		 * event was cancelled before the CPU was reset.
		 */
1073
		__cpu_init_stage2();
1074 1075 1076 1077 1078 1079
	} else {
		if (__hyp_get_vectors() == hyp_default_vectors)
			cpu_init_hyp_mode(NULL);
	}
}

1080
static void cpu_hyp_reset(void)
1081
{
M
Marc Zyngier 已提交
1082
	if (!is_kernel_in_hyp_mode())
M
Marc Zyngier 已提交
1083 1084
		__cpu_reset_hyp_mode(hyp_default_vectors,
				     kvm_get_idmap_start());
1085 1086 1087 1088 1089
}

static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1090
		cpu_hyp_reinit();
1091
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1092
	}
1093
}
1094

1095 1096 1097 1098
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1099 1100
}

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1113

1114 1115 1116 1117 1118
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1134
		return NOTIFY_OK;
1135 1136 1137 1138
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1139

1140 1141 1142 1143 1144
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1155 1156 1157 1158
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1159 1160 1161 1162
#else
static inline void hyp_cpu_pm_init(void)
{
}
1163 1164 1165
static inline void hyp_cpu_pm_exit(void)
{
}
1166 1167
#endif

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
static void teardown_common_resources(void)
{
	free_percpu(kvm_host_cpu_state);
}

static int init_common_resources(void)
{
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
		kvm_err("Cannot allocate host CPU state\n");
		return -ENOMEM;
	}

	return 0;
}

static int init_subsystems(void)
{
1186
	int err = 0;
1187

1188
	/*
1189
	 * Enable hardware so that subsystem initialisation can access EL2.
1190
	 */
1191
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1192 1193 1194 1195 1196 1197

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1209
		err = 0;
1210 1211
		break;
	default:
1212
		goto out;
1213 1214 1215 1216 1217 1218 1219
	}

	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
1220
		goto out;
1221 1222 1223 1224

	kvm_perf_init();
	kvm_coproc_table_init();

1225 1226 1227 1228
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
}

static void teardown_hyp_mode(void)
{
	int cpu;

	if (is_kernel_in_hyp_mode())
		return;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1241
	hyp_cpu_pm_exit();
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
}

static int init_vhe_mode(void)
{
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

	kvm_info("VHE mode initialized successfully\n");
	return 0;
}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * It is probably enough to obtain the default on one
	 * CPU. It's unlikely to be different on the others.
	 */
	hyp_default_vectors = __hyp_get_vectors();

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1284
			goto out_err;
1285 1286 1287 1288 1289 1290 1291 1292
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1293
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1294
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1295 1296
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1297
		goto out_err;
1298 1299
	}

1300
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1301
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1302 1303
	if (err) {
		kvm_err("Cannot map rodata section\n");
1304
		goto out_err;
1305 1306
	}

1307 1308 1309 1310 1311
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1312 1313
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1314 1315 1316

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1317
			goto out_err;
1318 1319 1320 1321
		}
	}

	for_each_possible_cpu(cpu) {
1322
		kvm_cpu_context_t *cpu_ctxt;
1323

1324
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1325
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1326 1327

		if (err) {
1328
			kvm_err("Cannot map host CPU state: %d\n", err);
1329
			goto out_err;
1330 1331 1332
		}
	}

1333 1334 1335 1336
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1337
	kvm_info("Hyp mode initialized successfully\n");
1338

1339
	return 0;
1340

1341
out_err:
1342
	teardown_hyp_mode();
1343 1344 1345 1346
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1347 1348 1349 1350 1351
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1365 1366 1367
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1368 1369
int kvm_arch_init(void *opaque)
{
1370
	int err;
1371
	int ret, cpu;
1372 1373 1374 1375 1376 1377

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1378 1379 1380 1381 1382 1383
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1384 1385
	}

1386
	err = init_common_resources();
1387
	if (err)
1388
		return err;
1389

1390 1391 1392 1393 1394
	if (is_kernel_in_hyp_mode())
		err = init_vhe_mode();
	else
		err = init_hyp_mode();
	if (err)
1395
		goto out_err;
1396

1397 1398 1399
	err = init_subsystems();
	if (err)
		goto out_hyp;
1400

1401
	return 0;
1402 1403 1404

out_hyp:
	teardown_hyp_mode();
1405
out_err:
1406
	teardown_common_resources();
1407
	return err;
1408 1409 1410 1411 1412
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1413
	kvm_perf_teardown();
1414 1415 1416 1417 1418 1419 1420 1421 1422
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);