arm.c 28.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu.h>
20
#include <linux/cpu_pm.h>
21 22 23 24 25 26 27 28
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30
#include <trace/events/kvm.h>
31
#include <kvm/arm_pmu.h>
32 33 34 35 36 37 38

#define CREATE_TRACE_POINTS
#include "trace.h"

#include <asm/uaccess.h>
#include <asm/ptrace.h>
#include <asm/mman.h>
39
#include <asm/tlbflush.h>
40
#include <asm/cacheflush.h>
41 42 43 44
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
45
#include <asm/kvm_emulate.h>
46
#include <asm/kvm_coproc.h>
47
#include <asm/kvm_psci.h>
48
#include <asm/sections.h>
49 50 51 52 53

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 57
static unsigned long hyp_default_vectors;

58 59 60
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

61 62
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 64
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
65
static DEFINE_SPINLOCK(kvm_vmid_lock);
66

67 68
static bool vgic_present;

69 70 71
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
72
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
73 74 75 76 77 78 79 80 81
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
82
	return __this_cpu_read(kvm_arm_running_vcpu);
83 84 85 86 87
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
88
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
89 90 91 92
{
	return &kvm_arm_running_vcpu;
}

93
int kvm_arch_hardware_enable(void)
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
{
	return 0;
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


114 115 116 117
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
118 119
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
120 121
	int ret = 0;

122 123 124
	if (type)
		return -EINVAL;

125 126 127 128 129 130 131 132
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

	ret = create_hyp_mappings(kvm, kvm + 1);
	if (ret)
		goto out_free_stage2_pgd;

133
	kvm_vgic_early_init(kvm);
134 135
	kvm_timer_init(kvm);

136 137 138
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

139
	/* The maximum number of VCPUs is limited by the host's GIC model */
140 141
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
142

143 144 145 146 147
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
	return ret;
148 149 150 151 152 153 154 155
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


156 157 158 159
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
160 161 162 163
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

164 165
	kvm_free_stage2_pgd(kvm);

166 167 168 169 170 171
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
172 173

	kvm_vgic_destroy(kvm);
174 175
}

176
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
177 178 179
{
	int r;
	switch (ext) {
180
	case KVM_CAP_IRQCHIP:
181 182
		r = vgic_present;
		break;
183
	case KVM_CAP_IOEVENTFD:
184
	case KVM_CAP_DEVICE_CTRL:
185 186 187 188
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
189
	case KVM_CAP_ARM_PSCI:
190
	case KVM_CAP_ARM_PSCI_0_2:
191
	case KVM_CAP_READONLY_MEM:
192
	case KVM_CAP_MP_STATE:
193 194 195 196 197
		r = 1;
		break;
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
198 199
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
200
		break;
201 202 203 204 205 206 207
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
	default:
208
		r = kvm_arch_dev_ioctl_check_extension(ext);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

226 227 228 229 230
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

231 232 233 234 235
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

236 237 238 239 240 241 242 243 244 245
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

246 247 248 249
	err = create_hyp_mappings(vcpu, vcpu + 1);
	if (err)
		goto vcpu_uninit;

250
	return vcpu;
251 252
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
253 254 255 256 257 258
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

259
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
260
{
261
	kvm_vgic_vcpu_early_init(vcpu);
262 263 264 265
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
266
	kvm_mmu_free_memory_caches(vcpu);
267
	kvm_timer_vcpu_terminate(vcpu);
268
	kvm_vgic_vcpu_destroy(vcpu);
269
	kmem_cache_free(kvm_vcpu_cache, vcpu);
270 271 272 273 274 275 276 277 278
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
279
	return kvm_timer_should_fire(vcpu);
280 281
}

282 283 284 285 286 287 288 289 290 291
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
}

292 293
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
294 295
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
296
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
297

298 299 300
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

301 302
	kvm_arm_reset_debug_ptr(vcpu);

303 304 305 306 307
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
308
	vcpu->cpu = cpu;
309
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
310

311
	kvm_arm_set_running_vcpu(vcpu);
312 313 314 315
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
316 317 318 319 320 321 322
	/*
	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
	 * if the vcpu is no longer assigned to a cpu.  This is used for the
	 * optimized make_all_cpus_request path.
	 */
	vcpu->cpu = -1;

323
	kvm_arm_set_running_vcpu(NULL);
324 325 326 327 328
}

int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
329
	if (vcpu->arch.power_off)
330 331 332 333 334
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
335 336 337 338 339
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
340 341
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
342
		vcpu->arch.power_off = false;
343 344
		break;
	case KVM_MP_STATE_STOPPED:
345
		vcpu->arch.power_off = true;
346 347 348 349 350 351
		break;
	default:
		return -EINVAL;
	}

	return 0;
352 353
}

354 355 356 357 358 359 360
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
361 362
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
363
	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
364
		&& !v->arch.power_off && !v->arch.pause);
365 366
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
 * @kvm: The VM's VMID to checkt
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
444
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
445 446

	/* update vttbr to be used with the new vmid */
447
	pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
448
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
449
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
450
	kvm->arch.vttbr = pgd_phys | vmid;
451 452 453 454 455 456

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
457
	struct kvm *kvm = vcpu->kvm;
458 459
	int ret;

460 461 462 463
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
464

465
	/*
466 467
	 * Map the VGIC hardware resources before running a vcpu the first
	 * time on this VM.
468
	 */
469
	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
470
		ret = kvm_vgic_map_resources(kvm);
471 472 473 474
		if (ret)
			return ret;
	}

475 476 477 478 479 480 481 482
	/*
	 * Enable the arch timers only if we have an in-kernel VGIC
	 * and it has been properly initialized, since we cannot handle
	 * interrupts from the virtual timer with a userspace gic.
	 */
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		kvm_timer_enable(kvm);

483 484 485
	return 0;
}

486 487 488 489 490
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;

static void kvm_arm_halt_guest(struct kvm *kvm)
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
	force_vm_exit(cpu_all_mask);
}

static void kvm_arm_resume_guest(struct kvm *kvm)
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);

		vcpu->arch.pause = false;
		wake_up_interruptible(wq);
	}
}

517
static void vcpu_sleep(struct kvm_vcpu *vcpu)
518 519 520
{
	wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);

521 522
	wait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
				       (!vcpu->arch.pause)));
523 524
}

525 526 527 528 529
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

530 531 532 533 534 535 536 537 538 539 540
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
541 542
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
543 544 545
	int ret;
	sigset_t sigsaved;

546
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
547 548 549 550 551 552
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
553 554 555 556 557 558
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

559 560 561 562 563 564 565 566 567 568 569 570 571
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

572
		if (vcpu->arch.power_off || vcpu->arch.pause)
573
			vcpu_sleep(vcpu);
574

575 576 577 578 579
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
580
		preempt_disable();
581
		kvm_pmu_flush_hwstate(vcpu);
582
		kvm_timer_flush_hwstate(vcpu);
583 584
		kvm_vgic_flush_hwstate(vcpu);

585 586 587 588 589 590 591 592 593 594
		local_irq_disable();

		/*
		 * Re-check atomic conditions
		 */
		if (signal_pending(current)) {
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

595
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
596
			vcpu->arch.power_off || vcpu->arch.pause) {
597
			local_irq_enable();
598
			kvm_pmu_sync_hwstate(vcpu);
599
			kvm_timer_sync_hwstate(vcpu);
600
			kvm_vgic_sync_hwstate(vcpu);
601
			preempt_enable();
602 603 604
			continue;
		}

605 606
		kvm_arm_setup_debug(vcpu);

607 608 609 610
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
611
		__kvm_guest_enter();
612 613 614 615 616
		vcpu->mode = IN_GUEST_MODE;

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
617
		vcpu->stat.exits++;
618 619 620 621
		/*
		 * Back from guest
		 *************************************************************/

622 623
		kvm_arm_clear_debug(vcpu);

624 625 626 627 628 629 630 631 632 633 634 635 636
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
637 638 639 640 641 642 643 644
		 * We do local_irq_enable() before calling kvm_guest_exit() so
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
		 * preemption after calling kvm_guest_exit() so that if we get
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
		kvm_guest_exit();
645
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
646

647
		/*
648 649
		 * We must sync the PMU and timer state before the vgic state so
		 * that the vgic can properly sample the updated state of the
650 651
		 * interrupt line.
		 */
652
		kvm_pmu_sync_hwstate(vcpu);
653 654
		kvm_timer_sync_hwstate(vcpu);

655
		kvm_vgic_sync_hwstate(vcpu);
656 657 658

		preempt_enable();

659 660 661 662 663 664
		ret = handle_exit(vcpu, run, ret);
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
665 666
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
	kvm_vcpu_kick(vcpu);

	return 0;
}

700 701
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
702 703 704 705 706 707 708 709 710 711 712 713 714
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

715 716 717 718
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
719

720 721
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
722

723 724 725
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
744

745 746 747 748 749
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

750
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
751 752 753 754 755 756
			return -EINVAL;

		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
	}

	return -EINVAL;
757 758
}

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


801 802 803 804 805 806 807 808 809
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

810 811 812 813 814 815 816
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

817 818
	vcpu_reset_hcr(vcpu);

819
	/*
820
	 * Handle the "start in power-off" case.
821
	 */
822
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
823
		vcpu->arch.power_off = true;
824
	else
825
		vcpu->arch.power_off = false;
826 827 828 829

	return 0;
}

830 831 832 833 834 835 836 837 838 839 840 841 842
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

843
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
844 845 846 847
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
848 849 850 851

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

852 853 854 855 856 857 858 859 860 861 862 863
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

864 865 866
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
	default:
		return -EINVAL;
	}
}

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
901 902
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
903 904 905 906 907 908 909 910 911 912 913 914
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
915 916
}

917 918 919
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
920 921 922 923 924 925 926 927 928
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
929 930
		if (!vgic_present)
			return -ENXIO;
931
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
932 933 934
	default:
		return -ENODEV;
	}
935 936
}

937 938 939
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
940 941 942 943
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
944
	case KVM_CREATE_IRQCHIP: {
945 946
		if (!vgic_present)
			return -ENXIO;
947
		return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
948
	}
949 950 951 952 953 954 955
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
956 957 958 959 960 961 962 963 964 965 966 967 968
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
969 970 971
	default:
		return -EINVAL;
	}
972 973
}

974 975 976 977 978
static void cpu_init_stage2(void *dummy)
{
	__cpu_init_stage2();
}

979
static void cpu_init_hyp_mode(void *dummy)
980
{
981 982
	phys_addr_t boot_pgd_ptr;
	phys_addr_t pgd_ptr;
983 984 985 986 987
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
988
	__hyp_set_vectors(kvm_get_idmap_vector());
989

990 991
	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
	pgd_ptr = kvm_mmu_get_httbr();
992
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
993 994 995
	hyp_stack_ptr = stack_page + PAGE_SIZE;
	vector_ptr = (unsigned long)__kvm_hyp_vector;

996
	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
997
	__cpu_init_stage2();
998 999

	kvm_arm_init_debug();
1000 1001
}

1002 1003 1004 1005 1006 1007
static int hyp_init_cpu_notify(struct notifier_block *self,
			       unsigned long action, void *cpu)
{
	switch (action) {
	case CPU_STARTING:
	case CPU_STARTING_FROZEN:
V
Vladimir Murzin 已提交
1008 1009
		if (__hyp_get_vectors() == hyp_default_vectors)
			cpu_init_hyp_mode(NULL);
1010 1011 1012 1013
		break;
	}

	return NOTIFY_OK;
1014 1015
}

1016 1017 1018 1019
static struct notifier_block hyp_init_cpu_nb = {
	.notifier_call = hyp_init_cpu_notify,
};

1020 1021 1022 1023 1024
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1025 1026
	if (cmd == CPU_PM_EXIT &&
	    __hyp_get_vectors() == hyp_default_vectors) {
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		cpu_init_hyp_mode(NULL);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
#else
static inline void hyp_cpu_pm_init(void)
{
}
#endif

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
static void teardown_common_resources(void)
{
	free_percpu(kvm_host_cpu_state);
}

static int init_common_resources(void)
{
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
		kvm_err("Cannot allocate host CPU state\n");
		return -ENOMEM;
	}

	return 0;
}

static int init_subsystems(void)
{
	int err;

	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
		break;
	default:
		return err;
	}

	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
		return err;

	kvm_perf_init();
	kvm_coproc_table_init();

	return 0;
}

static void teardown_hyp_mode(void)
{
	int cpu;

	if (is_kernel_in_hyp_mode())
		return;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
}

static int init_vhe_mode(void)
{
	/*
	 * Execute the init code on each CPU.
	 */
	on_each_cpu(cpu_init_stage2, NULL, 1);

	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

	kvm_info("VHE mode initialized successfully\n");
	return 0;
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * It is probably enough to obtain the default on one
	 * CPU. It's unlikely to be different on the others.
	 */
	hyp_default_vectors = __hyp_get_vectors();

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1154
			goto out_err;
1155 1156 1157 1158 1159 1160 1161 1162
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1163
	err = create_hyp_mappings(__hyp_text_start, __hyp_text_end);
1164 1165
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1166
		goto out_err;
1167 1168
	}

1169 1170 1171
	err = create_hyp_mappings(__start_rodata, __end_rodata);
	if (err) {
		kvm_err("Cannot map rodata section\n");
1172
		goto out_err;
1173 1174
	}

1175 1176 1177 1178 1179 1180 1181 1182 1183
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1184
			goto out_err;
1185 1186 1187 1188
		}
	}

	for_each_possible_cpu(cpu) {
1189
		kvm_cpu_context_t *cpu_ctxt;
1190

1191 1192
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1193 1194

		if (err) {
1195
			kvm_err("Cannot map host CPU state: %d\n", err);
1196
			goto out_err;
1197 1198 1199
		}
	}

1200 1201 1202 1203 1204 1205 1206 1207 1208
	/*
	 * Execute the init code on each CPU.
	 */
	on_each_cpu(cpu_init_hyp_mode, NULL, 1);

#ifndef CONFIG_HOTPLUG_CPU
	free_boot_hyp_pgd();
#endif

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	cpu_notifier_register_begin();

	err = __register_cpu_notifier(&hyp_init_cpu_nb);

	cpu_notifier_register_done();

	if (err) {
		kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
		goto out_err;
	}

	hyp_cpu_pm_init();
1221

1222 1223 1224 1225
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1226
	kvm_info("Hyp mode initialized successfully\n");
1227

1228
	return 0;
1229

1230
out_err:
1231
	teardown_hyp_mode();
1232 1233 1234 1235
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1236 1237 1238 1239 1240
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1254 1255 1256
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1257 1258
int kvm_arch_init(void *opaque)
{
1259
	int err;
1260
	int ret, cpu;
1261 1262 1263 1264 1265 1266

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1267 1268 1269 1270 1271 1272
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1273 1274
	}

1275
	err = init_common_resources();
1276
	if (err)
1277
		return err;
1278

1279 1280 1281 1282 1283
	if (is_kernel_in_hyp_mode())
		err = init_vhe_mode();
	else
		err = init_hyp_mode();
	if (err)
1284
		goto out_err;
1285

1286 1287 1288
	err = init_subsystems();
	if (err)
		goto out_hyp;
1289

1290
	return 0;
1291 1292 1293

out_hyp:
	teardown_hyp_mode();
1294
out_err:
1295
	teardown_common_resources();
1296
	return err;
1297 1298 1299 1300 1301
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1302
	kvm_perf_teardown();
1303 1304 1305 1306 1307 1308 1309 1310 1311
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);