arm.c 32.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu_pm.h>
20 21 22
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
23
#include <linux/list.h>
24 25 26 27 28
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30
#include <trace/events/kvm.h>
31
#include <kvm/arm_pmu.h>
32 33 34 35

#define CREATE_TRACE_POINTS
#include "trace.h"

36
#include <linux/uaccess.h>
37 38
#include <asm/ptrace.h>
#include <asm/mman.h>
39
#include <asm/tlbflush.h>
40
#include <asm/cacheflush.h>
41 42 43 44
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
45
#include <asm/kvm_emulate.h>
46
#include <asm/kvm_coproc.h>
47
#include <asm/kvm_psci.h>
48
#include <asm/sections.h>
49 50 51 52 53

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 57
static unsigned long hyp_default_vectors;

58 59 60
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

61 62
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 64
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
65
static DEFINE_SPINLOCK(kvm_vmid_lock);
66

67 68
static bool vgic_present;

69 70
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

71 72 73
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
74
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 76 77 78 79 80 81 82 83
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
84
	return __this_cpu_read(kvm_arm_running_vcpu);
85 86 87 88 89
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
90
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
91 92 93 94
{
	return &kvm_arm_running_vcpu;
}

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


111 112 113 114
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
115 116
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
117
	int ret, cpu;
118

119 120 121
	if (type)
		return -EINVAL;

122 123 124 125 126 127 128
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

129 130 131 132
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

133
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
134 135 136
	if (ret)
		goto out_free_stage2_pgd;

137
	kvm_vgic_early_init(kvm);
138

139 140 141
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

142
	/* The maximum number of VCPUs is limited by the host's GIC model */
143 144
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
145

146 147 148 149
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
150 151
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
152
	return ret;
153 154
}

155 156 157 158 159 160 161 162 163 164
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

165 166 167 168 169 170
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


171 172 173 174
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
175 176 177 178
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

179 180 181
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

182 183 184 185 186 187
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
188 189

	kvm_vgic_destroy(kvm);
190 191
}

192
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
193 194 195
{
	int r;
	switch (ext) {
196
	case KVM_CAP_IRQCHIP:
197 198
		r = vgic_present;
		break;
199
	case KVM_CAP_IOEVENTFD:
200
	case KVM_CAP_DEVICE_CTRL:
201 202 203 204
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
205
	case KVM_CAP_ARM_PSCI:
206
	case KVM_CAP_ARM_PSCI_0_2:
207
	case KVM_CAP_READONLY_MEM:
208
	case KVM_CAP_MP_STATE:
209
	case KVM_CAP_IMMEDIATE_EXIT:
210 211 212 213 214
		r = 1;
		break;
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
215 216
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
217
		break;
218 219 220 221 222 223
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
224 225 226
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
227 228 229 230 231 232
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
233
	default:
234
		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

252 253 254 255 256
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

257 258 259 260 261
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

262 263 264 265 266 267 268 269 270 271
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

272
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
273 274 275
	if (err)
		goto vcpu_uninit;

276
	return vcpu;
277 278
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
279 280 281 282 283 284
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

285
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
286
{
287
	kvm_vgic_vcpu_early_init(vcpu);
288 289 290 291
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
292
	kvm_mmu_free_memory_caches(vcpu);
293
	kvm_timer_vcpu_terminate(vcpu);
294
	kvm_vgic_vcpu_destroy(vcpu);
295
	kvm_pmu_vcpu_destroy(vcpu);
296
	kvm_vcpu_uninit(vcpu);
297
	kmem_cache_free(kvm_vcpu_cache, vcpu);
298 299 300 301 302 303 304 305 306
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
307 308
	return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
	       kvm_timer_should_fire(vcpu_ptimer(vcpu));
309 310
}

311 312 313 314 315 316 317 318 319 320
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
}

321 322
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
323 324
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
325
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
326

327 328 329
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

330 331
	kvm_arm_reset_debug_ptr(vcpu);

332 333 334 335 336
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
337 338 339 340 341 342 343 344 345 346 347 348 349
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

350
	vcpu->cpu = cpu;
351
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
352

353
	kvm_arm_set_running_vcpu(vcpu);
354 355 356 357
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
358 359 360 361 362 363 364
	/*
	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
	 * if the vcpu is no longer assigned to a cpu.  This is used for the
	 * optimized make_all_cpus_request path.
	 */
	vcpu->cpu = -1;

365
	kvm_arm_set_running_vcpu(NULL);
366
	kvm_timer_vcpu_put(vcpu);
367 368 369 370 371
}

int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
372
	if (vcpu->arch.power_off)
373 374 375 376 377
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
378 379 380 381 382
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
383 384
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
385
		vcpu->arch.power_off = false;
386 387
		break;
	case KVM_MP_STATE_STOPPED:
388
		vcpu->arch.power_off = true;
389 390 391 392 393 394
		break;
	default:
		return -EINVAL;
	}

	return 0;
395 396
}

397 398 399 400 401 402 403
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
404 405
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
406
	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
407
		&& !v->arch.power_off && !v->arch.pause);
408 409
}

410 411 412 413 414 415 416
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
417
	preempt_disable();
418
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
419
	preempt_enable();
420 421 422 423
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
424
 * @kvm: The VM's VMID to check
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
489
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
490 491

	/* update vttbr to be used with the new vmid */
492
	pgd_phys = virt_to_phys(kvm->arch.pgd);
493
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
494
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
495
	kvm->arch.vttbr = pgd_phys | vmid;
496 497 498 499 500 501

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
502
	struct kvm *kvm = vcpu->kvm;
503
	int ret = 0;
504

505 506 507 508
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
509

510
	/*
511 512
	 * Map the VGIC hardware resources before running a vcpu the first
	 * time on this VM.
513
	 */
514
	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
515
		ret = kvm_vgic_map_resources(kvm);
516 517 518 519
		if (ret)
			return ret;
	}

520 521 522 523 524 525
	/*
	 * Enable the arch timers only if we have an in-kernel VGIC
	 * and it has been properly initialized, since we cannot handle
	 * interrupts from the virtual timer with a userspace gic.
	 */
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
526
		ret = kvm_timer_enable(vcpu);
527

528
	return ret;
529 530
}

531 532 533 534 535
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

536
void kvm_arm_halt_guest(struct kvm *kvm)
537 538 539 540 541 542
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
543
	kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
544 545
}

546 547 548 549 550 551 552
void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
{
	vcpu->arch.pause = true;
	kvm_vcpu_kick(vcpu);
}

void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
553 554 555 556 557 558 559 560
{
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);

	vcpu->arch.pause = false;
	swake_up(wq);
}

void kvm_arm_resume_guest(struct kvm *kvm)
561 562 563 564
{
	int i;
	struct kvm_vcpu *vcpu;

565 566
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arm_resume_vcpu(vcpu);
567 568
}

569
static void vcpu_sleep(struct kvm_vcpu *vcpu)
570
{
571
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
572

573
	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
574
				       (!vcpu->arch.pause)));
575 576
}

577 578 579 580 581
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

582 583 584 585 586 587 588 589 590 591 592
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
593 594
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
595 596 597
	int ret;
	sigset_t sigsaved;

598
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
599 600 601 602 603 604
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
605 606 607 608 609 610
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

611 612 613
	if (run->immediate_exit)
		return -EINTR;

614 615 616 617 618 619 620 621 622 623 624 625 626
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

627
		if (vcpu->arch.power_off || vcpu->arch.pause)
628
			vcpu_sleep(vcpu);
629

630 631 632 633 634
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
635
		preempt_disable();
636
		kvm_pmu_flush_hwstate(vcpu);
637
		kvm_timer_flush_hwstate(vcpu);
638 639
		kvm_vgic_flush_hwstate(vcpu);

640 641 642 643 644 645 646 647 648 649
		local_irq_disable();

		/*
		 * Re-check atomic conditions
		 */
		if (signal_pending(current)) {
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

650
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
651
			vcpu->arch.power_off || vcpu->arch.pause) {
652
			local_irq_enable();
653
			kvm_pmu_sync_hwstate(vcpu);
654
			kvm_timer_sync_hwstate(vcpu);
655
			kvm_vgic_sync_hwstate(vcpu);
656
			preempt_enable();
657 658 659
			continue;
		}

660 661
		kvm_arm_setup_debug(vcpu);

662 663 664 665
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
666
		guest_enter_irqoff();
667 668 669 670 671
		vcpu->mode = IN_GUEST_MODE;

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
672
		vcpu->stat.exits++;
673 674 675 676
		/*
		 * Back from guest
		 *************************************************************/

677 678
		kvm_arm_clear_debug(vcpu);

679 680 681 682 683 684 685 686 687 688 689 690 691
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
692
		 * We do local_irq_enable() before calling guest_exit() so
693 694
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
695
		 * preemption after calling guest_exit() so that if we get
696 697 698
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
699
		guest_exit();
700
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
701

702
		/*
703 704
		 * We must sync the PMU and timer state before the vgic state so
		 * that the vgic can properly sample the updated state of the
705 706
		 * interrupt line.
		 */
707
		kvm_pmu_sync_hwstate(vcpu);
708 709
		kvm_timer_sync_hwstate(vcpu);

710
		kvm_vgic_sync_hwstate(vcpu);
711 712 713

		preempt_enable();

714 715 716 717 718 719
		ret = handle_exit(vcpu, run, ret);
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
720 721
}

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
	kvm_vcpu_kick(vcpu);

	return 0;
}

755 756
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
757 758 759 760 761 762 763 764 765 766 767 768 769
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

770 771 772 773
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
774

775 776
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
777

778 779 780
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
781

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
799

800 801 802 803 804
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

805
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
806 807 808 809 810 811
			return -EINVAL;

		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
	}

	return -EINVAL;
812 813
}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


856 857 858 859 860 861 862 863 864
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

865 866 867 868 869 870 871
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

872 873
	vcpu_reset_hcr(vcpu);

874
	/*
875
	 * Handle the "start in power-off" case.
876
	 */
877
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
878
		vcpu->arch.power_off = true;
879
	else
880
		vcpu->arch.power_off = false;
881 882 883 884

	return 0;
}

885 886 887 888 889 890 891
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
892
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
893 894 895 896 897 898 899 900 901 902 903 904 905
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
906
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
907 908 909 910 911 912 913 914 915 916 917 918 919
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
920
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
921 922 923 924 925 926
		break;
	}

	return ret;
}

927 928 929 930 931
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
932
	struct kvm_device_attr attr;
933 934 935 936 937 938 939 940

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

941
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
942 943 944 945
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
946 947 948 949

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

950 951 952 953 954 955 956 957 958 959 960 961
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

962 963 964
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

965 966 967 968 969 970 971 972 973 974
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	case KVM_SET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_set_attr(vcpu, &attr);
	}
	case KVM_GET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_get_attr(vcpu, &attr);
	}
	case KVM_HAS_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_has_attr(vcpu, &attr);
	}
990 991 992 993 994
	default:
		return -EINVAL;
	}
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1014 1015
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1028 1029
}

1030 1031 1032
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1033 1034 1035 1036 1037 1038 1039 1040 1041
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1042 1043
		if (!vgic_present)
			return -ENXIO;
1044
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1045 1046 1047
	default:
		return -ENODEV;
	}
1048 1049
}

1050 1051 1052
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1053 1054 1055 1056
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1057
	case KVM_CREATE_IRQCHIP: {
1058
		int ret;
1059 1060
		if (!vgic_present)
			return -ENXIO;
1061 1062 1063 1064
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1065
	}
1066 1067 1068 1069 1070 1071 1072
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1086 1087 1088
	default:
		return -EINVAL;
	}
1089 1090
}

1091
static void cpu_init_hyp_mode(void *dummy)
1092
{
1093
	phys_addr_t pgd_ptr;
1094 1095 1096 1097 1098
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1099
	__hyp_set_vectors(kvm_get_idmap_vector());
1100

1101
	pgd_ptr = kvm_mmu_get_httbr();
1102
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1103
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1104
	vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1105

M
Marc Zyngier 已提交
1106
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1107
	__cpu_init_stage2();
1108

1109 1110 1111
	if (is_kernel_in_hyp_mode())
		kvm_timer_init_vhe();

1112
	kvm_arm_init_debug();
1113 1114
}

1115 1116 1117 1118
static void cpu_hyp_reinit(void)
{
	if (is_kernel_in_hyp_mode()) {
		/*
1119
		 * __cpu_init_stage2() is safe to call even if the PM
1120 1121
		 * event was cancelled before the CPU was reset.
		 */
1122
		__cpu_init_stage2();
1123 1124 1125 1126 1127 1128
	} else {
		if (__hyp_get_vectors() == hyp_default_vectors)
			cpu_init_hyp_mode(NULL);
	}
}

1129
static void cpu_hyp_reset(void)
1130
{
M
Marc Zyngier 已提交
1131
	if (!is_kernel_in_hyp_mode())
M
Marc Zyngier 已提交
1132 1133
		__cpu_reset_hyp_mode(hyp_default_vectors,
				     kvm_get_idmap_start());
1134 1135 1136 1137 1138
}

static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1139
		cpu_hyp_reinit();
1140
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1141
	}
1142
}
1143

1144 1145 1146 1147
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1162

1163 1164 1165 1166 1167
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1183
		return NOTIFY_OK;
1184 1185 1186 1187
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1188

1189 1190 1191 1192 1193
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1204 1205 1206 1207
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1208 1209 1210 1211
#else
static inline void hyp_cpu_pm_init(void)
{
}
1212 1213 1214
static inline void hyp_cpu_pm_exit(void)
{
}
1215 1216
#endif

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
static void teardown_common_resources(void)
{
	free_percpu(kvm_host_cpu_state);
}

static int init_common_resources(void)
{
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
		kvm_err("Cannot allocate host CPU state\n");
		return -ENOMEM;
	}

1230 1231 1232 1233
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1234 1235 1236 1237 1238
	return 0;
}

static int init_subsystems(void)
{
1239
	int err = 0;
1240

1241
	/*
1242
	 * Enable hardware so that subsystem initialisation can access EL2.
1243
	 */
1244
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1245 1246 1247 1248 1249 1250

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1262
		err = 0;
1263 1264
		break;
	default:
1265
		goto out;
1266 1267 1268 1269 1270 1271 1272
	}

	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
1273
		goto out;
1274 1275 1276 1277

	kvm_perf_init();
	kvm_coproc_table_init();

1278 1279 1280 1281
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
}

static void teardown_hyp_mode(void)
{
	int cpu;

	if (is_kernel_in_hyp_mode())
		return;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1294
	hyp_cpu_pm_exit();
1295 1296 1297 1298 1299 1300 1301 1302
}

static int init_vhe_mode(void)
{
	kvm_info("VHE mode initialized successfully\n");
	return 0;
}

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * It is probably enough to obtain the default on one
	 * CPU. It's unlikely to be different on the others.
	 */
	hyp_default_vectors = __hyp_get_vectors();

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1333
			goto out_err;
1334 1335 1336 1337 1338 1339 1340 1341
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1342
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1343
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1344 1345
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1346
		goto out_err;
1347 1348
	}

1349
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1350
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1351 1352
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1353 1354 1355 1356 1357 1358 1359
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1360
		goto out_err;
1361 1362
	}

1363 1364 1365 1366 1367
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1368 1369
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1370 1371 1372

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1373
			goto out_err;
1374 1375 1376 1377
		}
	}

	for_each_possible_cpu(cpu) {
1378
		kvm_cpu_context_t *cpu_ctxt;
1379

1380
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1381
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1382 1383

		if (err) {
1384
			kvm_err("Cannot map host CPU state: %d\n", err);
1385
			goto out_err;
1386 1387 1388 1389
		}
	}

	kvm_info("Hyp mode initialized successfully\n");
1390

1391
	return 0;
1392

1393
out_err:
1394
	teardown_hyp_mode();
1395 1396 1397 1398
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1399 1400 1401 1402 1403
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1417 1418 1419
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1420 1421
int kvm_arch_init(void *opaque)
{
1422
	int err;
1423
	int ret, cpu;
1424 1425 1426 1427 1428 1429

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1430 1431 1432 1433 1434 1435
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1436 1437
	}

1438
	err = init_common_resources();
1439
	if (err)
1440
		return err;
1441

1442 1443 1444 1445 1446
	if (is_kernel_in_hyp_mode())
		err = init_vhe_mode();
	else
		err = init_hyp_mode();
	if (err)
1447
		goto out_err;
1448

1449 1450 1451
	err = init_subsystems();
	if (err)
		goto out_hyp;
1452

1453
	return 0;
1454 1455 1456

out_hyp:
	teardown_hyp_mode();
1457
out_err:
1458
	teardown_common_resources();
1459
	return err;
1460 1461 1462 1463 1464
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1465
	kvm_perf_teardown();
1466 1467 1468 1469 1470 1471 1472 1473 1474
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);