intel_lrc.c 76.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211 212 213 214 215 216
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
217
#define GEN8_CTX_ID_WIDTH 21
218 219
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
220

221 222 223
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

224
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225
					    struct intel_engine_cs *engine);
226
static int intel_lr_context_pin(struct i915_gem_context *ctx,
227
				struct intel_engine_cs *engine);
228

229 230
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231
 * @dev_priv: i915 device private
232 233 234
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
235
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
236 237 238
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
239
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240
{
241 242 243
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
244
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245 246
		return 1;

247
	if (INTEL_GEN(dev_priv) >= 9)
248 249
		return 1;

250 251 252
	if (enable_execlists == 0)
		return 0;

253 254 255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
256 257 258 259
		return 1;

	return 0;
}
260

261
static void
262
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263
{
264
	struct drm_i915_private *dev_priv = engine->i915;
265

266
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267
		engine->idle_lite_restore_wa = ~0;
268

269 270
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271
					(engine->id == VCS || engine->id == VCS2);
272

273
	engine->ctx_desc_template = GEN8_CTX_VALID;
274
	if (IS_GEN8(dev_priv))
275 276
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277 278 279 280 281 282 283

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284 285
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 287
}

288
/**
289 290
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
291
 *
292
 * @ctx: Context to work on
293
 * @engine: Engine the descriptor will be used with
294
 *
295 296 297 298 299 300
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
301
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
302
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
303
 *    bits 32-52:    ctx ID, a globally unique tag
304 305
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
306
 */
307
static void
308
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309
				   struct intel_engine_cs *engine)
310
{
311
	struct intel_context *ce = &ctx->engine[engine->id];
312
	u64 desc;
313

314
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315

316 317
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
318 319
	desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
								/* bits 12-31 */
320
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
321

322
	ce->lrc_desc = desc;
323 324
}

325
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326
				     struct intel_engine_cs *engine)
327
{
328
	return ctx->engine[engine->id].lrc_desc;
329
}
330

331 332
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
333
{
334

335
	struct intel_engine_cs *engine = rq0->engine;
336
	struct drm_i915_private *dev_priv = rq0->i915;
337
	uint64_t desc[2];
338

339
	if (rq1) {
340
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341 342 343 344
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
345

346
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347
	rq0->elsp_submitted++;
348

349
	/* You must always write both descriptors in the order below. */
350 351
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352

353
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354
	/* The context is automatically loaded after the following */
355
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356

357
	/* ELSP is a wo register, use another nearby reg for posting */
358
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 360
}

361 362 363 364 365 366 367 368 369 370
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
371
{
372
	struct intel_engine_cs *engine = rq->engine;
373
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375

376
	reg_state[CTX_RING_TAIL+1] = rq->tail;
377

378 379 380 381 382 383 384
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
385 386
}

387 388
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
389
{
390
	struct drm_i915_private *dev_priv = rq0->i915;
391
	unsigned int fw_domains = rq0->engine->fw_domains;
392

393
	execlists_update_context(rq0);
394

395
	if (rq1)
396
		execlists_update_context(rq1);
397

398
	spin_lock_irq(&dev_priv->uncore.lock);
399
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400

401
	execlists_elsp_write(rq0, rq1);
402

403
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404
	spin_unlock_irq(&dev_priv->uncore.lock);
405 406
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420
static inline void execlists_context_status_change(
		struct drm_i915_gem_request *rq,
		unsigned long status)
{
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;

	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
}

421
static void execlists_context_unqueue(struct intel_engine_cs *engine)
422
{
423
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424
	struct drm_i915_gem_request *cursor, *tmp;
425

426
	assert_spin_locked(&engine->execlist_lock);
427

428 429 430 431
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
432
	WARN_ON(!intel_irqs_enabled(engine->i915));
433

434
	/* Try to read in pairs */
435
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436 437 438
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
439
		} else if (req0->ctx == cursor->ctx) {
440 441
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
442
			cursor->elsp_submitted = req0->elsp_submitted;
443 444
			list_del(&req0->execlist_link);
			i915_gem_request_unreference(req0);
445 446
			req0 = cursor;
		} else {
447 448 449 450 451 452 453 454 455 456 457 458 459 460
			if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
				/*
				 * req0 (after merged) ctx requires single
				 * submission, stop picking
				 */
				if (req0->ctx->execlists_force_single_submission)
					break;
				/*
				 * req0 ctx doesn't require single submission,
				 * but next req ctx requires, stop picking
				 */
				if (cursor->ctx->execlists_force_single_submission)
					break;
			}
461
			req1 = cursor;
462
			WARN_ON(req1->elsp_submitted);
463 464 465 466
			break;
		}
	}

467 468 469
	if (unlikely(!req0))
		return;

470 471 472 473 474 475
	execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);

	if (req1)
		execlists_context_status_change(req1,
						INTEL_CONTEXT_SCHEDULE_IN);

476
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
477
		/*
478 479 480 481 482 483
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
484
		 */
485
		struct intel_ringbuffer *ringbuf;
486

487
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
488 489
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
490 491
	}

492
	execlists_submit_requests(req0, req1);
493 494
}

495
static unsigned int
496
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
497
{
498
	struct drm_i915_gem_request *head_req;
499

500
	assert_spin_locked(&engine->execlist_lock);
501

502
	head_req = list_first_entry_or_null(&engine->execlist_queue,
503
					    struct drm_i915_gem_request,
504 505
					    execlist_link);

506 507
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
508 509 510 511 512 513

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

514 515
	execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);

516 517
	list_del(&head_req->execlist_link);
	i915_gem_request_unreference(head_req);
518

519
	return 1;
520 521
}

522
static u32
523
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
524
		   u32 *context_id)
B
Ben Widawsky 已提交
525
{
526
	struct drm_i915_private *dev_priv = engine->i915;
527
	u32 status;
B
Ben Widawsky 已提交
528

529 530
	read_pointer %= GEN8_CSB_ENTRIES;

531
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
532 533 534

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
535

536
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
537 538 539
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
540 541
}

542
/**
543
 * intel_lrc_irq_handler() - handle Context Switch interrupts
544
 * @data: tasklet handler passed in unsigned long
545 546 547 548
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
549
static void intel_lrc_irq_handler(unsigned long data)
550
{
551
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
552
	struct drm_i915_private *dev_priv = engine->i915;
553
	u32 status_pointer;
554
	unsigned int read_pointer, write_pointer;
555 556
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
557 558
	unsigned int submit_contexts = 0;

559
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
560

561
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
562

563
	read_pointer = engine->next_context_status_buffer;
564
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
565
	if (read_pointer > write_pointer)
566
		write_pointer += GEN8_CSB_ENTRIES;
567 568

	while (read_pointer < write_pointer) {
569 570 571 572 573 574
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
575

576 577 578 579 580 581 582 583
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

584
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
585 586 587 588 589 590 591

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
592 593 594 595 596
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

597
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
598 599
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
600
				execlists_check_remove_request(engine, csb[i][1]);
601 602
	}

603
	if (submit_contexts) {
604
		if (!engine->disable_lite_restore_wa ||
605 606
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
607
	}
608

609
	spin_unlock(&engine->execlist_lock);
610 611 612

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
613 614
}

615
static void execlists_context_queue(struct drm_i915_gem_request *request)
616
{
617
	struct intel_engine_cs *engine = request->engine;
618
	struct drm_i915_gem_request *cursor;
619
	int num_elements = 0;
620

621
	spin_lock_bh(&engine->execlist_lock);
622

623
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
624 625 626 627
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
628
		struct drm_i915_gem_request *tail_req;
629

630
		tail_req = list_last_entry(&engine->execlist_queue,
631
					   struct drm_i915_gem_request,
632 633
					   execlist_link);

634
		if (request->ctx == tail_req->ctx) {
635
			WARN(tail_req->elsp_submitted != 0,
636
				"More than 2 already-submitted reqs queued\n");
637 638
			list_del(&tail_req->execlist_link);
			i915_gem_request_unreference(tail_req);
639 640 641
		}
	}

642
	i915_gem_request_reference(request);
643
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
644
	request->ctx_hw_id = request->ctx->hw_id;
645
	if (num_elements == 0)
646
		execlists_context_unqueue(engine);
647

648
	spin_unlock_bh(&engine->execlist_lock);
649 650
}

651
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
652
{
653
	struct intel_engine_cs *engine = req->engine;
654 655 656 657
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
658
	if (engine->gpu_caches_dirty)
659 660
		flush_domains = I915_GEM_GPU_DOMAINS;

661
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
662 663 664
	if (ret)
		return ret;

665
	engine->gpu_caches_dirty = false;
666 667 668
	return 0;
}

669
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
670 671
				 struct list_head *vmas)
{
672
	const unsigned other_rings = ~intel_engine_flag(req->engine);
673 674 675 676 677 678 679 680
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

681
		if (obj->active & other_rings) {
682
			ret = i915_gem_object_sync(obj, req->engine, &req);
683 684 685
			if (ret)
				return ret;
		}
686 687 688 689 690 691 692 693 694 695 696 697 698

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
699
	return logical_ring_invalidate_all_caches(req);
700 701
}

702
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
703
{
704
	struct intel_engine_cs *engine = request->engine;
705
	struct intel_context *ce = &request->ctx->engine[engine->id];
706
	int ret;
707

708 709 710 711
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
712
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
713

714
	if (!ce->state) {
715 716 717 718 719
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

720
	request->ringbuf = ce->ringbuf;
721

722 723 724 725 726 727
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
728
		ret = i915_guc_wq_check_space(request);
729 730 731 732
		if (ret)
			return ret;
	}

733 734 735
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
736

737 738 739 740
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

741
	if (!ce->initialised) {
742 743 744 745
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

746
		ce->initialised = true;
747 748 749 750 751 752 753 754 755
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

756
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
757 758 759
	return 0;

err_unpin:
760
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
761
	return ret;
762 763 764 765
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
766
 * @request: Request to advance the logical ringbuffer of.
767 768 769 770 771 772
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
773
static int
774
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
775
{
776
	struct intel_ringbuffer *ringbuf = request->ringbuf;
777
	struct intel_engine_cs *engine = request->engine;
778

779 780
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
781

782 783 784 785 786 787 788 789 790
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
791

792
	if (intel_engine_stopped(engine))
793
		return 0;
794

795 796 797 798 799 800 801 802
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
803

804 805
	if (i915.enable_guc_submission)
		i915_guc_submit(request);
806 807
	else
		execlists_context_queue(request);
808 809

	return 0;
810 811
}

812 813
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
814
 * @params: execbuffer call parameters.
815 816 817 818 819 820 821 822
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
823
int intel_execlists_submission(struct i915_execbuffer_params *params,
824
			       struct drm_i915_gem_execbuffer2 *args,
825
			       struct list_head *vmas)
826
{
827
	struct drm_device       *dev = params->dev;
828
	struct intel_engine_cs *engine = params->engine;
829
	struct drm_i915_private *dev_priv = dev->dev_private;
830
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
831
	u64 exec_start;
832 833 834 835 836 837 838 839 840 841
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
842
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

867
	ret = execlists_move_to_gpu(params->request, vmas);
868 869 870
	if (ret)
		return ret;

871
	if (engine == &dev_priv->engine[RCS] &&
872
	    instp_mode != dev_priv->relative_constants_mode) {
873
		ret = intel_ring_begin(params->request, 4);
874 875 876 877 878
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
879
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
880 881 882 883 884 885
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

886 887 888
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

889
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
890 891 892
	if (ret)
		return ret;

893
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
894

895
	i915_gem_execbuffer_move_to_active(vmas, params->request);
896

897 898 899
	return 0;
}

900
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
901
{
902
	struct drm_i915_gem_request *req, *tmp;
903
	LIST_HEAD(cancel_list);
904

905
	WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
906

907
	spin_lock_bh(&engine->execlist_lock);
908
	list_replace_init(&engine->execlist_queue, &cancel_list);
909
	spin_unlock_bh(&engine->execlist_lock);
910

911
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
912
		list_del(&req->execlist_link);
913
		i915_gem_request_unreference(req);
914 915 916
	}
}

917
void intel_logical_ring_stop(struct intel_engine_cs *engine)
918
{
919
	struct drm_i915_private *dev_priv = engine->i915;
920 921
	int ret;

922
	if (!intel_engine_initialized(engine))
923 924
		return;

925
	ret = intel_engine_idle(engine);
926
	if (ret)
927
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
928
			  engine->name, ret);
929 930

	/* TODO: Is this correct with Execlists enabled? */
931
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
932 933 934 935
	if (intel_wait_for_register(dev_priv,
				    RING_MI_MODE(engine->mmio_base),
				    MODE_IDLE, MODE_IDLE,
				    1000)) {
936
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
937 938
		return;
	}
939
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
940 941
}

942
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
943
{
944
	struct intel_engine_cs *engine = req->engine;
945 946
	int ret;

947
	if (!engine->gpu_caches_dirty)
948 949
		return 0;

950
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
951 952 953
	if (ret)
		return ret;

954
	engine->gpu_caches_dirty = false;
955 956 957
	return 0;
}

958
static int intel_lr_context_pin(struct i915_gem_context *ctx,
959
				struct intel_engine_cs *engine)
960
{
961
	struct drm_i915_private *dev_priv = ctx->i915;
962
	struct intel_context *ce = &ctx->engine[engine->id];
963 964
	void *vaddr;
	u32 *lrc_reg_state;
965
	int ret;
966

967
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
968

969
	if (ce->pin_count++)
970 971
		return 0;

972 973
	ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
				    PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
974
	if (ret)
975
		goto err;
976

977
	vaddr = i915_gem_object_pin_map(ce->state);
978 979
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
980 981 982
		goto unpin_ctx_obj;
	}

983 984
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

985
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
986
	if (ret)
987
		goto unpin_map;
988

989
	i915_gem_context_reference(ctx);
990
	ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
991
	intel_lr_context_descriptor_update(ctx, engine);
992 993 994 995

	lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
	ce->lrc_reg_state = lrc_reg_state;
	ce->state->dirty = true;
996

997 998 999
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1000

1001
	return 0;
1002

1003
unpin_map:
1004
	i915_gem_object_unpin_map(ce->state);
1005
unpin_ctx_obj:
1006
	i915_gem_object_ggtt_unpin(ce->state);
1007
err:
1008
	ce->pin_count = 0;
1009 1010 1011
	return ret;
}

1012
void intel_lr_context_unpin(struct i915_gem_context *ctx,
1013
			    struct intel_engine_cs *engine)
1014
{
1015
	struct intel_context *ce = &ctx->engine[engine->id];
1016

1017
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
1018
	GEM_BUG_ON(ce->pin_count == 0);
1019

1020
	if (--ce->pin_count)
1021
		return;
1022

1023
	intel_unpin_ringbuffer_obj(ce->ringbuf);
1024

1025 1026
	i915_gem_object_unpin_map(ce->state);
	i915_gem_object_ggtt_unpin(ce->state);
1027

1028 1029 1030
	ce->lrc_vma = NULL;
	ce->lrc_desc = 0;
	ce->lrc_reg_state = NULL;
1031

1032
	i915_gem_context_unreference(ctx);
1033 1034
}

1035
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1036 1037
{
	int ret, i;
1038
	struct intel_engine_cs *engine = req->engine;
1039
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1040
	struct i915_workarounds *w = &req->i915->workarounds;
1041

1042
	if (w->count == 0)
1043 1044
		return 0;

1045
	engine->gpu_caches_dirty = true;
1046
	ret = logical_ring_flush_all_caches(req);
1047 1048 1049
	if (ret)
		return ret;

1050
	ret = intel_ring_begin(req, w->count * 2 + 2);
1051 1052 1053 1054 1055
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1056
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1057 1058 1059 1060 1061 1062
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1063
	engine->gpu_caches_dirty = true;
1064
	ret = logical_ring_flush_all_caches(req);
1065 1066 1067 1068 1069 1070
	if (ret)
		return ret;

	return 0;
}

1071
#define wa_ctx_emit(batch, index, cmd)					\
1072
	do {								\
1073 1074
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1075 1076
			return -ENOSPC;					\
		}							\
1077
		batch[__index] = (cmd);					\
1078 1079
	} while (0)

V
Ville Syrjälä 已提交
1080
#define wa_ctx_emit_reg(batch, index, reg) \
1081
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1099
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1100 1101 1102 1103 1104
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1105
	/*
1106
	 * WaDisableLSQCROPERFforOCL:skl,kbl
1107 1108 1109 1110
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1111 1112
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
	    IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1113 1114
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1115
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1116
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1117
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1118
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1119 1120 1121
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1122
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1133
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1134
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1135
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1136
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1137
	wa_ctx_emit(batch, index, 0);
1138 1139 1140 1141

	return index;
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
1164
 * @engine: only applicable for RCS
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1180
 *
1181 1182 1183 1184 1185 1186 1187 1188
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1189
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1190 1191 1192 1193
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1194
	uint32_t scratch_addr;
1195 1196
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1197
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1198
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1199

1200
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1201
	if (IS_BROADWELL(engine->i915)) {
1202
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1203 1204 1205
		if (rc < 0)
			return rc;
		index = rc;
1206 1207
	}

1208 1209
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1210
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1211

1212 1213 1214 1215 1216 1217 1218 1219 1220
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1221

1222 1223
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1224
		wa_ctx_emit(batch, index, MI_NOOP);
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
1238
 * @engine: only applicable for RCS
1239 1240 1241
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1242
 * @batch: page in which WA are loaded
1243 1244 1245 1246 1247 1248 1249 1250 1251
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1252
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1253 1254 1255 1256 1257 1258
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1259
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1260
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1261

1262
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1263 1264 1265 1266

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1267
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1268 1269 1270 1271
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1272
	int ret;
1273 1274
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1275
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1276 1277
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1278
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1279

1280
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1281
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1282 1283 1284 1285
	if (ret < 0)
		return ret;
	index = ret;

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
		uint32_t scratch_addr
			= engine->scratch.gtt_offset + 2*CACHELINE_BYTES;

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1302 1303 1304 1305 1306 1307 1308
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1309
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1310 1311 1312 1313 1314 1315
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1316
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1317 1318
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1319
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1320
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1321 1322 1323 1324 1325
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1326
	/* WaClearTdlStateAckDirtyBits:bxt */
1327
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1345
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1346 1347
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1348 1349
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1350 1351 1352 1353 1354
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1355
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1356 1357 1358
{
	int ret;

1359
	engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1360
						   PAGE_ALIGN(size));
1361
	if (IS_ERR(engine->wa_ctx.obj)) {
1362
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1363 1364 1365
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1366 1367
	}

1368
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1369 1370 1371
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1372
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1373 1374 1375 1376 1377 1378
		return ret;
	}

	return 0;
}

1379
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1380
{
1381 1382 1383 1384
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1385 1386 1387
	}
}

1388
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1389 1390 1391 1392 1393
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1394
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1395

1396
	WARN_ON(engine->id != RCS);
1397

1398
	/* update this when WA for higher Gen are added */
1399
	if (INTEL_GEN(engine->i915) > 9) {
1400
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1401
			  INTEL_GEN(engine->i915));
1402
		return 0;
1403
	}
1404

1405
	/* some WA perform writes to scratch page, ensure it is valid */
1406 1407
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1408 1409 1410
		return -EINVAL;
	}

1411
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1412 1413 1414 1415 1416
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1417
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1418 1419 1420
	batch = kmap_atomic(page);
	offset = 0;

1421
	if (IS_GEN8(engine->i915)) {
1422
		ret = gen8_init_indirectctx_bb(engine,
1423 1424 1425 1426 1427 1428
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1429
		ret = gen8_init_perctx_bb(engine,
1430 1431 1432 1433 1434
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1435
	} else if (IS_GEN9(engine->i915)) {
1436
		ret = gen9_init_indirectctx_bb(engine,
1437 1438 1439 1440 1441 1442
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1443
		ret = gen9_init_perctx_bb(engine,
1444 1445 1446 1447 1448
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1449 1450 1451 1452 1453
	}

out:
	kunmap_atomic(batch);
	if (ret)
1454
		lrc_destroy_wa_ctx_obj(engine);
1455 1456 1457 1458

	return ret;
}

1459 1460
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1461
	struct drm_i915_private *dev_priv = engine->i915;
1462 1463 1464 1465 1466 1467

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1468
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1469
{
1470
	struct drm_i915_private *dev_priv = engine->i915;
1471
	unsigned int next_context_status_buffer_hw;
1472

1473
	lrc_init_hws(engine);
1474

1475 1476 1477
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1478

1479
	I915_WRITE(RING_MODE_GEN7(engine),
1480 1481
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1482
	POSTING_READ(RING_MODE_GEN7(engine));
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1493 1494
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1495
	 */
1496
	next_context_status_buffer_hw =
1497
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1498 1499 1500 1501 1502 1503 1504 1505 1506

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1507 1508
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1509

1510
	intel_engine_init_hangcheck(engine);
1511

1512
	return intel_mocs_init_engine(engine);
1513 1514
}

1515
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1516
{
1517
	struct drm_i915_private *dev_priv = engine->i915;
1518 1519
	int ret;

1520
	ret = gen8_init_common_ring(engine);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1534
	return init_workarounds_ring(engine);
1535 1536
}

1537
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1538 1539 1540
{
	int ret;

1541
	ret = gen8_init_common_ring(engine);
1542 1543 1544
	if (ret)
		return ret;

1545
	return init_workarounds_ring(engine);
1546 1547
}

1548 1549 1550
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1551
	struct intel_engine_cs *engine = req->engine;
1552 1553 1554 1555
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1556
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1557 1558 1559 1560 1561 1562 1563
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1564 1565
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1566
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1567 1568
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1569 1570 1571 1572 1573 1574 1575 1576 1577
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1578
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1579
			      u64 offset, unsigned dispatch_flags)
1580
{
1581
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1582
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1583 1584
	int ret;

1585 1586 1587 1588
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1589 1590
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1591
	if (req->ctx->ppgtt &&
1592
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1593
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1594
		    !intel_vgpu_active(req->i915)) {
1595 1596 1597 1598
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1599

1600
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1601 1602
	}

1603
	ret = intel_ring_begin(req, 4);
1604 1605 1606 1607
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1608 1609 1610 1611
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1612 1613 1614 1615 1616 1617 1618 1619
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1620
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1621
{
1622
	struct drm_i915_private *dev_priv = engine->i915;
1623 1624 1625
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1626 1627
}

1628
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1629
{
1630
	struct drm_i915_private *dev_priv = engine->i915;
1631
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1632 1633
}

1634
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1635 1636 1637
			   u32 invalidate_domains,
			   u32 unused)
{
1638
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1639
	struct intel_engine_cs *engine = ringbuf->engine;
1640
	struct drm_i915_private *dev_priv = request->i915;
1641 1642 1643
	uint32_t cmd;
	int ret;

1644
	ret = intel_ring_begin(request, 4);
1645 1646 1647 1648 1649
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1650 1651 1652 1653 1654 1655 1656 1657 1658
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1659
		if (engine == &dev_priv->engine[VCS])
1660
			cmd |= MI_INVALIDATE_BSD;
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1674
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1675 1676 1677
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1678
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1679
	struct intel_engine_cs *engine = ringbuf->engine;
1680
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1681
	bool vf_flush_wa = false, dc_flush_wa = false;
1682 1683
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1684
	int len;
1685 1686 1687 1688 1689 1690

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1691
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1692
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1705 1706 1707 1708
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1709
		if (IS_GEN9(request->i915))
1710
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1711 1712 1713 1714

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1715
	}
1716

M
Mika Kuoppala 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1726 1727 1728
	if (ret)
		return ret;

1729 1730 1731 1732 1733 1734 1735 1736 1737
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

M
Mika Kuoppala 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746
	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1747 1748 1749 1750 1751 1752
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
M
Mika Kuoppala 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762

	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1763 1764 1765 1766 1767
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1768
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1780
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1781 1782
}

1783 1784 1785 1786 1787 1788 1789
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1790
static int gen8_emit_request(struct drm_i915_gem_request *request)
1791
{
1792
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1793 1794
	int ret;

1795
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1796 1797 1798
	if (ret)
		return ret;

1799 1800
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1801 1802

	intel_logical_ring_emit(ringbuf,
1803 1804
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1805
				intel_hws_seqno_address(request->engine) |
1806
				MI_FLUSH_DW_USE_GTT);
1807
	intel_logical_ring_emit(ringbuf, 0);
1808
	intel_logical_ring_emit(ringbuf, request->seqno);
1809 1810
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1811 1812
	return intel_logical_ring_advance_and_submit(request);
}
1813

1814 1815 1816 1817
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1818

1819
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1820 1821 1822
	if (ret)
		return ret;

1823 1824 1825
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1826 1827 1828 1829
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1830
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1831 1832 1833 1834
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1835 1836
	intel_logical_ring_emit(ringbuf,
				intel_hws_seqno_address(request->engine));
1837 1838
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1839 1840
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1841
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1842
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1843
	return intel_logical_ring_advance_and_submit(request);
1844 1845
}

1846
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1847 1848 1849 1850
{
	struct render_state so;
	int ret;

1851
	ret = i915_gem_render_state_prepare(req->engine, &so);
1852 1853 1854 1855 1856 1857
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1858
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1859
				       I915_DISPATCH_SECURE);
1860 1861 1862
	if (ret)
		goto out;

1863
	ret = req->engine->emit_bb_start(req,
1864 1865 1866 1867 1868
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1869
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1870 1871 1872 1873 1874 1875

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1876
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1877 1878 1879
{
	int ret;

1880
	ret = intel_logical_ring_workarounds_emit(req);
1881 1882 1883
	if (ret)
		return ret;

1884 1885 1886 1887 1888 1889 1890 1891
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1892
	return intel_lr_context_render_state_init(req);
1893 1894
}

1895 1896 1897
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
1898
 * @engine: Engine Command Streamer.
1899 1900
 *
 */
1901
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1902
{
1903
	struct drm_i915_private *dev_priv;
1904

1905
	if (!intel_engine_initialized(engine))
1906 1907
		return;

1908 1909 1910 1911 1912 1913 1914
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1915
	dev_priv = engine->i915;
1916

1917 1918 1919
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1920
	}
1921

1922 1923
	if (engine->cleanup)
		engine->cleanup(engine);
1924

1925 1926
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1927

1928 1929
	intel_engine_fini_breadcrumbs(engine);

1930
	if (engine->status_page.obj) {
1931
		i915_gem_object_unpin_map(engine->status_page.obj);
1932
		engine->status_page.obj = NULL;
1933
	}
1934
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1935

1936 1937 1938
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1939

1940
	lrc_destroy_wa_ctx_obj(engine);
1941
	engine->i915 = NULL;
1942 1943
}

1944
static void
1945
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1946 1947
{
	/* Default vfuncs which can be overriden by each engine. */
1948 1949 1950
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
1951 1952
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1953
	engine->emit_bb_start = gen8_emit_bb_start;
1954
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1955
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1956 1957
}

1958
static inline void
1959
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1960
{
1961 1962
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1963 1964
}

1965
static int
1966 1967 1968
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1969
	void *hws;
1970 1971 1972 1973

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1974 1975 1976 1977
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1978
	engine->status_page.obj = dctx_obj;
1979 1980

	return 0;
1981 1982
}

1983 1984 1985 1986 1987 1988
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1989 1990 1991 1992
	ret = intel_engine_init_breadcrumbs(engine);
	if (ret)
		goto error;

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	ret = i915_cmd_parser_init_ring(engine);
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

static int logical_render_ring_init(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;

2041
	ret = intel_init_pipe_control(engine, 4096);
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

	ret = logical_ring_init(engine);
	if (ret) {
		lrc_destroy_wa_ctx_obj(engine);
	}

	return ret;
}

2064 2065 2066 2067 2068 2069
static const struct logical_ring_info {
	const char *name;
	unsigned exec_id;
	unsigned guc_id;
	u32 mmio_base;
	unsigned irq_shift;
2070
	int (*init)(struct intel_engine_cs *engine);
2071 2072 2073 2074 2075 2076 2077
} logical_rings[] = {
	[RCS] = {
		.name = "render ring",
		.exec_id = I915_EXEC_RENDER,
		.guc_id = GUC_RENDER_ENGINE,
		.mmio_base = RENDER_RING_BASE,
		.irq_shift = GEN8_RCS_IRQ_SHIFT,
2078
		.init = logical_render_ring_init,
2079 2080 2081 2082 2083 2084 2085
	},
	[BCS] = {
		.name = "blitter ring",
		.exec_id = I915_EXEC_BLT,
		.guc_id = GUC_BLITTER_ENGINE,
		.mmio_base = BLT_RING_BASE,
		.irq_shift = GEN8_BCS_IRQ_SHIFT,
2086
		.init = logical_ring_init,
2087 2088 2089 2090 2091 2092 2093
	},
	[VCS] = {
		.name = "bsd ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE,
		.mmio_base = GEN6_BSD_RING_BASE,
		.irq_shift = GEN8_VCS1_IRQ_SHIFT,
2094
		.init = logical_ring_init,
2095 2096 2097 2098 2099 2100 2101
	},
	[VCS2] = {
		.name = "bsd2 ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE2,
		.mmio_base = GEN8_BSD2_RING_BASE,
		.irq_shift = GEN8_VCS2_IRQ_SHIFT,
2102
		.init = logical_ring_init,
2103 2104 2105 2106 2107 2108 2109
	},
	[VECS] = {
		.name = "video enhancement ring",
		.exec_id = I915_EXEC_VEBOX,
		.guc_id = GUC_VIDEOENHANCE_ENGINE,
		.mmio_base = VEBOX_RING_BASE,
		.irq_shift = GEN8_VECS_IRQ_SHIFT,
2110
		.init = logical_ring_init,
2111 2112 2113 2114
	},
};

static struct intel_engine_cs *
2115
logical_ring_setup(struct drm_i915_private *dev_priv, enum intel_engine_id id)
2116
{
2117 2118
	const struct logical_ring_info *info = &logical_rings[id];
	struct intel_engine_cs *engine = &dev_priv->engine[id];
2119
	enum forcewake_domains fw_domains;
2120

2121 2122 2123 2124 2125
	engine->id = id;
	engine->name = info->name;
	engine->exec_id = info->exec_id;
	engine->guc_id = info->guc_id;
	engine->mmio_base = info->mmio_base;
2126

2127
	engine->i915 = dev_priv;
2128

2129 2130
	/* Intentionally left blank. */
	engine->buffer = NULL;
2131

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	spin_lock_init(&engine->execlist_lock);

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine, info->irq_shift);

	intel_engine_init_hangcheck(engine);
2160
	i915_gem_batch_pool_init(dev_priv->dev, &engine->batch_pool);
2161 2162 2163 2164

	return engine;
}

2165 2166 2167 2168
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
2169 2170 2171 2172
 * This function inits the engines for an Execlists submission style (the
 * equivalent in the legacy ringbuffer submission world would be
 * i915_gem_init_engines). It does it only for those engines that are present in
 * the hardware.
2173 2174 2175
 *
 * Return: non-zero if the initialization failed.
 */
2176 2177 2178
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2179 2180
	unsigned int mask = 0;
	unsigned int i;
2181 2182
	int ret;

2183 2184
	WARN_ON(INTEL_INFO(dev_priv)->ring_mask &
		GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));
2185

2186 2187 2188
	for (i = 0; i < ARRAY_SIZE(logical_rings); i++) {
		if (!HAS_ENGINE(dev_priv, i))
			continue;
2189

2190 2191
		if (!logical_rings[i].init)
			continue;
2192

2193
		ret = logical_rings[i].init(logical_ring_setup(dev_priv, i));
2194
		if (ret)
2195 2196 2197
			goto cleanup;

		mask |= ENGINE_MASK(i);
2198 2199
	}

2200 2201 2202 2203 2204 2205 2206 2207 2208
	/*
	 * Catch failures to update logical_rings table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
	if (WARN_ON(mask != INTEL_INFO(dev_priv)->ring_mask)) {
		struct intel_device_info *info =
			(struct intel_device_info *)&dev_priv->info;
		info->ring_mask = mask;
2209 2210 2211 2212
	}

	return 0;

2213 2214 2215
cleanup:
	for (i = 0; i < I915_NUM_ENGINES; i++)
		intel_logical_ring_cleanup(&dev_priv->engine[i]);
2216 2217 2218 2219

	return ret;
}

2220
static u32
2221
make_rpcs(struct drm_i915_private *dev_priv)
2222 2223 2224 2225 2226 2227 2228
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2229
	if (INTEL_GEN(dev_priv) < 9)
2230 2231 2232 2233 2234 2235 2236 2237
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2238
	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2239
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2240
		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2241 2242 2243 2244
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2245
	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2246
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2247
		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2248 2249 2250 2251
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2252 2253
	if (INTEL_INFO(dev_priv)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2254
			GEN8_RPCS_EU_MIN_SHIFT;
2255
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2256 2257 2258 2259 2260 2261 2262
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2263
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2264 2265 2266
{
	u32 indirect_ctx_offset;

2267
	switch (INTEL_GEN(engine->i915)) {
2268
	default:
2269
		MISSING_CASE(INTEL_GEN(engine->i915));
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2284
static int
2285
populate_lr_context(struct i915_gem_context *ctx,
2286
		    struct drm_i915_gem_object *ctx_obj,
2287 2288
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2289
{
2290
	struct drm_i915_private *dev_priv = ctx->i915;
2291
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2292 2293
	void *vaddr;
	u32 *reg_state;
2294 2295
	int ret;

2296 2297 2298
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2299 2300 2301 2302 2303 2304
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2305 2306 2307 2308
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2309 2310
		return ret;
	}
2311
	ctx_obj->dirty = true;
2312 2313 2314

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2315
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2316 2317 2318 2319 2320 2321

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2322
	reg_state[CTX_LRI_HEADER_0] =
2323 2324 2325
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2326 2327
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2328
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2329
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2330 2331 2332 2333
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2334 2335 2336
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2337 2338 2339 2340
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2341
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2342 2343 2344 2345 2346 2347
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2348
		       RING_BB_PPGTT);
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2364 2365 2366 2367 2368 2369 2370
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2371
				intel_lr_indirect_ctx_offset(engine) << 6;
2372 2373 2374 2375 2376

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2377
	}
2378
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2379 2380
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2381
	/* PDP values well be assigned later if needed */
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2398

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2411
		execlists_update_context_pdps(ppgtt, reg_state);
2412 2413
	}

2414
	if (engine->id == RCS) {
2415
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2416
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2417
			       make_rpcs(dev_priv));
2418 2419
	}

2420
	i915_gem_object_unpin_map(ctx_obj);
2421 2422 2423 2424

	return 0;
}

2425 2426
/**
 * intel_lr_context_size() - return the size of the context for an engine
2427
 * @engine: which engine to find the context size for
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2439
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2440 2441 2442
{
	int ret = 0;

2443
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2444

2445
	switch (engine->id) {
2446
	case RCS:
2447
		if (INTEL_GEN(engine->i915) >= 9)
2448 2449 2450
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2461 2462
}

2463
/**
2464
 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2465
 * @ctx: LR context to create.
2466
 * @engine: engine to be used with the context.
2467 2468 2469 2470 2471 2472 2473
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2474
 * Return: non-zero on error.
2475
 */
2476
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2477
					    struct intel_engine_cs *engine)
2478
{
2479
	struct drm_i915_gem_object *ctx_obj;
2480
	struct intel_context *ce = &ctx->engine[engine->id];
2481
	uint32_t context_size;
2482
	struct intel_ringbuffer *ringbuf;
2483 2484
	int ret;

2485
	WARN_ON(ce->state);
2486

2487
	context_size = round_up(intel_lr_context_size(engine), 4096);
2488

2489 2490 2491
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2492
	ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2493
	if (IS_ERR(ctx_obj)) {
2494
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2495
		return PTR_ERR(ctx_obj);
2496 2497
	}

2498
	ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
2499 2500
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2501
		goto error_deref_obj;
2502 2503
	}

2504
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2505 2506
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2507
		goto error_ringbuf;
2508 2509
	}

2510 2511 2512
	ce->ringbuf = ringbuf;
	ce->state = ctx_obj;
	ce->initialised = engine->init_context == NULL;
2513 2514

	return 0;
2515

2516 2517
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2518
error_deref_obj:
2519
	drm_gem_object_unreference(&ctx_obj->base);
2520 2521
	ce->ringbuf = NULL;
	ce->state = NULL;
2522
	return ret;
2523
}
2524

2525
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2526
			    struct i915_gem_context *ctx)
2527
{
2528
	struct intel_engine_cs *engine;
2529

2530
	for_each_engine(engine, dev_priv) {
2531 2532
		struct intel_context *ce = &ctx->engine[engine->id];
		struct drm_i915_gem_object *ctx_obj = ce->state;
2533
		void *vaddr;
2534 2535 2536 2537 2538
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2539 2540
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2541
			continue;
2542 2543 2544

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2545 2546 2547 2548

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2549
		i915_gem_object_unpin_map(ctx_obj);
2550

2551 2552
		ce->ringbuf->head = 0;
		ce->ringbuf->tail = 0;
2553 2554
	}
}