gadget.c 93.3 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/clk.h>
29
#include <linux/regulator/consumer.h>
30
#include <linux/of_platform.h>
31
#include <linux/phy/phy.h>
32 33 34

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
35
#include <linux/usb/phy.h>
36
#include <linux/platform_data/s3c-hsotg.h>
37

38
#include "core.h"
39
#include "hw.h"
40 41 42 43 44 45 46 47 48 49 50 51

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

52
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
53
{
54
	return container_of(gadget, struct dwc2_hsotg, gadget);
55 56 57 58 59 60 61 62 63 64 65 66
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

67 68 69 70 71 72 73 74 75
static inline struct s3c_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

76
/* forward declaration of functions */
77
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
96
 * g_using_dma is set depending on dts flag.
97
 */
98
static inline bool using_dma(struct dwc2_hsotg *hsotg)
99
{
100
	return hsotg->g_using_dma;
101 102 103 104 105 106 107
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
108
static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
109
{
110
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
111 112 113 114 115 116
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
117
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
118 119 120 121 122 123 124 125
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
126
static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
127
{
128
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
129 130 131 132 133
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
134
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
135 136 137 138 139 140 141 142 143 144 145 146
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
147
static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
148 149 150 151 152 153 154 155 156 157 158
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
159
	daint = readl(hsotg->regs + DAINTMSK);
160 161 162 163
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
164
	writel(daint, hsotg->regs + DAINTMSK);
165 166 167 168 169 170 171
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
172
static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
173
{
174 175
	unsigned int ep;
	unsigned int addr;
176
	int timeout;
177 178
	u32 val;

179 180 181 182
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

183 184 185 186 187
	/* set RX/NPTX FIFO sizes */
	writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
188

189 190
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
191 192
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
193 194
	 * known values.
	 */
195 196

	/* start at the end of the GNPTXFSIZ, rounded up */
197
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
198

199
	/*
200
	 * Configure fifos sizes from provided configuration and assign
201 202
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
203
	 */
204 205 206
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
207
		val = addr;
208 209
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
210
			  "insufficient fifo memory");
211
		addr += hsotg->g_tx_fifo_sz[ep];
212

213
		writel(val, hsotg->regs + DPTXFSIZN(ep));
214
	}
215

216 217 218 219
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
220

221 222
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
223 224 225 226

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
227
		val = readl(hsotg->regs + GRSTCTL);
228

229
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
230 231 232 233 234 235
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
236
			break;
237 238 239 240 241 242
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
243 244 245 246 247 248 249 250
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
251 252
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
285
 */
286
static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
287 288 289 290 291 292 293 294 295
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

296
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
314
 */
315
static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
316 317 318 319
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
320
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
321 322 323 324 325
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
326
	int max_transfer;
327 328 329 330 331 332 333

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

334
	if (periodic && !hsotg->dedicated_fifos) {
335
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
336 337 338
		int size_left;
		int size_done;

339 340 341 342
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
343

344
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
345

346 347
		/*
		 * if shared fifo, we cannot write anything until the
348 349 350
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
351
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
352 353 354
			return -ENOSPC;
		}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
372
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
373 374
			return -ENOSPC;
		}
375
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
376
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
377 378 379

		can_write &= 0xffff;
		can_write *= 4;
380
	} else {
381
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
382 383 384 385
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

386
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
387 388 389
			return -ENOSPC;
		}

390
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
391
		can_write *= 4;	/* fifo size is in 32bit quantities. */
392 393
	}

394 395 396 397
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
398

399 400
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
401 402 403
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
404
	if (can_write > 512 && !periodic)
405 406
		can_write = 512;

407 408
	/*
	 * limit the write to one max-packet size worth of data, but allow
409
	 * the transfer to return that it did not run out of fifo space
410 411
	 * doing it.
	 */
412 413
	if (to_write > max_transfer) {
		to_write = max_transfer;
414

415 416 417
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
418 419
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
420 421
	}

422 423 424 425
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
426
		pkt_round = to_write % max_transfer;
427

428 429
		/*
		 * Round the write down to an
430 431 432 433 434 435 436 437 438
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

439 440 441 442
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
443

444 445 446
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
447 448
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

466
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
485 486
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
487
	} else {
488
		maxsize = 64+64;
489
		if (hs_ep->dir_in)
490
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
491
		else
492 493 494 495 496 497 498
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

499 500 501 502
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
520
static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

549 550
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
551 552 553 554 555

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

556 557 558
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

559
	if (ctrl & DXEPCTL_STALL) {
560 561 562 563
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

564
	length = ureq->length - ureq->actual;
565 566
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

587 588 589 590 591
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

592
	if (dir_in && index != 0)
593
		if (hs_ep->isochronous)
594
			epsize = DXEPTSIZ_MC(packets);
595
		else
596
			epsize = DXEPTSIZ_MC(1);
597 598 599
	else
		epsize = 0;

600 601 602 603 604 605 606 607
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
608
			hs_ep->send_zlp = 1;
609 610
	}

611 612
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
613 614 615 616 617 618 619 620 621 622

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

623
	if (using_dma(hsotg) && !continuing) {
624 625
		unsigned int dma_reg;

626 627 628 629
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
630

631
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
632 633
		writel(ureq->dma, hsotg->regs + dma_reg);

634
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
635
			__func__, &ureq->dma, dma_reg);
636 637
	}

638 639
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
640

641
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
642 643

	/* For Setup request do not clear NAK */
644
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
645
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
646

647 648 649
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

650 651
	/*
	 * set these, it seems that DMA support increments past the end
652
	 * of the packet buffer so we need to calculate the length from
653 654
	 * this information.
	 */
655 656 657 658 659 660 661 662 663 664
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

665 666 667 668
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
669
	if (dir_in)
670
		writel(DIEPMSK_INTKNTXFEMPMSK,
671
		       hsotg->regs + DIEPINT(index));
672

673 674 675 676
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
677 678

	/* check ep is enabled */
679
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
680
		dev_dbg(hsotg->dev,
681
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
682 683
			 index, readl(hsotg->regs + epctrl_reg));

684
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
685
		__func__, readl(hsotg->regs + epctrl_reg));
686 687 688

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
689 690 691 692 693 694 695 696 697 698 699 700 701
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
702
 */
703
static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
704 705 706 707
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
708
	int ret;
709 710 711 712 713

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

714 715 716
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
717 718 719 720 721 722 723 724 725 726

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
static int s3c_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req)
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

static void s3c_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req)
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

780 781 782 783 784
static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
785
	struct dwc2_hsotg *hs = hs_ep->parent;
786
	bool first;
787
	int ret;
788 789 790 791 792

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

793 794 795 796 797 798 799
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

800 801 802 803 804
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

805 806 807 808
	ret = s3c_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
	if (ret)
		return ret;

809 810
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
811
		ret = s3c_hsotg_map_dma(hs, hs_ep, req);
812 813 814 815 816 817 818 819 820 821 822 823 824
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

825 826 827 828
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
829
	struct dwc2_hsotg *hs = hs_ep->parent;
830 831 832 833 834 835 836 837 838 839
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
860
	struct dwc2_hsotg *hsotg = hs_ep->parent;
861 862 863 864 865 866 867 868 869 870 871 872 873

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
874
 */
875
static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
876 877
					   u32 windex)
{
878
	struct s3c_hsotg_ep *ep;
879 880 881 882 883 884
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

885
	if (idx > hsotg->num_of_eps)
886 887
		return NULL;

888 889
	ep = index_to_ep(hsotg, idx, dir);

890 891 892 893 894 895
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

896 897 898 899 900 901
/**
 * s3c_hsotg_set_test_mode - Enable usb Test Modes
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
902
int s3c_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
{
	int dctl = readl(hsotg->regs + DCTL);

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
	writel(dctl, hsotg->regs + DCTL);
	return 0;
}

922 923 924 925 926 927 928 929 930 931
/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
932
static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
951 952 953 954 955
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
975
static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
976 977
					struct usb_ctrlrequest *ctrl)
{
978
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

1041
/**
1042
 * s3c_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1043 1044 1045
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1046
static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1047 1048
					 struct usb_ctrlrequest *ctrl)
{
1049
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1050 1051
	struct s3c_hsotg_req *hs_req;
	bool restart;
1052 1053
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
1054
	int ret;
1055
	bool halted;
1056 1057 1058
	u32 recip;
	u32 wValue;
	u32 wIndex;
1059 1060 1061 1062

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1091 1092
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1093
				__func__, wIndex);
1094 1095 1096
			return -ENOENT;
		}

1097
		switch (wValue) {
1098
		case USB_ENDPOINT_HALT:
1099 1100
			halted = ep->halted;

1101
			s3c_hsotg_ep_sethalt(&ep->ep, set);
1102 1103 1104 1105 1106 1107 1108

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1109

1110 1111 1112 1113 1114 1115
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1116 1117 1118 1119 1120 1121 1122 1123
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1124 1125 1126 1127 1128 1129
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1130 1131 1132
				}

				/* If we have pending request, then start it */
1133 1134 1135 1136 1137 1138 1139
				if (!ep->req) {
					restart = !list_empty(&ep->queue);
					if (restart) {
						hs_req = get_ep_head(ep);
						s3c_hsotg_start_req(hsotg, ep,
								hs_req, false);
					}
1140 1141 1142
				}
			}

1143 1144 1145 1146 1147
			break;

		default:
			return -ENOENT;
		}
1148 1149 1150 1151
		break;
	default:
		return -ENOENT;
	}
1152 1153 1154
	return 1;
}

1155
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1156

1157 1158 1159 1160 1161 1162
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1163
static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1164
{
1165
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1178 1179
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1180 1181 1182
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1183
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1184 1185 1186 1187 1188 1189 1190 1191 1192
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1193 1194 1195 1196 1197 1198 1199 1200 1201
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1202
static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1203 1204
				      struct usb_ctrlrequest *ctrl)
{
1205
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1206 1207 1208 1209 1210 1211 1212
	int ret = 0;
	u32 dcfg;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1213 1214 1215 1216
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1217
		ep0->dir_in = 1;
1218 1219 1220 1221 1222
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1223 1224 1225 1226

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1227
			hsotg->connected = 1;
1228
			dcfg = readl(hsotg->regs + DCFG);
1229
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1230 1231
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1232
			writel(dcfg, hsotg->regs + DCFG);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1253
		spin_unlock(&hsotg->lock);
1254
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1255
		spin_lock(&hsotg->lock);
1256 1257 1258 1259
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1260 1261
	/*
	 * the request is either unhandlable, or is not formatted correctly
1262 1263 1264
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1265 1266
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1281
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1282 1283 1284 1285 1286 1287

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1288
	spin_lock(&hsotg->lock);
1289 1290 1291 1292
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1293
	spin_unlock(&hsotg->lock);
1294 1295 1296 1297 1298 1299 1300 1301 1302
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1303
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1321
	hsotg->eps_out[0]->dir_in = 0;
1322
	hsotg->eps_out[0]->send_zlp = 0;
1323
	hsotg->ep0_state = DWC2_EP0_SETUP;
1324

1325
	ret = s3c_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1326 1327
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1328 1329 1330 1331
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1332 1333 1334
	}
}

1335 1336 1337 1338 1339 1340 1341 1342
static void s3c_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct s3c_hsotg_ep *hs_ep)
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1343 1344 1345 1346 1347 1348
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
									index);
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
									index);
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360

	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			epsiz_reg);

	ctrl = readl(hsotg->regs + epctl_reg);
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
	writel(ctrl, hsotg->regs + epctl_reg);
}

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1373
 */
1374
static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1389 1390 1391 1392
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1393 1394 1395 1396

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1397 1398
	s3c_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);

1399 1400 1401 1402 1403 1404
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1405 1406 1407 1408
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1409 1410

	if (hs_req->req.complete) {
1411
		spin_unlock(&hsotg->lock);
1412
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1413
		spin_lock(&hsotg->lock);
1414 1415
	}

1416 1417
	/*
	 * Look to see if there is anything else to do. Note, the completion
1418
	 * of the previous request may have caused a new request to be started
1419 1420
	 * so be careful when doing this.
	 */
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1441
static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1442
{
1443
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1444
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1445
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1446 1447 1448 1449
	int to_read;
	int max_req;
	int read_ptr;

1450

1451
	if (!hs_req) {
1452
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1453 1454
		int ptr;

1455
		dev_dbg(hsotg->dev,
1456
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1470 1471 1472
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1473
	if (to_read > max_req) {
1474 1475
		/*
		 * more data appeared than we where willing
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1487 1488 1489 1490
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1491
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1492 1493 1494
}

/**
1495
 * s3c_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1496
 * @hsotg: The device instance
1497
 * @dir_in: If IN zlp
1498 1499 1500 1501 1502
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1503
 * currently believed that we do not need to wait for any space in
1504 1505
 * the TxFIFO.
 */
1506
static void s3c_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1507
{
1508
	/* eps_out[0] is used in both directions */
1509 1510
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1511

1512
	s3c_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1523
 */
1524
static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1525
{
1526
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1527
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1528 1529
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1530
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1531 1532 1533 1534 1535 1536 1537
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1538 1539 1540 1541 1542 1543 1544
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

1545 1546 1547
	if (using_dma(hsotg)) {
		unsigned size_done;

1548 1549
		/*
		 * Calculate the size of the transfer by checking how much
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1563 1564 1565 1566 1567 1568
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
	}

1569 1570 1571 1572
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1573 1574 1575 1576
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1577 1578
	}

1579 1580 1581 1582
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
		s3c_hsotg_ep0_zlp(hsotg, true);
		return;
1583 1584
	}

1585
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1586 1587 1588 1589 1590 1591 1592
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1593
 */
1594
static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1595 1596 1597
{
	u32 dsts;

1598 1599 1600
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1613
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1614 1615 1616 1617 1618 1619 1620
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1621
static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1622
{
1623
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1624 1625 1626 1627
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1628 1629
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1630

1631 1632
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1633

1634
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1635 1636
			__func__, grxstsr, size, epnum);

1637 1638 1639
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1640 1641
		break;

1642
	case GRXSTS_PKTSTS_OUTDONE:
1643 1644 1645 1646
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
1647
			s3c_hsotg_handle_outdone(hsotg, epnum);
1648 1649
		break;

1650
	case GRXSTS_PKTSTS_SETUPDONE:
1651 1652 1653
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1654
			readl(hsotg->regs + DOEPCTL(0)));
1655 1656 1657 1658 1659 1660 1661
		/*
		 * Call s3c_hsotg_handle_outdone here if it was not called from
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
			s3c_hsotg_handle_outdone(hsotg, epnum);
1662 1663
		break;

1664
	case GRXSTS_PKTSTS_OUTRX:
1665 1666 1667
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1668
	case GRXSTS_PKTSTS_SETUPRX:
1669 1670 1671
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1672
			readl(hsotg->regs + DOEPCTL(0)));
1673

1674 1675
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1691
 */
1692 1693 1694 1695
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1696
		return D0EPCTL_MPS_64;
1697
	case 32:
1698
		return D0EPCTL_MPS_32;
1699
	case 16:
1700
		return D0EPCTL_MPS_16;
1701
	case 8:
1702
		return D0EPCTL_MPS_8;
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1719
static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1720
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1721
{
1722
	struct s3c_hsotg_ep *hs_ep;
1723 1724
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1725
	u32 mcval;
1726 1727
	u32 reg;

1728 1729 1730 1731
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1732 1733 1734 1735 1736
	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1737
		hs_ep->ep.maxpacket = mps;
1738
		hs_ep->mc = 1;
1739
	} else {
1740
		mpsval = mps & DXEPCTL_MPS_MASK;
1741
		if (mpsval > 1024)
1742
			goto bad_mps;
1743 1744 1745 1746
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1747
		hs_ep->ep.maxpacket = mpsval;
1748 1749
	}

1750 1751 1752 1753 1754 1755
	if (dir_in) {
		reg = readl(regs + DIEPCTL(ep));
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
		writel(reg, regs + DIEPCTL(ep));
	} else {
1756
		reg = readl(regs + DOEPCTL(ep));
1757
		reg &= ~DXEPCTL_MPS_MASK;
1758
		reg |= mpsval;
1759
		writel(reg, regs + DOEPCTL(ep));
1760
	}
1761 1762 1763 1764 1765 1766 1767

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1768 1769 1770 1771 1772
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1773
static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1774 1775 1776 1777
{
	int timeout;
	int val;

1778
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1779
		hsotg->regs + GRSTCTL);
1780 1781 1782 1783 1784

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1785
		val = readl(hsotg->regs + GRSTCTL);
1786

1787
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1788 1789 1790 1791 1792 1793
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1794
			break;
1795 1796 1797 1798 1799
		}

		udelay(1);
	}
}
1800 1801 1802 1803 1804 1805 1806 1807 1808

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1809
static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1810 1811 1812 1813
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1814 1815 1816 1817 1818 1819 1820 1821
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1822
		return 0;
1823
	}
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1842
static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1843 1844 1845
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1846
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1847 1848 1849 1850 1851 1852 1853
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1854
	/* Finish ZLP handling for IN EP0 transactions */
1855 1856
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1857
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
		if (hsotg->test_mode) {
			int ret;

			ret = s3c_hsotg_set_test_mode(hsotg, hsotg->test_mode);
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
				s3c_hsotg_stall_ep0(hsotg);
				return;
			}
		}
1869
		s3c_hsotg_enqueue_setup(hsotg);
1870 1871 1872
		return;
	}

1873 1874
	/*
	 * Calculate the size of the transfer by checking how much is left
1875 1876 1877 1878 1879 1880 1881 1882
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1883
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1884 1885 1886 1887 1888 1889 1890 1891 1892

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1893 1894 1895
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1896 1897 1898
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1899 1900 1901
		return;
	}

1902
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1903
	if (hs_ep->send_zlp) {
1904
		s3c_hsotg_program_zlp(hsotg, hs_ep);
1905
		hs_ep->send_zlp = 0;
1906 1907 1908 1909
		/* transfer will be completed on next complete interrupt */
		return;
	}

1910 1911 1912 1913 1914 1915 1916
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
		s3c_hsotg_ep0_zlp(hsotg, false);
		return;
	}

	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1917 1918 1919 1920 1921 1922 1923 1924 1925
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1926
 */
1927
static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1928 1929
			    int dir_in)
{
1930
	struct s3c_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1931 1932 1933
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1934
	u32 ints;
1935
	u32 ctrl;
1936 1937

	ints = readl(hsotg->regs + epint_reg);
1938
	ctrl = readl(hsotg->regs + epctl_reg);
1939

1940 1941 1942
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1943 1944 1945 1946 1947 1948
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

1949 1950 1951
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1952 1953 1954 1955
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

1956
	if (ints & DXEPINT_XFERCOMPL) {
1957
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1958 1959
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1960
			else
1961
				ctrl |= DXEPCTL_SETODDFR;
1962 1963 1964
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1965
		dev_dbg(hsotg->dev,
1966
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1967 1968 1969
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1970 1971 1972 1973
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1974 1975 1976
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1977
			if (idx == 0 && !hs_ep->req)
1978 1979
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1980 1981 1982 1983
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1984

1985
			s3c_hsotg_handle_outdone(hsotg, idx);
1986 1987 1988
		}
	}

1989
	if (ints & DXEPINT_EPDISBLD) {
1990 1991
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1992 1993 1994
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

1995
			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1996

1997 1998
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1999
				int dctl = readl(hsotg->regs + DCTL);
2000

2001
				dctl |= DCTL_CGNPINNAK;
2002
				writel(dctl, hsotg->regs + DCTL);
2003 2004 2005 2006
			}
		}
	}

2007
	if (ints & DXEPINT_AHBERR)
2008 2009
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2010
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2011 2012 2013
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2014 2015
			/*
			 * this is the notification we've received a
2016 2017
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2018 2019
			 * the setup here.
			 */
2020 2021 2022 2023

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2024
				s3c_hsotg_handle_outdone(hsotg, 0);
2025 2026 2027
		}
	}

2028
	if (ints & DXEPINT_BACK2BACKSETUP)
2029 2030
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2031
	if (dir_in && !hs_ep->isochronous) {
2032
		/* not sure if this is important, but we'll clear it anyway */
2033
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2034 2035 2036 2037 2038
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2039
		if (ints & DIEPMSK_INTKNEPMISMSK) {
2040 2041 2042
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2043 2044 2045

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2046
		    ints & DIEPMSK_TXFIFOEMPTY) {
2047 2048
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2049 2050
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
2051
		}
2052 2053 2054 2055 2056 2057 2058 2059 2060
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2061
 */
2062
static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2063
{
2064
	u32 dsts = readl(hsotg->regs + DSTS);
2065
	int ep0_mps = 0, ep_mps = 8;
2066

2067 2068
	/*
	 * This should signal the finish of the enumeration phase
2069
	 * of the USB handshaking, so we should now know what rate
2070 2071
	 * we connected at.
	 */
2072 2073 2074

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2075 2076
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2077
	 * it seems IN transfers must be a even number of packets we do
2078 2079
	 * not advertise a 64byte MPS on EP0.
	 */
2080 2081

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2082 2083 2084
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2085 2086
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2087
		ep_mps = 1023;
2088 2089
		break;

2090
	case DSTS_ENUMSPD_HS:
2091 2092
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2093
		ep_mps = 1024;
2094 2095
		break;

2096
	case DSTS_ENUMSPD_LS:
2097
		hsotg->gadget.speed = USB_SPEED_LOW;
2098 2099
		/*
		 * note, we don't actually support LS in this driver at the
2100 2101 2102 2103 2104
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2105 2106
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2107

2108 2109 2110 2111
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2112 2113 2114

	if (ep0_mps) {
		int i;
2115 2116 2117 2118 2119 2120 2121 2122 2123
		/* Initialize ep0 for both in and out directions */
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
			if (hsotg->eps_out[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
		}
2124 2125 2126 2127 2128 2129 2130
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2131 2132
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2144
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2145
			      struct s3c_hsotg_ep *ep,
2146
			      int result)
2147 2148
{
	struct s3c_hsotg_req *req, *treq;
2149
	unsigned size;
2150

2151
	ep->req = NULL;
2152

2153
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2154 2155
		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
2156

2157 2158 2159 2160 2161
	if (!hsotg->dedicated_fifos)
		return;
	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
	if (size < ep->fifo_size)
		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2162 2163 2164
}

/**
2165
 * s3c_hsotg_disconnect - disconnect service
2166 2167
 * @hsotg: The device state.
 *
2168 2169 2170
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2171
 */
2172
void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2173 2174 2175
{
	unsigned ep;

2176 2177 2178 2179
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2180
	hsotg->test_mode = 0;
2181 2182 2183 2184 2185 2186 2187 2188 2189

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2190 2191 2192 2193 2194 2195 2196 2197 2198

	call_gadget(hsotg, disconnect);
}

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2199
static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2200 2201 2202 2203 2204
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */
2205
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2206 2207 2208 2209
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2225 2226 2227
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2228

2229 2230 2231 2232 2233
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2234
 */
2235
static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2236 2237 2238 2239 2240 2241 2242
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2243
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2244

2245
	timeout = 10000;
2246
	do {
2247
		grstctl = readl(hsotg->regs + GRSTCTL);
2248
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2249

2250
	if (grstctl & GRSTCTL_CSFTRST) {
2251 2252 2253 2254
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2255
	timeout = 10000;
2256 2257

	while (1) {
2258
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2259 2260 2261 2262 2263 2264 2265 2266

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2267
		if (!(grstctl & GRSTCTL_AHBIDLE))
2268 2269 2270 2271 2272 2273 2274 2275 2276
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2277 2278 2279 2280 2281 2282
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2283 2284
void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
						bool is_usb_reset)
2285
{
2286 2287 2288 2289
	u32 val;

	if (!is_usb_reset)
		s3c_hsotg_corereset(hsotg);
2290 2291 2292 2293 2294 2295 2296

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2297
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2298
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2299
	       (val << GUSBCFG_USBTRDTIM_SHIFT), hsotg->regs + GUSBCFG);
2300 2301 2302

	s3c_hsotg_init_fifo(hsotg);

2303 2304
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2305

2306
	writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2307 2308

	/* Clear any pending OTG interrupts */
2309
	writel(0xffffffff, hsotg->regs + GOTGINT);
2310 2311

	/* Clear any pending interrupts */
2312
	writel(0xffffffff, hsotg->regs + GINTSTS);
2313

2314 2315 2316
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2317 2318 2319
		GINTSTS_RESETDET | GINTSTS_ENUMDONE |
		GINTSTS_OTGINT | GINTSTS_USBSUSP |
		GINTSTS_WKUPINT,
2320
		hsotg->regs + GINTMSK);
2321 2322

	if (using_dma(hsotg))
2323
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2324
		       (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2325
		       hsotg->regs + GAHBCFG);
2326
	else
2327 2328 2329
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2330
		       hsotg->regs + GAHBCFG);
2331 2332

	/*
2333 2334 2335
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2336 2337
	 */

2338 2339
	writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2340 2341 2342 2343
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2344 2345 2346 2347 2348

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2349 2350 2351 2352 2353
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2354

2355
	writel(0, hsotg->regs + DAINTMSK);
2356 2357

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2358 2359
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2360 2361

	/* enable in and out endpoint interrupts */
2362
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2363 2364 2365 2366 2367 2368 2369

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2370
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2371 2372 2373 2374 2375

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2376 2377 2378 2379 2380
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
2381

2382
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2383 2384

	/*
2385
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2386 2387 2388 2389
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2390 2391
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2392

2393
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2394 2395
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2396
	       hsotg->regs + DOEPCTL0);
2397 2398

	/* enable, but don't activate EP0in */
2399
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2400
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2401 2402 2403 2404

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2405 2406
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2407 2408

	/* clear global NAKs */
2409 2410 2411 2412
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
2413 2414 2415 2416

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2417
	hsotg->last_rst = jiffies;
2418 2419
}

2420
static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2421 2422 2423 2424
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2425

2426
void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2427
{
2428
	/* remove the soft-disconnect and let's go */
2429
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2430 2431
}

2432 2433 2434 2435 2436 2437 2438
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
2439
	struct dwc2_hsotg *hsotg = pw;
2440 2441 2442 2443
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2444
	spin_lock(&hsotg->lock);
2445
irq_retry:
2446 2447
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2448 2449 2450 2451 2452 2453

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2454 2455
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2456 2457

		s3c_hsotg_irq_enumdone(hsotg);
2458 2459
	}

2460
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2461
		u32 daint = readl(hsotg->regs + DAINT);
2462 2463
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2464 2465
		int ep;

2466
		daint &= daintmsk;
2467 2468
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2469

2470 2471
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2472 2473
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2474 2475 2476 2477
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

2478 2479
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2480 2481 2482 2483 2484
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
2498

2499
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2500

2501
		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2502
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2503
			readl(hsotg->regs + GNPTXSTS));
2504

2505
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2506

2507 2508 2509
		/* Report disconnection if it is not already done. */
		s3c_hsotg_disconnect(hsotg);

2510
		if (usb_status & GOTGCTL_BSESVLD) {
2511 2512
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2513

2514
				kill_all_requests(hsotg, hsotg->eps_out[0],
2515
							  -ECONNRESET);
2516

2517
				hsotg->lx_state = DWC2_L0;
2518
				s3c_hsotg_core_init_disconnected(hsotg, true);
2519 2520
			}
		}
2521 2522 2523 2524
	}

	/* check both FIFOs */

2525
	if (gintsts & GINTSTS_NPTXFEMP) {
2526 2527
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2528 2529
		/*
		 * Disable the interrupt to stop it happening again
2530
		 * unless one of these endpoint routines decides that
2531 2532
		 * it needs re-enabling
		 */
2533

2534
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2535 2536 2537
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2538
	if (gintsts & GINTSTS_PTXFEMP) {
2539 2540
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2541
		/* See note in GINTSTS_NPTxFEmp */
2542

2543
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2544 2545 2546
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2547
	if (gintsts & GINTSTS_RXFLVL) {
2548 2549
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2550
		 * we need to retry s3c_hsotg_handle_rx if this is still
2551 2552
		 * set.
		 */
2553 2554 2555 2556

		s3c_hsotg_handle_rx(hsotg);
	}

2557
	if (gintsts & GINTSTS_ERLYSUSP) {
2558
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2559
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2560 2561
	}

2562 2563
	/*
	 * these next two seem to crop-up occasionally causing the core
2564
	 * to shutdown the USB transfer, so try clearing them and logging
2565 2566
	 * the occurrence.
	 */
2567

2568
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2569 2570
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2571
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2572 2573

		s3c_hsotg_dump(hsotg);
2574 2575
	}

2576
	if (gintsts & GINTSTS_GINNAKEFF) {
2577 2578
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2579
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2580 2581

		s3c_hsotg_dump(hsotg);
2582 2583
	}

2584 2585 2586 2587
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2588 2589 2590 2591

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2592 2593
	spin_unlock(&hsotg->lock);

2594 2595 2596 2597 2598 2599 2600 2601 2602
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2603
 */
2604 2605 2606 2607
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2608
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2609
	unsigned long flags;
2610
	unsigned int index = hs_ep->index;
2611 2612 2613
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2614 2615
	unsigned int dir_in;
	unsigned int i, val, size;
2616
	int ret = 0;
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2632
	mps = usb_endpoint_maxp(desc);
2633 2634 2635

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2636
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2637 2638 2639 2640 2641
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2642
	spin_lock_irqsave(&hsotg->lock, flags);
2643

2644 2645
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2646

2647 2648 2649 2650
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2651
	epctrl |= DXEPCTL_USBACTEP;
2652

2653 2654
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2655 2656 2657 2658 2659
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2660
	epctrl |= DXEPCTL_SNAK;
2661 2662

	/* update the endpoint state */
2663
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2664 2665

	/* default, set to non-periodic */
2666
	hs_ep->isochronous = 0;
2667
	hs_ep->periodic = 0;
2668
	hs_ep->halted = 0;
2669
	hs_ep->interval = desc->bInterval;
2670

2671 2672 2673
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2674 2675
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2676 2677
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2678 2679 2680 2681
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2682 2683

	case USB_ENDPOINT_XFER_BULK:
2684
		epctrl |= DXEPCTL_EPTYPE_BULK;
2685 2686 2687
		break;

	case USB_ENDPOINT_XFER_INT:
2688
		if (dir_in)
2689 2690
			hs_ep->periodic = 1;

2691
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2692 2693 2694
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2695
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2696 2697 2698
		break;
	}

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	/* If fifo is already allocated for this ep */
	if (hs_ep->fifo_index) {
		size =  hs_ep->ep.maxpacket * hs_ep->mc;
		/* If bigger fifo is required deallocate current one */
		if (size > hs_ep->fifo_size) {
			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
			hs_ep->fifo_index = 0;
			hs_ep->fifo_size = 0;
		}
	}

2710 2711
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2712 2713
	 * a unique tx-fifo even if it is non-periodic.
	 */
2714
	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2715 2716
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
2717
		size = hs_ep->ep.maxpacket*hs_ep->mc;
2718
		for (i = 1; i < hsotg->num_of_eps; ++i) {
2719 2720 2721 2722 2723 2724
			if (hsotg->fifo_map & (1<<i))
				continue;
			val = readl(hsotg->regs + DPTXFSIZN(i));
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
2725 2726 2727 2728 2729
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
2730
		}
2731
		if (!fifo_index) {
2732 2733
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
2734 2735 2736
			ret = -ENOMEM;
			goto error;
		}
2737 2738 2739 2740
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
2741
	}
2742

2743 2744
	/* for non control endpoints, set PID to D0 */
	if (index)
2745
		epctrl |= DXEPCTL_SETD0PID;
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2757
error:
2758
	spin_unlock_irqrestore(&hsotg->lock, flags);
2759
	return ret;
2760 2761
}

2762 2763 2764 2765
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2766
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2767 2768
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2769
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2770 2771 2772 2773 2774 2775
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2776
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2777

2778
	if (ep == &hsotg->eps_out[0]->ep) {
2779 2780 2781 2782
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2783
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2784

2785
	spin_lock_irqsave(&hsotg->lock, flags);
2786

2787 2788 2789
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2790 2791

	ctrl = readl(hsotg->regs + epctrl_reg);
2792 2793 2794
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2795 2796 2797 2798 2799 2800 2801

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2802 2803 2804
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

2805
	spin_unlock_irqrestore(&hsotg->lock, flags);
2806 2807 2808 2809 2810 2811 2812
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2813
 */
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2826 2827 2828 2829 2830
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2831 2832 2833 2834
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2835
	struct dwc2_hsotg *hs = hs_ep->parent;
2836 2837
	unsigned long flags;

2838
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2839

2840
	spin_lock_irqsave(&hs->lock, flags);
2841 2842

	if (!on_list(hs_ep, hs_req)) {
2843
		spin_unlock_irqrestore(&hs->lock, flags);
2844 2845 2846 2847
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2848
	spin_unlock_irqrestore(&hs->lock, flags);
2849 2850 2851 2852

	return 0;
}

2853 2854 2855 2856 2857
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2858 2859 2860
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2861
	struct dwc2_hsotg *hs = hs_ep->parent;
2862 2863 2864
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2865
	u32 xfertype;
2866 2867 2868

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2869 2870 2871 2872 2873 2874 2875 2876 2877
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2878 2879 2880 2881 2882
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
		epctl = readl(hs->regs + epreg);

		if (value) {
2883
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2894
	} else {
2895

2896 2897
		epreg = DOEPCTL(index);
		epctl = readl(hs->regs + epreg);
2898

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2909
	}
2910

2911 2912
	hs_ep->halted = value;

2913 2914 2915
	return 0;
}

2916 2917 2918 2919 2920 2921 2922 2923
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2924
	struct dwc2_hsotg *hs = hs_ep->parent;
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2935 2936 2937 2938 2939
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2940
	.queue		= s3c_hsotg_ep_queue_lock,
2941
	.dequeue	= s3c_hsotg_ep_dequeue,
2942
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2943
	/* note, don't believe we have any call for the fifo routines */
2944 2945
};

2946 2947
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2948
 * @hsotg: The driver state
2949 2950 2951 2952
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2953
static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2954 2955 2956 2957
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2958

2959
	if (hsotg->uphy)
2960
		usb_phy_init(hsotg->uphy);
2961
	else if (hsotg->plat && hsotg->plat->phy_init)
2962
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2963 2964 2965 2966
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2967 2968 2969 2970
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2971
 * @hsotg: The driver state
2972 2973 2974 2975
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2976
static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2977 2978 2979
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2980
	if (hsotg->uphy)
2981
		usb_phy_shutdown(hsotg->uphy);
2982
	else if (hsotg->plat && hsotg->plat->phy_exit)
2983
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2984 2985 2986 2987
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2988 2989
}

2990 2991 2992 2993
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2994
static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2995
{
2996
	u32 trdtim;
2997 2998
	/* unmask subset of endpoint interrupts */

2999 3000 3001
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
3002

3003 3004 3005
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
3006

3007
	writel(0, hsotg->regs + DAINTMSK);
3008 3009

	/* Be in disconnected state until gadget is registered */
3010
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3011 3012 3013 3014

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3015 3016
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
3017 3018 3019 3020

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
3021 3022
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3023
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT),
3024
		hsotg->regs + GUSBCFG);
3025

3026 3027
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3028 3029
}

3030 3031 3032 3033 3034 3035 3036 3037
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3038 3039
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
3040
{
3041
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3042
	unsigned long flags;
3043 3044 3045
	int ret;

	if (!hsotg) {
3046
		pr_err("%s: called with no device\n", __func__);
3047 3048 3049 3050 3051 3052 3053 3054
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3055
	if (driver->max_speed < USB_SPEED_FULL)
3056 3057
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3058
	if (!driver->setup) {
3059 3060 3061 3062
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

3063
	mutex_lock(&hsotg->init_mutex);
3064 3065 3066 3067
	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3068
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3069 3070
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3071 3072
	clk_enable(hsotg->clk);

3073 3074
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
3075
	if (ret) {
3076
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3077 3078 3079
		goto err;
	}

3080
	s3c_hsotg_phy_enable(hsotg);
3081 3082
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3083

3084 3085
	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_init(hsotg);
3086
	s3c_hsotg_core_init_disconnected(hsotg, false);
3087
	hsotg->enabled = 0;
3088 3089
	spin_unlock_irqrestore(&hsotg->lock, flags);

3090
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3091

3092 3093
	mutex_unlock(&hsotg->init_mutex);

3094 3095 3096
	return 0;

err:
3097
	mutex_unlock(&hsotg->init_mutex);
3098 3099 3100 3101
	hsotg->driver = NULL;
	return ret;
}

3102 3103 3104 3105 3106 3107 3108
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3109
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
3110
{
3111
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3112
	unsigned long flags = 0;
3113 3114 3115 3116 3117
	int ep;

	if (!hsotg)
		return -ENODEV;

3118 3119
	mutex_lock(&hsotg->init_mutex);

3120
	/* all endpoints should be shutdown */
3121 3122 3123 3124 3125 3126
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
		if (hsotg->eps_out[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
	}
3127

3128 3129
	spin_lock_irqsave(&hsotg->lock, flags);

3130
	hsotg->driver = NULL;
3131
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3132
	hsotg->enabled = 0;
3133

3134 3135
	spin_unlock_irqrestore(&hsotg->lock, flags);

3136 3137
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3138 3139
	s3c_hsotg_phy_disable(hsotg);

3140
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3141

3142 3143
	clk_disable(hsotg->clk);

3144 3145
	mutex_unlock(&hsotg->init_mutex);

3146 3147 3148
	return 0;
}

3149 3150 3151 3152 3153 3154
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3155 3156 3157 3158 3159
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

3160 3161 3162 3163 3164 3165 3166 3167 3168
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
3169
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3170 3171
	unsigned long flags = 0;

3172
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
3173

3174
	mutex_lock(&hsotg->init_mutex);
3175 3176
	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3177
		clk_enable(hsotg->clk);
3178
		hsotg->enabled = 1;
3179
		s3c_hsotg_core_init_disconnected(hsotg, false);
3180
		s3c_hsotg_core_connect(hsotg);
3181
	} else {
3182
		s3c_hsotg_core_disconnect(hsotg);
3183
		s3c_hsotg_disconnect(hsotg);
3184
		hsotg->enabled = 0;
3185
		clk_disable(hsotg->clk);
3186 3187 3188 3189
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);
3190
	mutex_unlock(&hsotg->init_mutex);
3191 3192 3193 3194

	return 0;
}

3195 3196 3197 3198 3199 3200 3201 3202 3203
static int s3c_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

	if (is_active) {
3204 3205 3206 3207 3208 3209 3210 3211
		/*
		 * If controller is hibernated, it must exit from hibernation
		 * before being initialized
		 */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, false);
			hsotg->lx_state = DWC2_L0;
		}
3212 3213
		/* Kill any ep0 requests as controller will be reinitialized */
		kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3214
		s3c_hsotg_core_init_disconnected(hsotg, false);
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
	} else {
		s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
/**
 * s3c_hsotg_vbus_draw - report bMaxPower field
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
static int s3c_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3242
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3243
	.get_frame	= s3c_hsotg_gadget_getframe,
3244 3245
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3246
	.pullup                 = s3c_hsotg_pullup,
3247
	.vbus_session		= s3c_hsotg_vbus_session,
3248
	.vbus_draw		= s3c_hsotg_vbus_draw,
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3261
static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3262
				       struct s3c_hsotg_ep *hs_ep,
3263 3264
				       int epnum,
				       bool dir_in)
3265 3266 3267 3268 3269
{
	char *dir;

	if (epnum == 0)
		dir = "";
3270
	else if (dir_in)
3271
		dir = "in";
3272 3273
	else
		dir = "out";
3274

3275
	hs_ep->dir_in = dir_in;
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3289
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3290 3291
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
		hs_ep->ep.caps.type_iso = true;
		hs_ep->ep.caps.type_bulk = true;
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

3305 3306
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3307 3308 3309 3310
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3311
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3312 3313 3314 3315
		if (dir_in)
			writel(next, hsotg->regs + DIEPCTL(epnum));
		else
			writel(next, hsotg->regs + DOEPCTL(epnum));
3316 3317 3318
	}
}

3319 3320 3321 3322 3323 3324
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3325
static int s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3326
{
3327 3328 3329 3330
	u32 cfg;
	u32 ep_type;
	u32 i;

3331
	/* check hardware configuration */
3332

3333
	cfg = readl(hsotg->regs + GHWCFG2);
3334
	hsotg->num_of_eps = (cfg >> GHWCFG2_NUM_DEV_EP_SHIFT) & 0xF;
3335 3336
	/* Add ep0 */
	hsotg->num_of_eps++;
3337

3338 3339 3340 3341 3342 3343 3344 3345
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct s3c_hsotg_ep),
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
	/* Same s3c_hsotg_ep is used in both directions for ep0 */
	hsotg->eps_out[0] = hsotg->eps_in[0];

	cfg = readl(hsotg->regs + GHWCFG1);
3346
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

	cfg = readl(hsotg->regs + GHWCFG3);
3365
	hsotg->fifo_mem = (cfg >> GHWCFG3_DFIFO_DEPTH_SHIFT);
3366

3367
	cfg = readl(hsotg->regs + GHWCFG4);
3368
	hsotg->dedicated_fifos = (cfg >> GHWCFG4_DED_FIFO_SHIFT) & 1;
3369

3370 3371 3372 3373
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3374
	return 0;
3375 3376
}

3377 3378 3379 3380
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3381
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3382
{
M
Mark Brown 已提交
3383
#ifdef DEBUG
3384 3385 3386 3387 3388 3389
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3390 3391
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3392

3393 3394
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
		 readl(regs + GAHBCFG), readl(regs + GHWCFG1));
3395 3396

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3397
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3398 3399 3400

	/* show periodic fifo settings */

3401
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3402
		val = readl(regs + DPTXFSIZN(idx));
3403
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3404 3405
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3406 3407
	}

3408
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3409 3410
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3411 3412 3413
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3414

3415
		val = readl(regs + DOEPCTL(idx));
3416 3417
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3418 3419 3420
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3421 3422 3423 3424

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3425
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3426
#endif
3427 3428
}

3429 3430 3431 3432
#ifdef CONFIG_OF
static void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg)
{
	struct device_node *np = hsotg->dev->of_node;
3433 3434
	u32 len = 0;
	u32 i = 0;
3435 3436 3437

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3469 3470 3471 3472 3473
}
#else
static inline void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
#endif

3474
/**
3475 3476 3477
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3478
 */
3479
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3480
{
3481 3482
	struct device *dev = hsotg->dev;
	struct s3c_hsotg_plat *plat = dev->platform_data;
3483 3484
	int epnum;
	int ret;
3485
	int i;
3486
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3487

3488 3489 3490
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3491 3492
	s3c_hsotg_of_probe(hsotg);

3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
	s3c_hsotg_of_probe(hsotg);
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3506
	/*
3507 3508
	 * If platform probe couldn't find a generic PHY or an old style
	 * USB PHY, fall back to pdata
3509
	 */
3510 3511 3512 3513 3514 3515 3516 3517 3518
	if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
		plat = dev_get_platdata(dev);
		if (!plat) {
			dev_err(dev,
			"no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		}
		hsotg->plat = plat;
	} else if (hsotg->phy) {
3519 3520 3521 3522
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
3523
		if (phy_get_bus_width(hsotg->phy) == 8)
3524 3525
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3526

3527
	hsotg->clk = devm_clk_get(dev, "otg");
3528
	if (IS_ERR(hsotg->clk)) {
3529
		hsotg->clk = NULL;
3530
		dev_dbg(dev, "cannot get otg clock\n");
3531 3532
	}

3533
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3534 3535
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);
3536 3537
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
3538 3539 3540

	/* reset the system */

3541 3542 3543 3544 3545 3546
	ret = clk_prepare_enable(hsotg->clk);
	if (ret) {
		dev_err(dev, "failed to enable otg clk\n");
		goto err_clk;
	}

3547

3548 3549 3550 3551 3552
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3553
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3554 3555 3556
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3557
		goto err_clk;
3558 3559 3560 3561 3562 3563
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
3564
		dev_err(dev, "failed to enable supplies: %d\n", ret);
3565
		goto err_clk;
3566 3567
	}

3568 3569
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3570

3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
	/*
	 * Force Device mode before initialization.
	 * This allows correctly configuring fifo for device mode.
	 */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
	__orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

	/*
	 * According to Synopsys databook, this sleep is needed for the force
	 * device mode to take effect.
	 */
	msleep(25);

3584
	s3c_hsotg_corereset(hsotg);
3585 3586 3587 3588 3589 3590
	ret = s3c_hsotg_hw_cfg(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
		goto err_clk;
	}

3591
	s3c_hsotg_init(hsotg);
3592

3593 3594 3595
	/* Switch back to default configuration */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

3612 3613
	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
				dev_name(hsotg->dev), hsotg);
3614 3615 3616 3617 3618
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
3619
		dev_err(dev, "cannot claim IRQ for gadget\n");
3620
		goto err_supplies;
3621 3622
	}

3623 3624 3625 3626
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3627
		ret = -EINVAL;
3628 3629 3630 3631 3632 3633
		goto err_supplies;
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3634
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3635 3636 3637

	/* allocate EP0 request */

3638
	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3639 3640 3641
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3642
		ret = -ENOMEM;
3643
		goto err_supplies;
3644
	}
3645 3646

	/* initialise the endpoints now the core has been initialised */
3647 3648 3649 3650 3651 3652 3653 3654
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_in[epnum],
								epnum, 1);
		if (hsotg->eps_out[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_out[epnum],
								epnum, 0);
	}
3655

3656
	/* disable power and clock */
3657
	s3c_hsotg_phy_disable(hsotg);
3658 3659 3660 3661

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
3662
		dev_err(dev, "failed to disable supplies: %d\n", ret);
3663
		goto err_supplies;
3664 3665
	}

3666
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3667
	if (ret)
3668
		goto err_supplies;
3669

3670 3671 3672 3673
	s3c_hsotg_dump(hsotg);

	return 0;

3674
err_supplies:
3675
	s3c_hsotg_phy_disable(hsotg);
3676
err_clk:
3677
	clk_disable_unprepare(hsotg->clk);
3678

3679 3680 3681
	return ret;
}

3682 3683 3684 3685
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
3686
int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3687
{
3688
	usb_del_gadget_udc(&hsotg->gadget);
3689
	clk_disable_unprepare(hsotg->clk);
3690

3691 3692 3693
	return 0;
}

3694
int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3695 3696 3697 3698
{
	unsigned long flags;
	int ret = 0;

3699 3700 3701
	if (hsotg->lx_state != DWC2_L0)
		return ret;

3702 3703
	mutex_lock(&hsotg->init_mutex);

3704 3705 3706
	if (hsotg->driver) {
		int ep;

3707 3708 3709
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3710 3711 3712 3713 3714 3715
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
			s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3716

3717
		s3c_hsotg_phy_disable(hsotg);
3718

3719 3720 3721 3722 3723 3724
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
			if (hsotg->eps_out[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
		}
3725 3726 3727

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
3728
		clk_disable(hsotg->clk);
3729 3730
	}

3731 3732
	mutex_unlock(&hsotg->init_mutex);

3733 3734 3735
	return ret;
}

3736
int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3737 3738 3739 3740
{
	unsigned long flags;
	int ret = 0;

3741 3742 3743
	if (hsotg->lx_state == DWC2_L2)
		return ret;

3744 3745
	mutex_lock(&hsotg->init_mutex);

3746 3747 3748
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3749 3750

		clk_enable(hsotg->clk);
3751
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3752
					    hsotg->supplies);
3753

3754
		s3c_hsotg_phy_enable(hsotg);
3755

3756
		spin_lock_irqsave(&hsotg->lock, flags);
3757
		s3c_hsotg_core_init_disconnected(hsotg, false);
3758 3759 3760 3761
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3762
	mutex_unlock(&hsotg->init_mutex);
3763 3764 3765

	return ret;
}