gadget.c 90.3 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22 23

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
24
#include <linux/mutex.h>
25 26 27
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
28
#include <linux/slab.h>
29
#include <linux/clk.h>
30
#include <linux/regulator/consumer.h>
31
#include <linux/of_platform.h>
32
#include <linux/phy/phy.h>
33 34 35

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
36
#include <linux/usb/phy.h>
37
#include <linux/platform_data/s3c-hsotg.h>
38

39
#include "core.h"
40
#include "hw.h"
41 42 43 44 45 46 47 48 49 50 51 52

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

53
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
54
{
55
	return container_of(gadget, struct dwc2_hsotg, gadget);
56 57 58 59 60 61 62 63 64 65 66 67
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

68
/* forward declaration of functions */
69
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
 * Until this issue is sorted out, we always return 'false'.
 */
90
static inline bool using_dma(struct dwc2_hsotg *hsotg)
91 92 93 94 95 96 97 98 99
{
	return false;	/* support is not complete */
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
100
static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
101
{
102
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
103 104 105 106 107 108
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
109
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
110 111 112 113 114 115 116 117
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
118
static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
119
{
120
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
121 122 123 124 125
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
126
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
127 128 129 130 131 132 133 134 135 136 137 138
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
139
static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
140 141 142 143 144 145 146 147 148 149 150
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
151
	daint = readl(hsotg->regs + DAINTMSK);
152 153 154 155
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
156
	writel(daint, hsotg->regs + DAINTMSK);
157 158 159 160 161 162 163
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
164
static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
165
{
166 167 168
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
169
	int timeout;
170 171
	u32 val;

172
	/* set FIFO sizes to 2048/1024 */
173

174
	writel(2048, hsotg->regs + GRXFSIZ);
175 176
	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
177

178 179
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
180 181
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
182 183
	 * known values.
	 */
184 185 186 187

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;

188
	/*
189 190 191 192 193
	 * Because we have not enough memory to have each TX FIFO of size at
	 * least 3072 bytes (the maximum single packet size), we create four
	 * FIFOs of lenght 1024, and four of length 3072 bytes, and assing
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
194
	 */
195

196 197 198 199 200 201 202 203 204 205 206 207 208 209
	/* 256*4=1024 bytes FIFO length */
	size = 256;
	for (ep = 1; ep <= 4; ep++) {
		val = addr;
		val |= size << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + size > hsotg->fifo_mem,
			  "insufficient fifo memory");
		addr += size;

		writel(val, hsotg->regs + DPTXFSIZN(ep));
	}
	/* 768*4=3072 bytes FIFO length */
	size = 768;
	for (ep = 5; ep <= 8; ep++) {
210
		val = addr;
211
		val |= size << FIFOSIZE_DEPTH_SHIFT;
212 213
		WARN_ONCE(addr + size > hsotg->fifo_mem,
			  "insufficient fifo memory");
214 215
		addr += size;

216
		writel(val, hsotg->regs + DPTXFSIZN(ep));
217
	}
218

219 220 221 222
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
223

224 225
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
226 227 228 229

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
230
		val = readl(hsotg->regs + GRSTCTL);
231

232
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
233 234 235 236 237 238 239 240 241 242 243 244
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
245 246 247 248 249 250 251 252
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
253 254
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
287
 */
288
static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
289 290 291 292 293 294 295 296 297
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

298
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
316
 */
317
static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
318 319 320 321
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
322
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
323 324 325 326 327
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
328
	int max_transfer;
329 330 331 332 333 334 335

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

336
	if (periodic && !hsotg->dedicated_fifos) {
337
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
338 339 340
		int size_left;
		int size_done;

341 342 343 344
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
345

346
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
347

348 349
		/*
		 * if shared fifo, we cannot write anything until the
350 351 352
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
353
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
354 355 356
			return -ENOSPC;
		}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
374
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
375 376
			return -ENOSPC;
		}
377
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
378
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
379 380 381

		can_write &= 0xffff;
		can_write *= 4;
382
	} else {
383
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
384 385 386 387
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

388
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
389 390 391
			return -ENOSPC;
		}

392
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
393
		can_write *= 4;	/* fifo size is in 32bit quantities. */
394 395
	}

396 397 398 399
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
400

401 402
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
403 404 405
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
406
	if (can_write > 512 && !periodic)
407 408
		can_write = 512;

409 410
	/*
	 * limit the write to one max-packet size worth of data, but allow
411
	 * the transfer to return that it did not run out of fifo space
412 413
	 * doing it.
	 */
414 415
	if (to_write > max_transfer) {
		to_write = max_transfer;
416

417 418 419
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
420 421
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
422 423
	}

424 425 426 427
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
428
		pkt_round = to_write % max_transfer;
429

430 431
		/*
		 * Round the write down to an
432 433 434 435 436 437 438 439 440
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

441 442 443 444
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
445

446 447 448
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
449 450
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

468
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
487 488
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
489
	} else {
490
		maxsize = 64+64;
491
		if (hs_ep->dir_in)
492
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
493
		else
494 495 496 497 498 499 500
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

501 502 503 504
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
522
static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

551 552
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
553 554 555 556 557

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

558 559 560
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

561
	if (ctrl & DXEPCTL_STALL) {
562 563 564 565
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

566
	length = ureq->length - ureq->actual;
567 568
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
569 570
	if (0)
		dev_dbg(hsotg->dev,
571
			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
572
			ureq->buf, length, &ureq->dma,
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

594 595 596 597 598
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

599
	if (dir_in && index != 0)
600
		if (hs_ep->isochronous)
601
			epsize = DXEPTSIZ_MC(packets);
602
		else
603
			epsize = DXEPTSIZ_MC(1);
604 605 606 607
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
608 609 610 611
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
612 613 614 615 616

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

617 618
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
619 620 621 622 623 624 625 626 627 628

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

629
	if (using_dma(hsotg) && !continuing) {
630 631
		unsigned int dma_reg;

632 633 634 635
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
636

637
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
638 639
		writel(ureq->dma, hsotg->regs + dma_reg);

640
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
641
			__func__, &ureq->dma, dma_reg);
642 643
	}

644 645
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
646 647 648 649 650 651 652

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
653
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
654

655 656 657 658

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

659 660
	/*
	 * set these, it seems that DMA support increments past the end
661
	 * of the packet buffer so we need to calculate the length from
662 663
	 * this information.
	 */
664 665 666 667 668 669 670 671 672 673
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

674 675 676 677
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
678
	if (dir_in)
679
		writel(DIEPMSK_INTKNTXFEMPMSK,
680
		       hsotg->regs + DIEPINT(index));
681

682 683 684 685
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
686 687

	/* check ep is enabled */
688
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
689
		dev_warn(hsotg->dev,
690
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
691 692
			 index, readl(hsotg->regs + epctrl_reg));

693
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
694
		__func__, readl(hsotg->regs + epctrl_reg));
695 696 697

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
698 699 700 701 702 703 704 705 706 707 708 709 710
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
711
 */
712
static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
713 714 715 716
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
717
	int ret;
718 719 720 721 722

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

723 724 725
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
741
	struct dwc2_hsotg *hs = hs_ep->parent;
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

769 770 771 772
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
773
	struct dwc2_hsotg *hs = hs_ep->parent;
774 775 776 777 778 779 780 781 782 783
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
804
	struct dwc2_hsotg *hsotg = hs_ep->parent;
805 806 807 808 809 810 811 812 813 814 815 816 817

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
818
 */
819
static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
820 821 822 823 824 825 826 827 828
					   u32 windex)
{
	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

829
	if (idx > hsotg->num_of_eps)
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
		return NULL;

	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
848
static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
889
static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

941 942 943 944 945 946 947 948 949 950 951 952 953 954
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

955 956 957 958 959
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
960
static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
961 962
					 struct usb_ctrlrequest *ctrl)
{
963
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
964 965
	struct s3c_hsotg_req *hs_req;
	bool restart;
966 967
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
968
	int ret;
969
	bool halted;
970 971 972 973 974 975 976 977 978 979 980 981 982 983

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
984 985
			halted = ep->halted;

986
			s3c_hsotg_ep_sethalt(&ep->ep, set);
987 988 989 990 991 992 993

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
994

995 996 997 998 999 1000
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1001 1002 1003 1004 1005 1006 1007 1008
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1009 1010
					usb_gadget_giveback_request(&ep->ep,
								    &hs_req->req);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1033
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1034

1035 1036 1037 1038 1039 1040
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1041
static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1042
{
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1056 1057
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1058 1059 1060
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1061
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1062 1063 1064 1065 1066 1067 1068 1069 1070
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1071 1072 1073 1074 1075 1076 1077 1078 1079
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1080
static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
				      struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1093 1094 1095 1096
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1097 1098 1099 1100

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1101 1102 1103 1104
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1105 1106 1107 1108 1109 1110
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1111
			dcfg = readl(hsotg->regs + DCFG);
1112
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1113 1114
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1115
			writel(dcfg, hsotg->regs + DCFG);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1136
		spin_unlock(&hsotg->lock);
1137
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1138
		spin_lock(&hsotg->lock);
1139 1140 1141 1142
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1143 1144
	/*
	 * the request is either unhandlable, or is not formatted correctly
1145 1146 1147
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1148 1149
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1164
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1165 1166 1167 1168 1169 1170

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1171
	spin_lock(&hsotg->lock);
1172 1173 1174 1175
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1176
	spin_unlock(&hsotg->lock);
1177 1178 1179 1180 1181 1182 1183 1184 1185
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1186
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

	hsotg->eps[0].dir_in = 0;

	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1209 1210 1211 1212
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1228
 */
1229
static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1244 1245 1246 1247
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1258 1259 1260 1261
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1262 1263

	if (hs_req->req.complete) {
1264
		spin_unlock(&hsotg->lock);
1265
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1266
		spin_lock(&hsotg->lock);
1267 1268
	}

1269 1270
	/*
	 * Look to see if there is anything else to do. Note, the completion
1271
	 * of the previous request may have caused a new request to be started
1272 1273
	 * so be careful when doing this.
	 */
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1294
static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1295 1296 1297
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1298
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1299 1300 1301 1302
	int to_read;
	int max_req;
	int read_ptr;

1303

1304
	if (!hs_req) {
1305
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1306 1307
		int ptr;

1308
		dev_dbg(hsotg->dev,
1309
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1323 1324 1325
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1326
	if (to_read > max_req) {
1327 1328
		/*
		 * more data appeared than we where willing
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1340 1341 1342 1343
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1344
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1356
 * currently believed that we do not need to wait for any space in
1357 1358
 * the TxFIFO.
 */
1359
static void s3c_hsotg_send_zlp(struct dwc2_hsotg *hsotg,
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
		hsotg->eps[0].sent_zlp = 1;
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

	hsotg->eps[0].dir_in = 1;
	hsotg->eps[0].sent_zlp = 1;

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1381 1382
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1383

1384
	ctrl = readl(hsotg->regs + DIEPCTL0);
1385 1386 1387
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1388
	writel(ctrl, hsotg->regs + DIEPCTL0);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1400
 */
1401
static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg,
1402 1403
				     int epnum, bool was_setup)
{
1404
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1405 1406 1407
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1408
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1419 1420
		/*
		 * Calculate the size of the transfer by checking how much
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1434 1435 1436 1437
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1438 1439 1440 1441 1442 1443
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1444 1445
	}

1446 1447 1448 1449
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1450 1451 1452 1453
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1454 1455 1456
	}

	if (epnum == 0) {
1457 1458 1459 1460
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1461 1462 1463 1464
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

1465
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1466 1467 1468 1469 1470 1471 1472
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1473
 */
1474
static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1475 1476 1477
{
	u32 dsts;

1478 1479 1480
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1493
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1494 1495 1496 1497 1498 1499 1500
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1501
static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1502
{
1503
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1504 1505 1506 1507
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1508 1509
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1510

1511 1512
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1513 1514 1515 1516 1517

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1518 1519 1520
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1521 1522
		break;

1523
	case GRXSTS_PKTSTS_OUTDONE:
1524 1525 1526 1527 1528 1529 1530
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1531
	case GRXSTS_PKTSTS_SETUPDONE:
1532 1533 1534
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1535
			readl(hsotg->regs + DOEPCTL(0)));
1536 1537 1538 1539

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1540
	case GRXSTS_PKTSTS_OUTRX:
1541 1542 1543
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1544
	case GRXSTS_PKTSTS_SETUPRX:
1545 1546 1547
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1548
			readl(hsotg->regs + DOEPCTL(0)));
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1565
 */
1566 1567 1568 1569
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1570
		return D0EPCTL_MPS_64;
1571
	case 32:
1572
		return D0EPCTL_MPS_32;
1573
	case 16:
1574
		return D0EPCTL_MPS_16;
1575
	case 8:
1576
		return D0EPCTL_MPS_8;
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1593
static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1594 1595 1596 1597 1598
				       unsigned int ep, unsigned int mps)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1599
	u32 mcval;
1600 1601 1602 1603 1604 1605 1606
	u32 reg;

	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1607
		hs_ep->ep.maxpacket = mps;
1608
		hs_ep->mc = 1;
1609
	} else {
1610
		mpsval = mps & DXEPCTL_MPS_MASK;
1611
		if (mpsval > 1024)
1612
			goto bad_mps;
1613 1614 1615 1616
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1617
		hs_ep->ep.maxpacket = mpsval;
1618 1619
	}

1620 1621 1622 1623
	/*
	 * update both the in and out endpoint controldir_ registers, even
	 * if one of the directions may not be in use.
	 */
1624

1625
	reg = readl(regs + DIEPCTL(ep));
1626
	reg &= ~DXEPCTL_MPS_MASK;
1627
	reg |= mpsval;
1628
	writel(reg, regs + DIEPCTL(ep));
1629

1630
	if (ep) {
1631
		reg = readl(regs + DOEPCTL(ep));
1632
		reg &= ~DXEPCTL_MPS_MASK;
1633
		reg |= mpsval;
1634
		writel(reg, regs + DOEPCTL(ep));
1635
	}
1636 1637 1638 1639 1640 1641 1642

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1643 1644 1645 1646 1647
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1648
static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1649 1650 1651 1652
{
	int timeout;
	int val;

1653
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1654
		hsotg->regs + GRSTCTL);
1655 1656 1657 1658 1659

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1660
		val = readl(hsotg->regs + GRSTCTL);
1661

1662
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1663 1664 1665 1666 1667 1668
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1669
			break;
1670 1671 1672 1673 1674
		}

		udelay(1);
	}
}
1675 1676 1677 1678 1679 1680 1681 1682 1683

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1684
static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1685 1686 1687 1688
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1689 1690 1691 1692 1693 1694 1695 1696
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1697
		return 0;
1698
	}
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1717
static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1718 1719 1720
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1721
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1722 1723 1724 1725 1726 1727 1728
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1729 1730 1731
	/* Finish ZLP handling for IN EP0 transactions */
	if (hsotg->eps[0].sent_zlp) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1732
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1733 1734 1735
		return;
	}

1736 1737
	/*
	 * Calculate the size of the transfer by checking how much is left
1738 1739 1740 1741 1742 1743 1744 1745
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1746
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1747 1748 1749 1750 1751 1752 1753 1754 1755

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1775

1776 1777
		return;
	}
1778 1779 1780 1781 1782

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
1783
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1784 1785 1786 1787 1788 1789 1790 1791 1792
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1793
 */
1794
static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1795 1796 1797
			    int dir_in)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1798 1799 1800
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1801
	u32 ints;
1802
	u32 ctrl;
1803 1804

	ints = readl(hsotg->regs + epint_reg);
1805
	ctrl = readl(hsotg->regs + epctl_reg);
1806

1807 1808 1809
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1810 1811 1812
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1813 1814 1815 1816
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

1817
	if (ints & DXEPINT_XFERCOMPL) {
1818
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1819 1820
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1821
			else
1822
				ctrl |= DXEPCTL_SETODDFR;
1823 1824 1825
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1826
		dev_dbg(hsotg->dev,
1827
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1828 1829 1830
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1831 1832 1833 1834
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1835 1836 1837
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1838
			if (idx == 0 && !hs_ep->req)
1839 1840
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1841 1842 1843 1844
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1845 1846 1847 1848 1849

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1850
	if (ints & DXEPINT_EPDISBLD) {
1851 1852
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1853 1854 1855
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

1856
			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1857

1858 1859
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1860
				int dctl = readl(hsotg->regs + DCTL);
1861

1862
				dctl |= DCTL_CGNPINNAK;
1863
				writel(dctl, hsotg->regs + DCTL);
1864 1865 1866 1867
			}
		}
	}

1868
	if (ints & DXEPINT_AHBERR)
1869 1870
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1871
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1872 1873 1874
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1875 1876
			/*
			 * this is the notification we've received a
1877 1878
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1879 1880
			 * the setup here.
			 */
1881 1882 1883 1884 1885 1886 1887 1888

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

1889
	if (ints & DXEPINT_BACK2BACKSETUP)
1890 1891
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1892
	if (dir_in && !hs_ep->isochronous) {
1893
		/* not sure if this is important, but we'll clear it anyway */
1894
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1895 1896 1897 1898 1899
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1900
		if (ints & DIEPMSK_INTKNEPMISMSK) {
1901 1902 1903
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1904 1905 1906

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1907
		    ints & DIEPMSK_TXFIFOEMPTY) {
1908 1909
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1910 1911
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1912
		}
1913 1914 1915 1916 1917 1918 1919 1920 1921
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1922
 */
1923
static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
1924
{
1925
	u32 dsts = readl(hsotg->regs + DSTS);
1926
	int ep0_mps = 0, ep_mps = 8;
1927

1928 1929
	/*
	 * This should signal the finish of the enumeration phase
1930
	 * of the USB handshaking, so we should now know what rate
1931 1932
	 * we connected at.
	 */
1933 1934 1935

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

1936 1937
	/*
	 * note, since we're limited by the size of transfer on EP0, and
1938
	 * it seems IN transfers must be a even number of packets we do
1939 1940
	 * not advertise a 64byte MPS on EP0.
	 */
1941 1942

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1943 1944 1945
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
1946 1947
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
1948
		ep_mps = 1023;
1949 1950
		break;

1951
	case DSTS_ENUMSPD_HS:
1952 1953
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
1954
		ep_mps = 1024;
1955 1956
		break;

1957
	case DSTS_ENUMSPD_LS:
1958
		hsotg->gadget.speed = USB_SPEED_LOW;
1959 1960
		/*
		 * note, we don't actually support LS in this driver at the
1961 1962 1963 1964 1965
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
1966 1967
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
1968

1969 1970 1971 1972
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
1973 1974 1975 1976

	if (ep0_mps) {
		int i;
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1977
		for (i = 1; i < hsotg->num_of_eps; i++)
1978 1979 1980 1981 1982 1983 1984 1985
			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1986 1987
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
1999
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2000
			      struct s3c_hsotg_ep *ep,
2001
			      int result)
2002 2003
{
	struct s3c_hsotg_req *req, *treq;
2004
	unsigned size;
2005

2006
	ep->req = NULL;
2007

2008
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2009 2010
		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
2011

2012 2013 2014 2015 2016
	if (!hsotg->dedicated_fifos)
		return;
	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
	if (size < ep->fifo_size)
		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2017 2018 2019
}

/**
2020
 * s3c_hsotg_disconnect - disconnect service
2021 2022
 * @hsotg: The device state.
 *
2023 2024 2025
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2026
 */
2027
void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2028 2029 2030
{
	unsigned ep;

2031 2032 2033 2034
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2035
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2036
		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN);
2037 2038 2039

	call_gadget(hsotg, disconnect);
}
2040
EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2041 2042 2043 2044 2045 2046

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2047
static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2048 2049 2050 2051 2052 2053
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */

2054
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
		ep = &hsotg->eps[epno];

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2071 2072 2073
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2074

2075 2076 2077 2078 2079
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2080
 */
2081
static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2082 2083 2084 2085 2086 2087 2088
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2089
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2090

2091
	timeout = 10000;
2092
	do {
2093
		grstctl = readl(hsotg->regs + GRSTCTL);
2094
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2095

2096
	if (grstctl & GRSTCTL_CSFTRST) {
2097 2098 2099 2100
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2101
	timeout = 10000;
2102 2103

	while (1) {
2104
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2105 2106 2107 2108 2109 2110 2111 2112

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2113
		if (!(grstctl & GRSTCTL_AHBIDLE))
2114 2115 2116 2117 2118 2119 2120 2121 2122
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2123 2124 2125 2126 2127 2128
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2129
void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg)
2130 2131 2132 2133 2134 2135 2136 2137 2138
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2139
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2140
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2141 2142 2143

	s3c_hsotg_init_fifo(hsotg);

2144
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2145

2146
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2147 2148

	/* Clear any pending OTG interrupts */
2149
	writel(0xffffffff, hsotg->regs + GOTGINT);
2150 2151

	/* Clear any pending interrupts */
2152
	writel(0xffffffff, hsotg->regs + GINTSTS);
2153

2154 2155 2156 2157 2158 2159
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2160 2161

	if (using_dma(hsotg))
2162 2163
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
		       GAHBCFG_HBSTLEN_INCR4,
2164
		       hsotg->regs + GAHBCFG);
2165
	else
2166 2167 2168
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2169
		       hsotg->regs + GAHBCFG);
2170 2171

	/*
2172 2173 2174
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2175 2176
	 */

2177 2178
	writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2179 2180 2181 2182
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2183 2184 2185 2186 2187

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2188 2189 2190 2191 2192
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2193

2194
	writel(0, hsotg->regs + DAINTMSK);
2195 2196

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2197 2198
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2199 2200

	/* enable in and out endpoint interrupts */
2201
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2202 2203 2204 2205 2206 2207 2208

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2209
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2210 2211 2212 2213 2214

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2215
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2216
	udelay(10);  /* see openiboot */
2217
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2218

2219
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2220 2221

	/*
2222
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2223 2224 2225 2226
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2227 2228
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2229 2230

	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2231 2232
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2233
	       hsotg->regs + DOEPCTL0);
2234 2235 2236

	/* enable, but don't activate EP0in */
	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2237
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2238 2239 2240 2241

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2242 2243
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2244 2245

	/* clear global NAKs */
2246
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK | DCTL_SFTDISCON,
2247
	       hsotg->regs + DCTL);
2248 2249 2250 2251

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2252
	hsotg->last_rst = jiffies;
2253 2254
}

2255
static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2256 2257 2258 2259
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2260

2261
void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2262
{
2263
	/* remove the soft-disconnect and let's go */
2264
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2265 2266
}

2267 2268 2269 2270 2271 2272 2273
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
2274
	struct dwc2_hsotg *hsotg = pw;
2275 2276 2277 2278
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2279
	spin_lock(&hsotg->lock);
2280
irq_retry:
2281 2282
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2283 2284 2285 2286 2287 2288

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2289 2290
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2291 2292

		s3c_hsotg_irq_enumdone(hsotg);
2293
		hsotg->connected = 1;
2294 2295
	}

2296
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2297
		u32 daint = readl(hsotg->regs + DAINT);
2298 2299
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2300 2301
		int ep;

2302
		daint &= daintmsk;
2303 2304
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2305

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2319
	if (gintsts & GINTSTS_USBRST) {
2320

2321
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2322

2323
		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2324
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2325
			readl(hsotg->regs + GNPTXSTS));
2326

2327
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2328

2329
		if (usb_status & GOTGCTL_BSESVLD) {
2330 2331
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2332

2333
				kill_all_requests(hsotg, &hsotg->eps[0],
2334
							  -ECONNRESET);
2335

2336 2337
				s3c_hsotg_core_init_disconnected(hsotg);
				s3c_hsotg_core_connect(hsotg);
2338 2339
			}
		}
2340 2341 2342 2343
	}

	/* check both FIFOs */

2344
	if (gintsts & GINTSTS_NPTXFEMP) {
2345 2346
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2347 2348
		/*
		 * Disable the interrupt to stop it happening again
2349
		 * unless one of these endpoint routines decides that
2350 2351
		 * it needs re-enabling
		 */
2352

2353
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2354 2355 2356
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2357
	if (gintsts & GINTSTS_PTXFEMP) {
2358 2359
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2360
		/* See note in GINTSTS_NPTxFEmp */
2361

2362
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2363 2364 2365
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2366
	if (gintsts & GINTSTS_RXFLVL) {
2367 2368
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2369
		 * we need to retry s3c_hsotg_handle_rx if this is still
2370 2371
		 * set.
		 */
2372 2373 2374 2375

		s3c_hsotg_handle_rx(hsotg);
	}

2376
	if (gintsts & GINTSTS_ERLYSUSP) {
2377
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2378
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2379 2380
	}

2381 2382
	/*
	 * these next two seem to crop-up occasionally causing the core
2383
	 * to shutdown the USB transfer, so try clearing them and logging
2384 2385
	 * the occurrence.
	 */
2386

2387
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2388 2389
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2390
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2391 2392

		s3c_hsotg_dump(hsotg);
2393 2394
	}

2395
	if (gintsts & GINTSTS_GINNAKEFF) {
2396 2397
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2398
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2399 2400

		s3c_hsotg_dump(hsotg);
2401 2402
	}

2403 2404 2405 2406
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2407 2408 2409 2410

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2411 2412
	spin_unlock(&hsotg->lock);

2413 2414 2415 2416 2417 2418 2419 2420 2421
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2422
 */
2423 2424 2425 2426
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2427
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2428 2429 2430 2431 2432 2433
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2434
	int i, val, size;
2435
	int ret = 0;
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2451
	mps = usb_endpoint_maxp(desc);
2452 2453 2454

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2455
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2456 2457 2458 2459 2460
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2461
	spin_lock_irqsave(&hsotg->lock, flags);
2462

2463 2464
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2465

2466 2467 2468 2469
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2470
	epctrl |= DXEPCTL_USBACTEP;
2471

2472 2473
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2474 2475 2476 2477 2478
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2479
	epctrl |= DXEPCTL_SNAK;
2480 2481

	/* update the endpoint state */
2482
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2483 2484

	/* default, set to non-periodic */
2485
	hs_ep->isochronous = 0;
2486
	hs_ep->periodic = 0;
2487
	hs_ep->halted = 0;
2488
	hs_ep->interval = desc->bInterval;
2489

2490 2491 2492
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2493 2494
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2495 2496
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2497 2498 2499 2500
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2501 2502

	case USB_ENDPOINT_XFER_BULK:
2503
		epctrl |= DXEPCTL_EPTYPE_BULK;
2504 2505 2506
		break;

	case USB_ENDPOINT_XFER_INT:
2507
		if (dir_in)
2508 2509
			hs_ep->periodic = 1;

2510
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2511 2512 2513
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2514
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2515 2516 2517
		break;
	}

2518 2519
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2520 2521
	 * a unique tx-fifo even if it is non-periodic.
	 */
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
	if (dir_in && hsotg->dedicated_fifos) {
		size = hs_ep->ep.maxpacket*hs_ep->mc;
		for (i = 1; i <= 8; ++i) {
			if (hsotg->fifo_map & (1<<i))
				continue;
			val = readl(hsotg->regs + DPTXFSIZN(i));
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
			hsotg->fifo_map |= 1<<i;

			epctrl |= DXEPCTL_TXFNUM(i);
			hs_ep->fifo_index = i;
			hs_ep->fifo_size = val;
			break;
		}
2538 2539 2540 2541
		if (i == 8) {
			ret = -ENOMEM;
			goto error;
		}
2542
	}
2543

2544 2545
	/* for non control endpoints, set PID to D0 */
	if (index)
2546
		epctrl |= DXEPCTL_SETD0PID;
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2558
error:
2559
	spin_unlock_irqrestore(&hsotg->lock, flags);
2560
	return ret;
2561 2562
}

2563 2564 2565 2566
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2567 2568 2569
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2570
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2571 2572 2573 2574 2575 2576
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2577
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2578 2579 2580 2581 2582 2583

	if (ep == &hsotg->eps[0].ep) {
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2584
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2585

2586
	spin_lock_irqsave(&hsotg->lock, flags);
2587
	/* terminate all requests with shutdown */
2588
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2589

2590 2591 2592
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2593 2594

	ctrl = readl(hsotg->regs + epctrl_reg);
2595 2596 2597
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2598 2599 2600 2601 2602 2603 2604

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2605
	spin_unlock_irqrestore(&hsotg->lock, flags);
2606 2607 2608 2609 2610 2611 2612
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2613
 */
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2626 2627 2628 2629 2630
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2631 2632 2633 2634
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2635
	struct dwc2_hsotg *hs = hs_ep->parent;
2636 2637
	unsigned long flags;

2638
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2639

2640
	spin_lock_irqsave(&hs->lock, flags);
2641 2642

	if (!on_list(hs_ep, hs_req)) {
2643
		spin_unlock_irqrestore(&hs->lock, flags);
2644 2645 2646 2647
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2648
	spin_unlock_irqrestore(&hs->lock, flags);
2649 2650 2651 2652

	return 0;
}

2653 2654 2655 2656 2657
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2658 2659 2660
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2661
	struct dwc2_hsotg *hs = hs_ep->parent;
2662 2663 2664
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2665
	u32 xfertype;
2666 2667 2668

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2669 2670 2671 2672 2673 2674 2675 2676 2677
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2678 2679
	/* write both IN and OUT control registers */

2680
	epreg = DIEPCTL(index);
2681 2682
	epctl = readl(hs->regs + epreg);

2683
	if (value) {
2684 2685 2686
		epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
		if (epctl & DXEPCTL_EPENA)
			epctl |= DXEPCTL_EPDIS;
2687
	} else {
2688 2689 2690 2691 2692
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2693
	}
2694 2695 2696

	writel(epctl, hs->regs + epreg);

2697
	epreg = DOEPCTL(index);
2698 2699 2700
	epctl = readl(hs->regs + epreg);

	if (value)
2701
		epctl |= DXEPCTL_STALL;
2702
	else {
2703 2704 2705 2706 2707
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2708
	}
2709 2710 2711

	writel(epctl, hs->regs + epreg);

2712 2713
	hs_ep->halted = value;

2714 2715 2716
	return 0;
}

2717 2718 2719 2720 2721 2722 2723 2724
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2725
	struct dwc2_hsotg *hs = hs_ep->parent;
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2736 2737 2738 2739 2740
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2741
	.queue		= s3c_hsotg_ep_queue_lock,
2742
	.dequeue	= s3c_hsotg_ep_dequeue,
2743
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2744
	/* note, don't believe we have any call for the fifo routines */
2745 2746
};

2747 2748
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2749
 * @hsotg: The driver state
2750 2751 2752 2753
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2754
static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2755 2756 2757 2758
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2759

2760
	if (hsotg->uphy)
2761
		usb_phy_init(hsotg->uphy);
2762
	else if (hsotg->plat && hsotg->plat->phy_init)
2763
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2764 2765 2766 2767
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2768 2769 2770 2771
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2772
 * @hsotg: The driver state
2773 2774 2775 2776
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2777
static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2778 2779 2780
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2781
	if (hsotg->uphy)
2782
		usb_phy_shutdown(hsotg->uphy);
2783
	else if (hsotg->plat && hsotg->plat->phy_exit)
2784
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2785 2786 2787 2788
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2789 2790
}

2791 2792 2793 2794
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2795
static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2796 2797 2798
{
	/* unmask subset of endpoint interrupts */

2799 2800 2801
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2802

2803 2804 2805
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2806

2807
	writel(0, hsotg->regs + DAINTMSK);
2808 2809

	/* Be in disconnected state until gadget is registered */
2810
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2811 2812 2813

	if (0) {
		/* post global nak until we're ready */
2814
		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2815
		       hsotg->regs + DCTL);
2816 2817 2818 2819 2820
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2821 2822
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2823 2824 2825 2826

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2827
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2828
	       hsotg->regs + GUSBCFG);
2829

2830
	writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2831
	       hsotg->regs + GAHBCFG);
2832 2833
}

2834 2835 2836 2837 2838 2839 2840 2841
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2842 2843
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2844
{
2845
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2846
	unsigned long flags;
2847 2848 2849
	int ret;

	if (!hsotg) {
2850
		pr_err("%s: called with no device\n", __func__);
2851 2852 2853 2854 2855 2856 2857 2858
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2859
	if (driver->max_speed < USB_SPEED_FULL)
2860 2861
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2862
	if (!driver->setup) {
2863 2864 2865 2866
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

2867
	mutex_lock(&hsotg->init_mutex);
2868 2869 2870 2871
	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2872
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2873 2874
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2875 2876
	clk_enable(hsotg->clk);

2877 2878
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2879
	if (ret) {
2880
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2881 2882 2883
		goto err;
	}

2884
	s3c_hsotg_phy_enable(hsotg);
2885 2886
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
2887

2888 2889 2890
	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_init(hsotg);
	s3c_hsotg_core_init_disconnected(hsotg);
2891
	hsotg->enabled = 0;
2892 2893
	spin_unlock_irqrestore(&hsotg->lock, flags);

2894
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2895

2896 2897
	mutex_unlock(&hsotg->init_mutex);

2898 2899 2900
	return 0;

err:
2901
	mutex_unlock(&hsotg->init_mutex);
2902 2903 2904 2905
	hsotg->driver = NULL;
	return ret;
}

2906 2907 2908 2909 2910 2911 2912
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2913
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
2914
{
2915
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2916
	unsigned long flags = 0;
2917 2918 2919 2920 2921
	int ep;

	if (!hsotg)
		return -ENODEV;

2922 2923
	mutex_lock(&hsotg->init_mutex);

2924
	/* all endpoints should be shutdown */
2925
	for (ep = 1; ep < hsotg->num_of_eps; ep++)
2926 2927
		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

2928 2929
	spin_lock_irqsave(&hsotg->lock, flags);

2930
	hsotg->driver = NULL;
2931
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2932
	hsotg->enabled = 0;
2933

2934 2935
	spin_unlock_irqrestore(&hsotg->lock, flags);

2936 2937
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
2938 2939
	s3c_hsotg_phy_disable(hsotg);

2940
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2941

2942 2943
	clk_disable(hsotg->clk);

2944 2945
	mutex_unlock(&hsotg->init_mutex);

2946 2947 2948
	return 0;
}

2949 2950 2951 2952 2953 2954
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
2955 2956 2957 2958 2959
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

2960 2961 2962 2963 2964 2965 2966 2967 2968
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
2969
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2970 2971
	unsigned long flags = 0;

2972
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
2973

2974
	mutex_lock(&hsotg->init_mutex);
2975 2976
	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
2977
		clk_enable(hsotg->clk);
2978
		hsotg->enabled = 1;
2979
		s3c_hsotg_core_connect(hsotg);
2980
	} else {
2981
		s3c_hsotg_core_disconnect(hsotg);
2982
		hsotg->enabled = 0;
2983
		clk_disable(hsotg->clk);
2984 2985 2986 2987
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);
2988
	mutex_unlock(&hsotg->init_mutex);
2989 2990 2991 2992

	return 0;
}

2993
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2994
	.get_frame	= s3c_hsotg_gadget_getframe,
2995 2996
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
2997
	.pullup                 = s3c_hsotg_pullup,
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3010
static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
				       struct s3c_hsotg_ep *hs_ep,
				       int epnum)
{
	char *dir;

	if (epnum == 0)
		dir = "";
	else if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hs_ep->dir_in = 1;
	}

	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3038
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3039 3040
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3041 3042
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3043 3044 3045 3046
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3047
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3048 3049
		writel(next, hsotg->regs + DIEPCTL(epnum));
		writel(next, hsotg->regs + DOEPCTL(epnum));
3050 3051 3052
	}
}

3053 3054 3055 3056 3057 3058
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3059
static void s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3060
{
3061
	u32 cfg2, cfg3, cfg4;
3062
	/* check hardware configuration */
3063

3064 3065
	cfg2 = readl(hsotg->regs + 0x48);
	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3066

3067 3068
	cfg3 = readl(hsotg->regs + 0x4C);
	hsotg->fifo_mem = (cfg3 >> 16);
3069 3070 3071 3072

	cfg4 = readl(hsotg->regs + 0x50);
	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;

3073 3074 3075 3076
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3077 3078
}

3079 3080 3081 3082
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3083
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3084
{
M
Mark Brown 已提交
3085
#ifdef DEBUG
3086 3087 3088 3089 3090 3091
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3092 3093
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3094 3095

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3096
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3097 3098

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3099
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3100 3101 3102 3103

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
3104
		val = readl(regs + DPTXFSIZN(idx));
3105
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3106 3107
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3108 3109 3110 3111 3112
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3113 3114 3115
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3116

3117
		val = readl(regs + DOEPCTL(idx));
3118 3119
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3120 3121 3122
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3123 3124 3125 3126

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3127
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3128
#endif
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
3142
	struct dwc2_hsotg *hsotg = seq->private;
3143 3144 3145 3146
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3147 3148 3149
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3150 3151

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3152
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3153 3154

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3155 3156
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3157 3158

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3159 3160
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3161 3162

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3163 3164
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3165

3166
	seq_puts(seq, "\nEndpoint status:\n");
3167 3168 3169 3170

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

3171 3172
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3173 3174 3175 3176

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3177 3178
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3179 3180 3181 3182

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3183
		seq_puts(seq, "\n");
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3209
 */
3210 3211
static int fifo_show(struct seq_file *seq, void *v)
{
3212
	struct dwc2_hsotg *hsotg = seq->private;
3213 3214 3215 3216
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3217
	seq_puts(seq, "Non-periodic FIFOs:\n");
3218
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3219

3220
	val = readl(regs + GNPTXFSIZ);
3221
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3222 3223
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3224

3225
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3226 3227

	for (idx = 1; idx <= 15; idx++) {
3228
		val = readl(regs + DPTXFSIZN(idx));
3229 3230

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3231 3232
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3264
 */
3265 3266 3267
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
3268
	struct dwc2_hsotg *hsotg = ep->parent;
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3281 3282
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3283 3284

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3285 3286
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3287 3288

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3289 3290
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3291 3292

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3293 3294
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3295

3296
	seq_puts(seq, "\n");
3297 3298 3299 3300 3301 3302
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3303
	spin_lock_irqsave(&hsotg->lock, flags);
3304 3305 3306

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3307
			seq_puts(seq, "not showing more requests...\n");
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3318
	spin_unlock_irqrestore(&hsotg->lock, flags);
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3344
 */
3345
static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

	/* create one file for each endpoint */

3373
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];

		ep->debugfs = debugfs_create_file(ep->name, 0444,
						  root, ep, &ep_fops);

		if (IS_ERR(ep->debugfs))
			dev_err(hsotg->dev, "failed to create %s debug file\n",
				ep->name);
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3390
 */
3391
static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3392 3393 3394
{
	unsigned epidx;

3395
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3396 3397 3398 3399 3400 3401 3402 3403 3404
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
		debugfs_remove(ep->debugfs);
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3405
/**
3406 3407 3408
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3409
 */
3410
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3411
{
3412 3413
	struct device *dev = hsotg->dev;
	struct s3c_hsotg_plat *plat = dev->platform_data;
3414
	struct s3c_hsotg_ep *eps;
3415 3416
	int epnum;
	int ret;
3417
	int i;
3418

3419 3420 3421
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3422
	/*
3423 3424
	 * If platform probe couldn't find a generic PHY or an old style
	 * USB PHY, fall back to pdata
3425
	 */
3426 3427 3428 3429 3430 3431 3432 3433 3434
	if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
		plat = dev_get_platdata(dev);
		if (!plat) {
			dev_err(dev,
			"no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		}
		hsotg->plat = plat;
	} else if (hsotg->phy) {
3435 3436 3437 3438
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
3439
		if (phy_get_bus_width(hsotg->phy) == 8)
3440 3441
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3442

3443
	hsotg->clk = devm_clk_get(dev, "otg");
3444
	if (IS_ERR(hsotg->clk)) {
3445
		hsotg->clk = NULL;
3446
		dev_dbg(dev, "cannot get otg clock\n");
3447 3448
	}

3449
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3450 3451 3452 3453 3454
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3455 3456 3457 3458 3459 3460
	ret = clk_prepare_enable(hsotg->clk);
	if (ret) {
		dev_err(dev, "failed to enable otg clk\n");
		goto err_clk;
	}

3461

3462 3463 3464 3465 3466
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3467
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3468 3469 3470
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3471
		goto err_clk;
3472 3473 3474 3475 3476 3477
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
3478
		dev_err(dev, "failed to enable supplies: %d\n", ret);
3479
		goto err_clk;
3480 3481
	}

3482 3483
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3484 3485

	s3c_hsotg_corereset(hsotg);
3486
	s3c_hsotg_hw_cfg(hsotg);
3487
	s3c_hsotg_init(hsotg);
3488

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

3505 3506
	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
				dev_name(hsotg->dev), hsotg);
3507 3508 3509 3510 3511
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
3512
		dev_err(dev, "cannot claim IRQ for gadget\n");
3513
		goto err_supplies;
3514 3515
	}

3516 3517 3518 3519
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3520
		ret = -EINVAL;
3521 3522 3523 3524 3525 3526
		goto err_supplies;
	}

	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
		      GFP_KERNEL);
	if (!eps) {
3527
		ret = -ENOMEM;
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
		goto err_supplies;
	}

	hsotg->eps = eps;

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
	hsotg->gadget.ep0 = &hsotg->eps[0].ep;

	/* allocate EP0 request */

	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3544
		ret = -ENOMEM;
3545 3546
		goto err_ep_mem;
	}
3547 3548

	/* initialise the endpoints now the core has been initialised */
3549
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3550 3551
		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);

3552
	/* disable power and clock */
3553
	s3c_hsotg_phy_disable(hsotg);
3554 3555 3556 3557

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
3558
		dev_err(dev, "failed to disable supplies: %d\n", ret);
3559 3560 3561
		goto err_ep_mem;
	}

3562
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3563
	if (ret)
3564
		goto err_ep_mem;
3565

3566 3567 3568 3569 3570 3571
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3572
err_ep_mem:
3573
	kfree(eps);
3574
err_supplies:
3575
	s3c_hsotg_phy_disable(hsotg);
3576
err_clk:
3577
	clk_disable_unprepare(hsotg->clk);
3578

3579 3580
	return ret;
}
3581
EXPORT_SYMBOL_GPL(dwc2_gadget_init);
3582

3583 3584 3585 3586
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
3587
int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3588
{
3589
	usb_del_gadget_udc(&hsotg->gadget);
3590
	s3c_hsotg_delete_debug(hsotg);
3591
	clk_disable_unprepare(hsotg->clk);
3592

3593 3594
	return 0;
}
3595
EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
3596

3597
int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3598 3599 3600 3601
{
	unsigned long flags;
	int ret = 0;

3602 3603
	mutex_lock(&hsotg->init_mutex);

3604 3605 3606
	if (hsotg->driver) {
		int ep;

3607 3608 3609
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3610 3611 3612 3613 3614 3615
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
			s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3616

3617
		s3c_hsotg_phy_disable(hsotg);
3618 3619 3620 3621 3622 3623

		for (ep = 0; ep < hsotg->num_of_eps; ep++)
			s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
3624
		clk_disable(hsotg->clk);
3625 3626
	}

3627 3628
	mutex_unlock(&hsotg->init_mutex);

3629 3630
	return ret;
}
3631
EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
3632

3633
int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3634 3635 3636 3637
{
	unsigned long flags;
	int ret = 0;

3638 3639
	mutex_lock(&hsotg->init_mutex);

3640 3641 3642
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3643 3644

		clk_enable(hsotg->clk);
3645
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3646
					    hsotg->supplies);
3647

3648
		s3c_hsotg_phy_enable(hsotg);
3649

3650 3651 3652 3653 3654 3655
		spin_lock_irqsave(&hsotg->lock, flags);
		s3c_hsotg_core_init_disconnected(hsotg);
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3656
	mutex_unlock(&hsotg->init_mutex);
3657 3658 3659

	return ret;
}
3660
EXPORT_SYMBOL_GPL(s3c_hsotg_resume);