omap2.c 60.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
 * Copyright © 2004 Micron Technology Inc.
 * Copyright © 2004 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/platform_device.h>
12
#include <linux/dmaengine.h>
13 14
#include <linux/dma-mapping.h>
#include <linux/delay.h>
15
#include <linux/gpio/consumer.h>
16
#include <linux/module.h>
17
#include <linux/interrupt.h>
18 19
#include <linux/jiffies.h>
#include <linux/sched.h>
20 21 22
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
23
#include <linux/omap-dma.h>
24
#include <linux/io.h>
25
#include <linux/slab.h>
26 27
#include <linux/of.h>
#include <linux/of_device.h>
28

29
#include <linux/mtd/nand_bch.h>
30
#include <linux/platform_data/elm.h>
31

32
#include <linux/omap-gpmc.h>
33
#include <linux/platform_data/mtd-nand-omap2.h>
34 35

#define	DRIVER_NAME	"omap2-nand"
36
#define	OMAP_NAND_TIMEOUT_MS	5000
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

#define NAND_Ecc_P1e		(1 << 0)
#define NAND_Ecc_P2e		(1 << 1)
#define NAND_Ecc_P4e		(1 << 2)
#define NAND_Ecc_P8e		(1 << 3)
#define NAND_Ecc_P16e		(1 << 4)
#define NAND_Ecc_P32e		(1 << 5)
#define NAND_Ecc_P64e		(1 << 6)
#define NAND_Ecc_P128e		(1 << 7)
#define NAND_Ecc_P256e		(1 << 8)
#define NAND_Ecc_P512e		(1 << 9)
#define NAND_Ecc_P1024e		(1 << 10)
#define NAND_Ecc_P2048e		(1 << 11)

#define NAND_Ecc_P1o		(1 << 16)
#define NAND_Ecc_P2o		(1 << 17)
#define NAND_Ecc_P4o		(1 << 18)
#define NAND_Ecc_P8o		(1 << 19)
#define NAND_Ecc_P16o		(1 << 20)
#define NAND_Ecc_P32o		(1 << 21)
#define NAND_Ecc_P64o		(1 << 22)
#define NAND_Ecc_P128o		(1 << 23)
#define NAND_Ecc_P256o		(1 << 24)
#define NAND_Ecc_P512o		(1 << 25)
#define NAND_Ecc_P1024o		(1 << 26)
#define NAND_Ecc_P2048o		(1 << 27)

#define TF(value)	(value ? 1 : 0)

#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)

#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)

#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)

#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)

#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)

105 106 107 108 109
#define	PREFETCH_CONFIG1_CS_SHIFT	24
#define	ECC_CONFIG_CS_SHIFT		1
#define	CS_MASK				0x7
#define	ENABLE_PREFETCH			(0x1 << 7)
#define	DMA_MPU_MODE_SHIFT		2
110
#define	ECCSIZE0_SHIFT			12
111 112 113 114
#define	ECCSIZE1_SHIFT			22
#define	ECC1RESULTSIZE			0x1
#define	ECCCLEAR			0x100
#define	ECC1				0x1
115 116 117 118 119
#define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
#define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
#define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
#define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
#define	STATUS_BUFF_EMPTY		0x00000001
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#define SECTOR_BYTES		512
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
#define BCH4_BIT_PAD		4

/* GPMC ecc engine settings for read */
#define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
#define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
#define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
#define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
#define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */

/* GPMC ecc engine settings for write */
#define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
#define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
#define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */

137
#define BADBLOCK_MARKER_LENGTH		2
138

139 140 141 142
static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
				0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
				0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
				0x07, 0x0e};
143 144 145 146
static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
	0xac, 0x6b, 0xff, 0x99, 0x7b};
static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};

147 148 149 150 151
/* Shared among all NAND instances to synchronize access to the ECC Engine */
static struct nand_hw_control omap_gpmc_controller = {
	.lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
};
152

153 154 155 156 157
struct omap_nand_info {
	struct nand_chip		nand;
	struct platform_device		*pdev;

	int				gpmc_cs;
158 159 160
	bool				dev_ready;
	enum nand_io			xfer_type;
	int				devsize;
161
	enum omap_ecc			ecc_opt;
162 163 164
	struct device_node		*elm_of_node;

	unsigned long			phys_base;
165
	struct completion		comp;
166
	struct dma_chan			*dma;
167 168
	int				gpmc_irq_fifo;
	int				gpmc_irq_count;
169 170 171 172 173 174
	enum {
		OMAP_NAND_IO_READ = 0,	/* read */
		OMAP_NAND_IO_WRITE,	/* write */
	} iomode;
	u_char				*buf;
	int					buf_len;
175
	/* Interface to GPMC */
176
	struct gpmc_nand_regs		reg;
177
	struct gpmc_nand_ops		*ops;
178
	bool				flash_bbt;
179
	/* fields specific for BCHx_HW ECC scheme */
180
	struct device			*elm_dev;
181 182
	/* NAND ready gpio */
	struct gpio_desc		*ready_gpiod;
183 184
};

185 186
static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
{
187
	return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
188
}
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/**
 * omap_prefetch_enable - configures and starts prefetch transfer
 * @cs: cs (chip select) number
 * @fifo_th: fifo threshold to be used for read/ write
 * @dma_mode: dma mode enable (1) or disable (0)
 * @u32_count: number of bytes to be transferred
 * @is_write: prefetch read(0) or write post(1) mode
 */
static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
	unsigned int u32_count, int is_write, struct omap_nand_info *info)
{
	u32 val;

	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
		return -1;

	if (readl(info->reg.gpmc_prefetch_control))
		return -EBUSY;

	/* Set the amount of bytes to be prefetched */
	writel(u32_count, info->reg.gpmc_prefetch_config2);

	/* Set dma/mpu mode, the prefetch read / post write and
	 * enable the engine. Set which cs is has requested for.
	 */
	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
217
		(dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	writel(val, info->reg.gpmc_prefetch_config1);

	/*  Start the prefetch engine */
	writel(0x1, info->reg.gpmc_prefetch_control);

	return 0;
}

/**
 * omap_prefetch_reset - disables and stops the prefetch engine
 */
static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
{
	u32 config1;

	/* check if the same module/cs is trying to reset */
	config1 = readl(info->reg.gpmc_prefetch_config1);
	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
		return -EINVAL;

	/* Stop the PFPW engine */
	writel(0x0, info->reg.gpmc_prefetch_control);

	/* Reset/disable the PFPW engine */
	writel(0x0, info->reg.gpmc_prefetch_config1);

	return 0;
}

247 248 249 250 251 252 253 254 255 256 257 258 259
/**
 * omap_hwcontrol - hardware specific access to control-lines
 * @mtd: MTD device structure
 * @cmd: command to device
 * @ctrl:
 * NAND_NCE: bit 0 -> don't care
 * NAND_CLE: bit 1 -> Command Latch
 * NAND_ALE: bit 2 -> Address Latch
 *
 * NOTE: boards may use different bits for these!!
 */
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
260
	struct omap_nand_info *info = mtd_to_omap(mtd);
261

262 263
	if (cmd != NAND_CMD_NONE) {
		if (ctrl & NAND_CLE)
264
			writeb(cmd, info->reg.gpmc_nand_command);
265 266

		else if (ctrl & NAND_ALE)
267
			writeb(cmd, info->reg.gpmc_nand_address);
268 269

		else /* NAND_NCE */
270
			writeb(cmd, info->reg.gpmc_nand_data);
271
	}
272 273
}

274 275 276 277 278 279 280 281
/**
 * omap_read_buf8 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
{
282
	struct nand_chip *nand = mtd_to_nand(mtd);
283 284 285 286 287 288 289 290 291 292 293 294

	ioread8_rep(nand->IO_ADDR_R, buf, len);
}

/**
 * omap_write_buf8 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
{
295
	struct omap_nand_info *info = mtd_to_omap(mtd);
296
	u_char *p = (u_char *)buf;
297
	bool status;
298 299 300

	while (len--) {
		iowrite8(*p++, info->nand.IO_ADDR_W);
301 302
		/* wait until buffer is available for write */
		do {
303
			status = info->ops->nand_writebuffer_empty();
304
		} while (!status);
305 306 307
	}
}

308 309 310 311 312 313 314 315
/**
 * omap_read_buf16 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
{
316
	struct nand_chip *nand = mtd_to_nand(mtd);
317

318
	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
319 320 321 322 323 324 325 326 327 328
}

/**
 * omap_write_buf16 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
{
329
	struct omap_nand_info *info = mtd_to_omap(mtd);
330
	u16 *p = (u16 *) buf;
331
	bool status;
332 333 334 335
	/* FIXME try bursts of writesw() or DMA ... */
	len >>= 1;

	while (len--) {
336
		iowrite16(*p++, info->nand.IO_ADDR_W);
337 338
		/* wait until buffer is available for write */
		do {
339
			status = info->ops->nand_writebuffer_empty();
340
		} while (!status);
341 342
	}
}
343 344 345 346 347 348 349 350 351

/**
 * omap_read_buf_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
{
352
	struct omap_nand_info *info = mtd_to_omap(mtd);
353
	uint32_t r_count = 0;
354 355 356 357
	int ret = 0;
	u32 *p = (u32 *)buf;

	/* take care of subpage reads */
358 359 360 361 362 363 364
	if (len % 4) {
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_read_buf16(mtd, buf, len % 4);
		else
			omap_read_buf8(mtd, buf, len % 4);
		p = (u32 *) (buf + len % 4);
		len -= len % 4;
365 366 367
	}

	/* configure and start prefetch transfer */
368 369
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
370 371 372
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
373
			omap_read_buf16(mtd, (u_char *)p, len);
374
		else
375
			omap_read_buf8(mtd, (u_char *)p, len);
376 377
	} else {
		do {
378
			r_count = readl(info->reg.gpmc_prefetch_status);
379
			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
380 381
			r_count = r_count >> 2;
			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
382 383 384 385
			p += r_count;
			len -= r_count << 2;
		} while (len);
		/* disable and stop the PFPW engine */
386
		omap_prefetch_reset(info->gpmc_cs, info);
387 388 389 390 391 392 393 394 395 396 397 398
	}
}

/**
 * omap_write_buf_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
399
	struct omap_nand_info *info = mtd_to_omap(mtd);
400
	uint32_t w_count = 0;
401
	int i = 0, ret = 0;
402
	u16 *p = (u16 *)buf;
403
	unsigned long tim, limit;
404
	u32 val;
405 406 407

	/* take care of subpage writes */
	if (len % 2 != 0) {
408
		writeb(*buf, info->nand.IO_ADDR_W);
409 410 411 412 413
		p = (u16 *)(buf + 1);
		len--;
	}

	/*  configure and start prefetch transfer */
414 415
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
416 417 418
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
419
			omap_write_buf16(mtd, (u_char *)p, len);
420
		else
421
			omap_write_buf8(mtd, (u_char *)p, len);
422
	} else {
423
		while (len) {
424
			w_count = readl(info->reg.gpmc_prefetch_status);
425
			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
426
			w_count = w_count >> 1;
427
			for (i = 0; (i < w_count) && len; i++, len -= 2)
428
				iowrite16(*p++, info->nand.IO_ADDR_W);
429
		}
430
		/* wait for data to flushed-out before reset the prefetch */
431 432 433
		tim = 0;
		limit = (loops_per_jiffy *
					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
434
		do {
435
			cpu_relax();
436
			val = readl(info->reg.gpmc_prefetch_status);
437
			val = PREFETCH_STATUS_COUNT(val);
438
		} while (val && (tim++ < limit));
439

440
		/* disable and stop the PFPW engine */
441
		omap_prefetch_reset(info->gpmc_cs, info);
442 443 444
	}
}

445
/*
446
 * omap_nand_dma_callback: callback on the completion of dma transfer
447 448
 * @data: pointer to completion data structure
 */
449 450 451 452
static void omap_nand_dma_callback(void *data)
{
	complete((struct completion *) data);
}
453 454

/*
455
 * omap_nand_dma_transfer: configure and start dma transfer
456 457 458 459 460 461 462 463
 * @mtd: MTD device structure
 * @addr: virtual address in RAM of source/destination
 * @len: number of data bytes to be transferred
 * @is_write: flag for read/write operation
 */
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
					unsigned int len, int is_write)
{
464
	struct omap_nand_info *info = mtd_to_omap(mtd);
465
	struct dma_async_tx_descriptor *tx;
466 467
	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
							DMA_FROM_DEVICE;
468
	struct scatterlist sg;
469
	unsigned long tim, limit;
470 471
	unsigned n;
	int ret;
472
	u32 val;
473

474 475
	if (!virt_addr_valid(addr))
		goto out_copy;
476

477 478 479
	sg_init_one(&sg, addr, len);
	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
	if (n == 0) {
480 481 482 483 484
		dev_err(&info->pdev->dev,
			"Couldn't DMA map a %d byte buffer\n", len);
		goto out_copy;
	}

485 486 487 488 489 490 491 492 493 494
	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!tx)
		goto out_copy_unmap;

	tx->callback = omap_nand_dma_callback;
	tx->callback_param = &info->comp;
	dmaengine_submit(tx);

495 496 497 498 499
	init_completion(&info->comp);

	/* setup and start DMA using dma_addr */
	dma_async_issue_pending(info->dma);

500 501 502
	/*  configure and start prefetch transfer */
	ret = omap_prefetch_enable(info->gpmc_cs,
		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
503
	if (ret)
504
		/* PFPW engine is busy, use cpu copy method */
505
		goto out_copy_unmap;
506 507

	wait_for_completion(&info->comp);
508 509
	tim = 0;
	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
510 511

	do {
512
		cpu_relax();
513
		val = readl(info->reg.gpmc_prefetch_status);
514
		val = PREFETCH_STATUS_COUNT(val);
515
	} while (val && (tim++ < limit));
516 517

	/* disable and stop the PFPW engine */
518
	omap_prefetch_reset(info->gpmc_cs, info);
519

520
	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
521 522
	return 0;

523
out_copy_unmap:
524
	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
			: omap_write_buf16(mtd, (u_char *) addr, len);
	else
		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
			: omap_write_buf8(mtd, (u_char *) addr, len);
	return 0;
}

/**
 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_read_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
		omap_nand_dma_transfer(mtd, buf, len, 0x0);
}

/**
 * omap_write_buf_dma_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_dma_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_write_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
563
		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
564 565
}

566
/*
567
 * omap_nand_irq - GPMC irq handler
568 569 570 571 572 573 574 575
 * @this_irq: gpmc irq number
 * @dev: omap_nand_info structure pointer is passed here
 */
static irqreturn_t omap_nand_irq(int this_irq, void *dev)
{
	struct omap_nand_info *info = (struct omap_nand_info *) dev;
	u32 bytes;

576
	bytes = readl(info->reg.gpmc_prefetch_status);
577
	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
578 579
	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
580
		if (this_irq == info->gpmc_irq_count)
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
			goto done;

		if (info->buf_len && (info->buf_len < bytes))
			bytes = info->buf_len;
		else if (!info->buf_len)
			bytes = 0;
		iowrite32_rep(info->nand.IO_ADDR_W,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;
		info->buf_len -= bytes;

	} else {
		ioread32_rep(info->nand.IO_ADDR_R,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;

597
		if (this_irq == info->gpmc_irq_count)
598 599 600 601 602 603 604 605
			goto done;
	}

	return IRQ_HANDLED;

done:
	complete(&info->comp);

606 607
	disable_irq_nosync(info->gpmc_irq_fifo);
	disable_irq_nosync(info->gpmc_irq_count);
608 609 610 611 612 613 614 615 616 617 618 619

	return IRQ_HANDLED;
}

/*
 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
{
620
	struct omap_nand_info *info = mtd_to_omap(mtd);
621 622 623 624 625 626 627 628 629 630 631 632
	int ret = 0;

	if (len <= mtd->oobsize) {
		omap_read_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_READ;
	info->buf = buf;
	init_completion(&info->comp);

	/*  configure and start prefetch transfer */
633 634
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
635 636 637 638 639
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;
640 641 642

	enable_irq(info->gpmc_irq_count);
	enable_irq(info->gpmc_irq_fifo);
643 644 645 646 647

	/* waiting for read to complete */
	wait_for_completion(&info->comp);

	/* disable and stop the PFPW engine */
648
	omap_prefetch_reset(info->gpmc_cs, info);
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_read_buf16(mtd, buf, len);
	else
		omap_read_buf8(mtd, buf, len);
}

/*
 * omap_write_buf_irq_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_irq_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
667
	struct omap_nand_info *info = mtd_to_omap(mtd);
668 669
	int ret = 0;
	unsigned long tim, limit;
670
	u32 val;
671 672 673 674 675 676 677 678 679 680

	if (len <= mtd->oobsize) {
		omap_write_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_WRITE;
	info->buf = (u_char *) buf;
	init_completion(&info->comp);

681
	/* configure and start prefetch transfer : size=24 */
682 683
	ret = omap_prefetch_enable(info->gpmc_cs,
		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
684 685 686 687 688
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;
689 690 691

	enable_irq(info->gpmc_irq_count);
	enable_irq(info->gpmc_irq_fifo);
692 693 694

	/* waiting for write to complete */
	wait_for_completion(&info->comp);
695

696 697 698
	/* wait for data to flushed-out before reset the prefetch */
	tim = 0;
	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
699 700
	do {
		val = readl(info->reg.gpmc_prefetch_status);
701
		val = PREFETCH_STATUS_COUNT(val);
702
		cpu_relax();
703
	} while (val && (tim++ < limit));
704 705

	/* disable and stop the PFPW engine */
706
	omap_prefetch_reset(info->gpmc_cs, info);
707 708 709 710 711 712 713 714 715
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_write_buf16(mtd, buf, len);
	else
		omap_write_buf8(mtd, buf, len);
}

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
/**
 * gen_true_ecc - This function will generate true ECC value
 * @ecc_buf: buffer to store ecc code
 *
 * This generated true ECC value can be used when correcting
 * data read from NAND flash memory core
 */
static void gen_true_ecc(u8 *ecc_buf)
{
	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);

	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
}

/**
 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 * @ecc_data1:  ecc code from nand spare area
 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 * @page_data:  page data
 *
 * This function compares two ECC's and indicates if there is an error.
 * If the error can be corrected it will be corrected to the buffer.
744 745
 * If there is no error, %0 is returned. If there is an error but it
 * was corrected, %1 is returned. Otherwise, %-1 is returned.
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
 */
static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
			    u8 *ecc_data2,	/* read from register */
			    u8 *page_data)
{
	uint	i;
	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
	u8	ecc_bit[24];
	u8	ecc_sum = 0;
	u8	find_bit = 0;
	uint	find_byte = 0;
	int	isEccFF;

	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);

	gen_true_ecc(ecc_data1);
	gen_true_ecc(ecc_data2);

	for (i = 0; i <= 2; i++) {
		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
	}

	for (i = 0; i < 8; i++) {
		tmp0_bit[i]     = *ecc_data1 % 2;
		*ecc_data1	= *ecc_data1 / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp0_bit[i]     = *ecc_data2 % 2;
		*ecc_data2       = *ecc_data2 / 2;
	}

	for (i = 0; i < 8; i++) {
		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
	}

	for (i = 0; i < 6; i++)
		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];

	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];

	for (i = 0; i < 24; i++)
		ecc_sum += ecc_bit[i];

	switch (ecc_sum) {
	case 0:
		/* Not reached because this function is not called if
		 *  ECC values are equal
		 */
		return 0;

	case 1:
		/* Uncorrectable error */
824
		pr_debug("ECC UNCORRECTED_ERROR 1\n");
825
		return -EBADMSG;
826 827 828

	case 11:
		/* UN-Correctable error */
829
		pr_debug("ECC UNCORRECTED_ERROR B\n");
830
		return -EBADMSG;
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845

	case 12:
		/* Correctable error */
		find_byte = (ecc_bit[23] << 8) +
			    (ecc_bit[21] << 7) +
			    (ecc_bit[19] << 6) +
			    (ecc_bit[17] << 5) +
			    (ecc_bit[15] << 4) +
			    (ecc_bit[13] << 3) +
			    (ecc_bit[11] << 2) +
			    (ecc_bit[9]  << 1) +
			    ecc_bit[7];

		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];

846 847
		pr_debug("Correcting single bit ECC error at offset: "
				"%d, bit: %d\n", find_byte, find_bit);
848 849 850

		page_data[find_byte] ^= (1 << find_bit);

851
		return 1;
852 853 854 855 856 857 858
	default:
		if (isEccFF) {
			if (ecc_data2[0] == 0 &&
			    ecc_data2[1] == 0 &&
			    ecc_data2[2] == 0)
				return 0;
		}
859
		pr_debug("UNCORRECTED_ERROR default\n");
860
		return -EBADMSG;
861 862 863 864 865 866 867 868 869 870 871
	}
}

/**
 * omap_correct_data - Compares the ECC read with HW generated ECC
 * @mtd: MTD device structure
 * @dat: page data
 * @read_ecc: ecc read from nand flash
 * @calc_ecc: ecc read from HW ECC registers
 *
 * Compares the ecc read from nand spare area with ECC registers values
872 873 874 875 876
 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 * detection and correction. If there are no errors, %0 is returned. If
 * there were errors and all of the errors were corrected, the number of
 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 * returned.
877 878 879 880
 */
static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
				u_char *read_ecc, u_char *calc_ecc)
{
881
	struct omap_nand_info *info = mtd_to_omap(mtd);
882
	int blockCnt = 0, i = 0, ret = 0;
883
	int stat = 0;
884 885 886 887 888 889 890 891 892 893 894 895 896

	/* Ex NAND_ECC_HW12_2048 */
	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
			(info->nand.ecc.size  == 2048))
		blockCnt = 4;
	else
		blockCnt = 1;

	for (i = 0; i < blockCnt; i++) {
		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
			if (ret < 0)
				return ret;
897 898
			/* keep track of the number of corrected errors */
			stat += ret;
899 900 901 902 903
		}
		read_ecc += 3;
		calc_ecc += 3;
		dat      += 512;
	}
904
	return stat;
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
}

/**
 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 * @mtd: MTD device structure
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 *
 * Using noninverted ECC can be considered ugly since writing a blank
 * page ie. padding will clear the ECC bytes. This is no problem as long
 * nobody is trying to write data on the seemingly unused page. Reading
 * an erased page will produce an ECC mismatch between generated and read
 * ECC bytes that has to be dealt with separately.
 */
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
				u_char *ecc_code)
{
922
	struct omap_nand_info *info = mtd_to_omap(mtd);
923 924 925
	u32 val;

	val = readl(info->reg.gpmc_ecc_config);
926
	if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
927 928 929 930 931 932 933 934 935 936
		return -EINVAL;

	/* read ecc result */
	val = readl(info->reg.gpmc_ecc1_result);
	*ecc_code++ = val;          /* P128e, ..., P1e */
	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);

	return 0;
937 938 939 940 941 942 943 944 945
}

/**
 * omap_enable_hwecc - This function enables the hardware ecc functionality
 * @mtd: MTD device structure
 * @mode: Read/Write mode
 */
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
{
946
	struct omap_nand_info *info = mtd_to_omap(mtd);
947
	struct nand_chip *chip = mtd_to_nand(mtd);
948
	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
949 950 951 952 953
	u32 val;

	/* clear ecc and enable bits */
	val = ECCCLEAR | ECC1;
	writel(val, info->reg.gpmc_ecc_control);
954

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	/* program ecc and result sizes */
	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
			 ECC1RESULTSIZE);
	writel(val, info->reg.gpmc_ecc_size_config);

	switch (mode) {
	case NAND_ECC_READ:
	case NAND_ECC_WRITE:
		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
		break;
	case NAND_ECC_READSYN:
		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
		break;
	default:
		dev_info(&info->pdev->dev,
			"error: unrecognized Mode[%d]!\n", mode);
		break;
	}
973

974 975 976
	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
	writel(val, info->reg.gpmc_ecc_config);
977
}
978

979 980 981 982 983 984 985 986 987 988 989 990 991 992
/**
 * omap_wait - wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND Chip structure
 *
 * Wait function is called during Program and erase operations and
 * the way it is called from MTD layer, we should wait till the NAND
 * chip is ready after the programming/erase operation has completed.
 *
 * Erase can take up to 400ms and program up to 20ms according to
 * general NAND and SmartMedia specs
 */
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
993
	struct nand_chip *this = mtd_to_nand(mtd);
994
	struct omap_nand_info *info = mtd_to_omap(mtd);
995
	unsigned long timeo = jiffies;
996
	int status, state = this->state;
997 998

	if (state == FL_ERASING)
T
Toan Pham 已提交
999
		timeo += msecs_to_jiffies(400);
1000
	else
T
Toan Pham 已提交
1001
		timeo += msecs_to_jiffies(20);
1002

1003
	writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1004
	while (time_before(jiffies, timeo)) {
1005
		status = readb(info->reg.gpmc_nand_data);
1006
		if (status & NAND_STATUS_READY)
1007
			break;
1008
		cond_resched();
1009
	}
1010

1011
	status = readb(info->reg.gpmc_nand_data);
1012 1013 1014 1015
	return status;
}

/**
1016
 * omap_dev_ready - checks the NAND Ready GPIO line
1017
 * @mtd: MTD device structure
1018 1019
 *
 * Returns true if ready and false if busy.
1020 1021 1022
 */
static int omap_dev_ready(struct mtd_info *mtd)
{
1023
	struct omap_nand_info *info = mtd_to_omap(mtd);
1024

1025
	return gpiod_get_value(info->ready_gpiod);
1026 1027
}

1028
/**
1029
 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1030 1031
 * @mtd: MTD device structure
 * @mode: Read/Write mode
1032
 *
1033 1034 1035
 * When using BCH with SW correction (i.e. no ELM), sector size is set
 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
 * for both reading and writing with:
1036 1037
 * eccsize0 = 0  (no additional protected byte in spare area)
 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1038
 */
1039
static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1040
{
1041
	unsigned int bch_type;
1042
	unsigned int dev_width, nsectors;
1043
	struct omap_nand_info *info = mtd_to_omap(mtd);
1044
	enum omap_ecc ecc_opt = info->ecc_opt;
1045
	struct nand_chip *chip = mtd_to_nand(mtd);
1046 1047 1048
	u32 val, wr_mode;
	unsigned int ecc_size1, ecc_size0;

1049 1050 1051
	/* GPMC configurations for calculating ECC */
	switch (ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1052 1053
		bch_type = 0;
		nsectors = 1;
1054 1055 1056
		wr_mode	  = BCH_WRAPMODE_6;
		ecc_size0 = BCH_ECC_SIZE0;
		ecc_size1 = BCH_ECC_SIZE1;
1057 1058
		break;
	case OMAP_ECC_BCH4_CODE_HW:
1059 1060
		bch_type = 0;
		nsectors = chip->ecc.steps;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_1;
			ecc_size0 = BCH4R_ECC_SIZE0;
			ecc_size1 = BCH4R_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1072 1073
		bch_type = 1;
		nsectors = 1;
1074 1075 1076
		wr_mode	  = BCH_WRAPMODE_6;
		ecc_size0 = BCH_ECC_SIZE0;
		ecc_size1 = BCH_ECC_SIZE1;
1077 1078
		break;
	case OMAP_ECC_BCH8_CODE_HW:
1079 1080
		bch_type = 1;
		nsectors = chip->ecc.steps;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_1;
			ecc_size0 = BCH8R_ECC_SIZE0;
			ecc_size1 = BCH8R_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	case OMAP_ECC_BCH16_CODE_HW:
		bch_type = 0x2;
		nsectors = chip->ecc.steps;
		if (mode == NAND_ECC_READ) {
			wr_mode	  = 0x01;
			ecc_size0 = 52; /* ECC bits in nibbles per sector */
			ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
		} else {
			wr_mode	  = 0x01;
			ecc_size0 = 0;  /* extra bits in nibbles per sector */
			ecc_size1 = 52; /* OOB bits in nibbles per sector */
		}
		break;
1104 1105 1106
	default:
		return;
	}
1107 1108 1109

	writel(ECC1, info->reg.gpmc_ecc_control);

1110 1111
	/* Configure ecc size for BCH */
	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1112 1113
	writel(val, info->reg.gpmc_ecc_size_config);

1114 1115
	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;

1116 1117
	/* BCH configuration */
	val = ((1                        << 16) | /* enable BCH */
1118
	       (bch_type		 << 12) | /* BCH4/BCH8/BCH16 */
1119
	       (wr_mode                  <<  8) | /* wrap mode */
1120 1121 1122 1123 1124 1125 1126
	       (dev_width                <<  7) | /* bus width */
	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
	       (info->gpmc_cs            <<  1) | /* ECC CS */
	       (0x1));                            /* enable ECC */

	writel(val, info->reg.gpmc_ecc_config);

1127
	/* Clear ecc and enable bits */
1128
	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1129
}
1130

1131
static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1132 1133
static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
				0x97, 0x79, 0xe5, 0x24, 0xb5};
1134

1135
/**
1136
 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1137 1138 1139 1140 1141 1142
 * @mtd:	MTD device structure
 * @dat:	The pointer to data on which ecc is computed
 * @ecc_code:	The ecc_code buffer
 *
 * Support calculating of BCH4/8 ecc vectors for the page
 */
1143
static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
1144
					const u_char *dat, u_char *ecc_calc)
1145
{
1146
	struct omap_nand_info *info = mtd_to_omap(mtd);
1147 1148 1149
	int eccbytes	= info->nand.ecc.bytes;
	struct gpmc_nand_regs	*gpmc_regs = &info->reg;
	u8 *ecc_code;
1150
	unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1151
	u32 val;
1152
	int i, j;
1153 1154 1155

	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
	for (i = 0; i < nsectors; i++) {
1156 1157
		ecc_code = ecc_calc;
		switch (info->ecc_opt) {
1158
		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1159 1160 1161 1162 1163
		case OMAP_ECC_BCH8_CODE_HW:
			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
			bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
			bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
			*ecc_code++ = (bch_val4 & 0xFF);
			*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
			*ecc_code++ = (bch_val3 & 0xFF);
			*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
			*ecc_code++ = (bch_val2 & 0xFF);
			*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
			*ecc_code++ = (bch_val1 & 0xFF);
1177
			break;
1178
		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1179 1180 1181
		case OMAP_ECC_BCH4_CODE_HW:
			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1182 1183 1184 1185 1186 1187 1188 1189
			*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
			*ecc_code++ = ((bch_val2 & 0xF) << 4) |
				((bch_val1 >> 28) & 0xF);
			*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
			*ecc_code++ = ((bch_val1 & 0xF) << 4);
1190
			break;
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		case OMAP_ECC_BCH16_CODE_HW:
			val = readl(gpmc_regs->gpmc_bch_result6[i]);
			ecc_code[0]  = ((val >>  8) & 0xFF);
			ecc_code[1]  = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result5[i]);
			ecc_code[2]  = ((val >> 24) & 0xFF);
			ecc_code[3]  = ((val >> 16) & 0xFF);
			ecc_code[4]  = ((val >>  8) & 0xFF);
			ecc_code[5]  = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result4[i]);
			ecc_code[6]  = ((val >> 24) & 0xFF);
			ecc_code[7]  = ((val >> 16) & 0xFF);
			ecc_code[8]  = ((val >>  8) & 0xFF);
			ecc_code[9]  = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result3[i]);
			ecc_code[10] = ((val >> 24) & 0xFF);
			ecc_code[11] = ((val >> 16) & 0xFF);
			ecc_code[12] = ((val >>  8) & 0xFF);
			ecc_code[13] = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result2[i]);
			ecc_code[14] = ((val >> 24) & 0xFF);
			ecc_code[15] = ((val >> 16) & 0xFF);
			ecc_code[16] = ((val >>  8) & 0xFF);
			ecc_code[17] = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result1[i]);
			ecc_code[18] = ((val >> 24) & 0xFF);
			ecc_code[19] = ((val >> 16) & 0xFF);
			ecc_code[20] = ((val >>  8) & 0xFF);
			ecc_code[21] = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result0[i]);
			ecc_code[22] = ((val >> 24) & 0xFF);
			ecc_code[23] = ((val >> 16) & 0xFF);
			ecc_code[24] = ((val >>  8) & 0xFF);
			ecc_code[25] = ((val >>  0) & 0xFF);
			break;
1226 1227
		default:
			return -EINVAL;
1228
		}
1229 1230 1231

		/* ECC scheme specific syndrome customizations */
		switch (info->ecc_opt) {
1232 1233 1234
		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
			/* Add constant polynomial to remainder, so that
			 * ECC of blank pages results in 0x0 on reading back */
1235 1236
			for (j = 0; j < eccbytes; j++)
				ecc_calc[j] ^= bch4_polynomial[j];
1237
			break;
1238 1239 1240 1241
		case OMAP_ECC_BCH4_CODE_HW:
			/* Set  8th ECC byte as 0x0 for ROM compatibility */
			ecc_calc[eccbytes - 1] = 0x0;
			break;
1242 1243 1244
		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
			/* Add constant polynomial to remainder, so that
			 * ECC of blank pages results in 0x0 on reading back */
1245 1246
			for (j = 0; j < eccbytes; j++)
				ecc_calc[j] ^= bch8_polynomial[j];
1247
			break;
1248 1249 1250 1251
		case OMAP_ECC_BCH8_CODE_HW:
			/* Set 14th ECC byte as 0x0 for ROM compatibility */
			ecc_calc[eccbytes - 1] = 0x0;
			break;
1252 1253
		case OMAP_ECC_BCH16_CODE_HW:
			break;
1254 1255 1256 1257 1258
		default:
			return -EINVAL;
		}

	ecc_calc += eccbytes;
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	}

	return 0;
}

/**
 * erased_sector_bitflips - count bit flips
 * @data:	data sector buffer
 * @oob:	oob buffer
 * @info:	omap_nand_info
 *
 * Check the bit flips in erased page falls below correctable level.
 * If falls below, report the page as erased with correctable bit
 * flip, else report as uncorrectable page.
 */
static int erased_sector_bitflips(u_char *data, u_char *oob,
		struct omap_nand_info *info)
{
	int flip_bits = 0, i;

	for (i = 0; i < info->nand.ecc.size; i++) {
		flip_bits += hweight8(~data[i]);
		if (flip_bits > info->nand.ecc.strength)
			return 0;
	}

	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
		flip_bits += hweight8(~oob[i]);
		if (flip_bits > info->nand.ecc.strength)
			return 0;
	}

	/*
	 * Bit flips falls in correctable level.
	 * Fill data area with 0xFF
	 */
	if (flip_bits) {
		memset(data, 0xFF, info->nand.ecc.size);
		memset(oob, 0xFF, info->nand.ecc.bytes);
	}

	return flip_bits;
}

/**
 * omap_elm_correct_data - corrects page data area in case error reported
 * @mtd:	MTD device structure
 * @data:	page data
 * @read_ecc:	ecc read from nand flash
 * @calc_ecc:	ecc read from HW ECC registers
 *
 * Calculated ecc vector reported as zero in case of non-error pages.
1311 1312
 * In case of non-zero ecc vector, first filter out erased-pages, and
 * then process data via ELM to detect bit-flips.
1313 1314 1315 1316
 */
static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
				u_char *read_ecc, u_char *calc_ecc)
{
1317
	struct omap_nand_info *info = mtd_to_omap(mtd);
1318
	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1319 1320
	int eccsteps = info->nand.ecc.steps;
	int i , j, stat = 0;
1321
	int eccflag, actual_eccbytes;
1322 1323 1324 1325
	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
	u_char *ecc_vec = calc_ecc;
	u_char *spare_ecc = read_ecc;
	u_char *erased_ecc_vec;
1326 1327
	u_char *buf;
	int bitflip_count;
1328
	bool is_error_reported = false;
1329
	u32 bit_pos, byte_pos, error_max, pos;
1330
	int err;
1331

1332 1333 1334 1335
	switch (info->ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW:
		/* omit  7th ECC byte reserved for ROM code compatibility */
		actual_eccbytes = ecc->bytes - 1;
1336
		erased_ecc_vec = bch4_vector;
1337 1338 1339 1340
		break;
	case OMAP_ECC_BCH8_CODE_HW:
		/* omit 14th ECC byte reserved for ROM code compatibility */
		actual_eccbytes = ecc->bytes - 1;
1341
		erased_ecc_vec = bch8_vector;
1342
		break;
1343 1344 1345 1346
	case OMAP_ECC_BCH16_CODE_HW:
		actual_eccbytes = ecc->bytes;
		erased_ecc_vec = bch16_vector;
		break;
1347
	default:
1348
		dev_err(&info->pdev->dev, "invalid driver configuration\n");
1349 1350 1351
		return -EINVAL;
	}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	/* Initialize elm error vector to zero */
	memset(err_vec, 0, sizeof(err_vec));

	for (i = 0; i < eccsteps ; i++) {
		eccflag = 0;	/* initialize eccflag */

		/*
		 * Check any error reported,
		 * In case of error, non zero ecc reported.
		 */
1362
		for (j = 0; j < actual_eccbytes; j++) {
1363 1364 1365 1366 1367 1368 1369
			if (calc_ecc[j] != 0) {
				eccflag = 1; /* non zero ecc, error present */
				break;
			}
		}

		if (eccflag == 1) {
1370 1371
			if (memcmp(calc_ecc, erased_ecc_vec,
						actual_eccbytes) == 0) {
1372
				/*
1373 1374
				 * calc_ecc[] matches pattern for ECC(all 0xff)
				 * so this is definitely an erased-page
1375 1376
				 */
			} else {
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
				buf = &data[info->nand.ecc.size * i];
				/*
				 * count number of 0-bits in read_buf.
				 * This check can be removed once a similar
				 * check is introduced in generic NAND driver
				 */
				bitflip_count = erased_sector_bitflips(
						buf, read_ecc, info);
				if (bitflip_count) {
					/*
					 * number of 0-bits within ECC limits
					 * So this may be an erased-page
					 */
					stat += bitflip_count;
				} else {
					/*
					 * Too many 0-bits. It may be a
					 * - programmed-page, OR
					 * - erased-page with many bit-flips
					 * So this page requires check by ELM
					 */
					err_vec[i].error_reported = true;
					is_error_reported = true;
1400 1401 1402 1403 1404
				}
			}
		}

		/* Update the ecc vector */
1405 1406
		calc_ecc += ecc->bytes;
		read_ecc += ecc->bytes;
1407 1408 1409 1410
	}

	/* Check if any error reported */
	if (!is_error_reported)
1411
		return stat;
1412 1413 1414 1415

	/* Decode BCH error using ELM module */
	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);

1416
	err = 0;
1417
	for (i = 0; i < eccsteps; i++) {
1418
		if (err_vec[i].error_uncorrectable) {
1419 1420
			dev_err(&info->pdev->dev,
				"uncorrectable bit-flips found\n");
1421 1422
			err = -EBADMSG;
		} else if (err_vec[i].error_reported) {
1423
			for (j = 0; j < err_vec[i].error_count; j++) {
1424 1425 1426
				switch (info->ecc_opt) {
				case OMAP_ECC_BCH4_CODE_HW:
					/* Add 4 bits to take care of padding */
1427 1428
					pos = err_vec[i].error_loc[j] +
						BCH4_BIT_PAD;
1429 1430
					break;
				case OMAP_ECC_BCH8_CODE_HW:
1431
				case OMAP_ECC_BCH16_CODE_HW:
1432 1433 1434 1435 1436 1437
					pos = err_vec[i].error_loc[j];
					break;
				default:
					return -EINVAL;
				}
				error_max = (ecc->size + actual_eccbytes) * 8;
1438 1439 1440 1441 1442 1443 1444
				/* Calculate bit position of error */
				bit_pos = pos % 8;

				/* Calculate byte position of error */
				byte_pos = (error_max - pos - 1) / 8;

				if (pos < error_max) {
1445 1446 1447
					if (byte_pos < 512) {
						pr_debug("bitflip@dat[%d]=%x\n",
						     byte_pos, data[byte_pos]);
1448
						data[byte_pos] ^= 1 << bit_pos;
1449 1450 1451 1452
					} else {
						pr_debug("bitflip@oob[%d]=%x\n",
							(byte_pos - 512),
						     spare_ecc[byte_pos - 512]);
1453 1454
						spare_ecc[byte_pos - 512] ^=
							1 << bit_pos;
1455 1456
					}
				} else {
1457 1458 1459
					dev_err(&info->pdev->dev,
						"invalid bit-flip @ %d:%d\n",
						byte_pos, bit_pos);
1460
					err = -EBADMSG;
1461 1462 1463 1464 1465 1466 1467 1468
				}
			}
		}

		/* Update number of correctable errors */
		stat += err_vec[i].error_count;

		/* Update page data with sector size */
1469
		data += ecc->size;
1470
		spare_ecc += ecc->bytes;
1471 1472
	}

1473
	return (err) ? err : stat;
1474 1475 1476 1477 1478 1479 1480 1481
}

/**
 * omap_write_page_bch - BCH ecc based write page function for entire page
 * @mtd:		mtd info structure
 * @chip:		nand chip info structure
 * @buf:		data buffer
 * @oob_required:	must write chip->oob_poi to OOB
1482
 * @page:		page
1483 1484 1485 1486
 *
 * Custom write page method evolved to support multi sector writing in one shot
 */
static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1487
			       const uint8_t *buf, int oob_required, int page)
1488
{
1489
	int ret;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	uint8_t *ecc_calc = chip->buffers->ecccalc;

	/* Enable GPMC ecc engine */
	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);

	/* Write data */
	chip->write_buf(mtd, buf, mtd->writesize);

	/* Update ecc vector from GPMC result registers */
	chip->ecc.calculate(mtd, buf, &ecc_calc[0]);

1501 1502 1503 1504
	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530

	/* Write ecc vector to OOB area */
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 0;
}

/**
 * omap_read_page_bch - BCH ecc based page read function for entire page
 * @mtd:		mtd info structure
 * @chip:		nand chip info structure
 * @buf:		buffer to store read data
 * @oob_required:	caller requires OOB data read to chip->oob_poi
 * @page:		page number to read
 *
 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
 * used for error correction.
 * Custom method evolved to support ELM error correction & multi sector
 * reading. On reading page data area is read along with OOB data with
 * ecc engine enabled. ecc vector updated after read of OOB data.
 * For non error pages ecc vector reported as zero.
 */
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
1531
	int stat, ret;
1532 1533 1534 1535 1536 1537 1538 1539 1540
	unsigned int max_bitflips = 0;

	/* Enable GPMC ecc engine */
	chip->ecc.hwctl(mtd, NAND_ECC_READ);

	/* Read data */
	chip->read_buf(mtd, buf, mtd->writesize);

	/* Read oob bytes */
1541 1542 1543 1544
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
		      mtd->writesize + BADBLOCK_MARKER_LENGTH, -1);
	chip->read_buf(mtd, chip->oob_poi + BADBLOCK_MARKER_LENGTH,
		       chip->ecc.total);
1545 1546 1547 1548

	/* Calculate ecc bytes */
	chip->ecc.calculate(mtd, buf, ecc_calc);

1549 1550 1551 1552
	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

	stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);

	if (stat < 0) {
		mtd->ecc_stats.failed++;
	} else {
		mtd->ecc_stats.corrected += stat;
		max_bitflips = max_t(unsigned int, max_bitflips, stat);
	}

	return max_bitflips;
}

1566
/**
1567 1568
 * is_elm_present - checks for presence of ELM module by scanning DT nodes
 * @omap_nand_info: NAND device structure containing platform data
1569
 */
1570 1571
static bool is_elm_present(struct omap_nand_info *info,
			   struct device_node *elm_node)
1572
{
1573
	struct platform_device *pdev;
1574

1575 1576
	/* check whether elm-id is passed via DT */
	if (!elm_node) {
1577
		dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1578
		return false;
1579 1580 1581 1582
	}
	pdev = of_find_device_by_node(elm_node);
	/* check whether ELM device is registered */
	if (!pdev) {
1583
		dev_err(&info->pdev->dev, "ELM device not found\n");
1584
		return false;
1585
	}
1586 1587
	/* ELM module available, now configure it */
	info->elm_dev = &pdev->dev;
1588 1589
	return true;
}
1590

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
static bool omap2_nand_ecc_check(struct omap_nand_info *info,
				 struct omap_nand_platform_data	*pdata)
{
	bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;

	switch (info->ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
		ecc_needs_omap_bch = false;
		ecc_needs_bch = true;
		ecc_needs_elm = false;
		break;
	case OMAP_ECC_BCH4_CODE_HW:
	case OMAP_ECC_BCH8_CODE_HW:
	case OMAP_ECC_BCH16_CODE_HW:
		ecc_needs_omap_bch = true;
		ecc_needs_bch = false;
		ecc_needs_elm = true;
		break;
	default:
		ecc_needs_omap_bch = false;
		ecc_needs_bch = false;
		ecc_needs_elm = false;
		break;
	}

	if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
		dev_err(&info->pdev->dev,
			"CONFIG_MTD_NAND_ECC_BCH not enabled\n");
		return false;
	}
	if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
		dev_err(&info->pdev->dev,
			"CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
		return false;
	}
1627
	if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1628 1629 1630 1631 1632
		dev_err(&info->pdev->dev, "ELM not available\n");
		return false;
	}

	return true;
1633 1634
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
static const char * const nand_xfer_types[] = {
	[NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
	[NAND_OMAP_POLLED] = "polled",
	[NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
	[NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
};

static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
{
	struct device_node *child = dev->of_node;
	int i;
	const char *s;
	u32 cs;

	if (of_property_read_u32(child, "reg", &cs) < 0) {
		dev_err(dev, "reg not found in DT\n");
		return -EINVAL;
	}

	info->gpmc_cs = cs;

	/* detect availability of ELM module. Won't be present pre-OMAP4 */
	info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
	if (!info->elm_of_node)
		dev_dbg(dev, "ti,elm-id not in DT\n");

	/* select ecc-scheme for NAND */
	if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
		dev_err(dev, "ti,nand-ecc-opt not found\n");
		return -EINVAL;
	}

	if (!strcmp(s, "sw")) {
		info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
	} else if (!strcmp(s, "ham1") ||
		   !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
		info->ecc_opt =	OMAP_ECC_HAM1_CODE_HW;
	} else if (!strcmp(s, "bch4")) {
		if (info->elm_of_node)
			info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
		else
			info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
	} else if (!strcmp(s, "bch8")) {
		if (info->elm_of_node)
			info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
		else
			info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
	} else if (!strcmp(s, "bch16")) {
		info->ecc_opt =	OMAP_ECC_BCH16_CODE_HW;
	} else {
		dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
		return -EINVAL;
	}

	/* select data transfer mode */
	if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
		for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
			if (!strcasecmp(s, nand_xfer_types[i])) {
				info->xfer_type = i;
1694
				return 0;
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
			}
		}

		dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
		return -EINVAL;
	}

	return 0;
}

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
			      struct mtd_oob_region *oobregion)
{
	struct omap_nand_info *info = mtd_to_omap(mtd);
	struct nand_chip *chip = &info->nand;
	int off = BADBLOCK_MARKER_LENGTH;

	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
	    !(chip->options & NAND_BUSWIDTH_16))
		off = 1;

	if (section)
		return -ERANGE;

	oobregion->offset = off;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int omap_ooblayout_free(struct mtd_info *mtd, int section,
			       struct mtd_oob_region *oobregion)
{
	struct omap_nand_info *info = mtd_to_omap(mtd);
	struct nand_chip *chip = &info->nand;
	int off = BADBLOCK_MARKER_LENGTH;

	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
	    !(chip->options & NAND_BUSWIDTH_16))
		off = 1;

	if (section)
		return -ERANGE;

	off += chip->ecc.total;
	if (off >= mtd->oobsize)
		return -ERANGE;

	oobregion->offset = off;
	oobregion->length = mtd->oobsize - off;

	return 0;
}

static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
	.ecc = omap_ooblayout_ecc,
	.free = omap_ooblayout_free,
};

static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int off = BADBLOCK_MARKER_LENGTH;

	if (section >= chip->ecc.steps)
		return -ERANGE;

	/*
	 * When SW correction is employed, one OMAP specific marker byte is
	 * reserved after each ECC step.
	 */
	oobregion->offset = off + (section * (chip->ecc.bytes + 1));
	oobregion->length = chip->ecc.bytes;

	return 0;
}

static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int off = BADBLOCK_MARKER_LENGTH;

	if (section)
		return -ERANGE;

	/*
	 * When SW correction is employed, one OMAP specific marker byte is
	 * reserved after each ECC step.
	 */
	off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
	if (off >= mtd->oobsize)
		return -ERANGE;

	oobregion->offset = off;
	oobregion->length = mtd->oobsize - off;

	return 0;
}

static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
	.ecc = omap_sw_ooblayout_ecc,
	.free = omap_sw_ooblayout_free,
};

B
Bill Pemberton 已提交
1801
static int omap_nand_probe(struct platform_device *pdev)
1802 1803
{
	struct omap_nand_info		*info;
1804
	struct omap_nand_platform_data	*pdata = NULL;
1805 1806
	struct mtd_info			*mtd;
	struct nand_chip		*nand_chip;
1807
	int				err;
1808
	dma_cap_mask_t			mask;
1809
	struct resource			*res;
1810
	struct device			*dev = &pdev->dev;
1811 1812
	int				min_oobbytes = BADBLOCK_MARKER_LENGTH;
	int				oobbytes_per_step;
1813

1814 1815
	info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
				GFP_KERNEL);
1816 1817 1818
	if (!info)
		return -ENOMEM;

1819
	info->pdev = pdev;
1820

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	if (dev->of_node) {
		if (omap_get_dt_info(dev, info))
			return -EINVAL;
	} else {
		pdata = dev_get_platdata(&pdev->dev);
		if (!pdata) {
			dev_err(&pdev->dev, "platform data missing\n");
			return -EINVAL;
		}

		info->gpmc_cs = pdata->cs;
		info->reg = pdata->reg;
		info->ecc_opt = pdata->ecc_opt;
1834 1835 1836
		if (pdata->dev_ready)
			dev_info(&pdev->dev, "pdata->dev_ready is deprecated\n");

1837 1838 1839 1840 1841 1842 1843
		info->xfer_type = pdata->xfer_type;
		info->devsize = pdata->devsize;
		info->elm_of_node = pdata->elm_of_node;
		info->flash_bbt = pdata->flash_bbt;
	}

	platform_set_drvdata(pdev, info);
1844 1845 1846 1847 1848
	info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
	if (!info->ops) {
		dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
		return -ENODEV;
	}
1849

1850 1851
	nand_chip		= &info->nand;
	mtd			= nand_to_mtd(nand_chip);
1852
	mtd->dev.parent		= &pdev->dev;
1853
	nand_chip->ecc.priv	= NULL;
1854
	nand_set_flash_node(nand_chip, dev->of_node);
1855

1856
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1857 1858 1859
	nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(nand_chip->IO_ADDR_R))
		return PTR_ERR(nand_chip->IO_ADDR_R);
1860

1861
	info->phys_base = res->start;
1862

1863
	nand_chip->controller = &omap_gpmc_controller;
1864

1865 1866
	nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
	nand_chip->cmd_ctrl  = omap_hwcontrol;
1867

1868 1869 1870 1871 1872 1873 1874
	info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
						    GPIOD_IN);
	if (IS_ERR(info->ready_gpiod)) {
		dev_err(dev, "failed to get ready gpio\n");
		return PTR_ERR(info->ready_gpiod);
	}

1875 1876
	/*
	 * If RDY/BSY line is connected to OMAP then use the omap ready
1877 1878
	 * function and the generic nand_wait function which reads the status
	 * register after monitoring the RDY/BSY line. Otherwise use a standard
1879 1880 1881
	 * chip delay which is slightly more than tR (AC Timing) of the NAND
	 * device and read status register until you get a failure or success
	 */
1882
	if (info->ready_gpiod) {
1883 1884
		nand_chip->dev_ready = omap_dev_ready;
		nand_chip->chip_delay = 0;
1885
	} else {
1886 1887
		nand_chip->waitfunc = omap_wait;
		nand_chip->chip_delay = 50;
1888 1889
	}

1890
	if (info->flash_bbt)
1891
		nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
1892

1893
	/* scan NAND device connected to chip controller */
1894
	nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
1895
	if (nand_scan_ident(mtd, 1, NULL)) {
1896 1897
		dev_err(&info->pdev->dev,
			"scan failed, may be bus-width mismatch\n");
1898
		err = -ENXIO;
1899
		goto return_error;
1900 1901
	}

1902 1903 1904 1905 1906
	if (nand_chip->bbt_options & NAND_BBT_USE_FLASH)
		nand_chip->bbt_options |= NAND_BBT_NO_OOB;
	else
		nand_chip->options |= NAND_SKIP_BBTSCAN;

1907
	/* re-populate low-level callbacks based on xfer modes */
1908
	switch (info->xfer_type) {
1909
	case NAND_OMAP_PREFETCH_POLLED:
1910 1911
		nand_chip->read_buf   = omap_read_buf_pref;
		nand_chip->write_buf  = omap_write_buf_pref;
1912 1913 1914
		break;

	case NAND_OMAP_POLLED:
1915
		/* Use nand_base defaults for {read,write}_buf */
1916 1917 1918
		break;

	case NAND_OMAP_PREFETCH_DMA:
1919 1920
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
1921 1922
		info->dma = dma_request_chan(pdev->dev.parent, "rxtx");

1923
		if (!info->dma) {
1924 1925
			dev_err(&pdev->dev, "DMA engine request failed\n");
			err = -ENXIO;
1926
			goto return_error;
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
		} else {
			struct dma_slave_config cfg;

			memset(&cfg, 0, sizeof(cfg));
			cfg.src_addr = info->phys_base;
			cfg.dst_addr = info->phys_base;
			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
			cfg.src_maxburst = 16;
			cfg.dst_maxburst = 16;
1937 1938
			err = dmaengine_slave_config(info->dma, &cfg);
			if (err) {
1939
				dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1940
					err);
1941
				goto return_error;
1942
			}
1943 1944
			nand_chip->read_buf   = omap_read_buf_dma_pref;
			nand_chip->write_buf  = omap_write_buf_dma_pref;
1945 1946 1947
		}
		break;

1948
	case NAND_OMAP_PREFETCH_IRQ:
1949 1950 1951 1952
		info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
		if (info->gpmc_irq_fifo <= 0) {
			dev_err(&pdev->dev, "error getting fifo irq\n");
			err = -ENODEV;
1953
			goto return_error;
1954
		}
1955 1956 1957
		err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
					omap_nand_irq, IRQF_SHARED,
					"gpmc-nand-fifo", info);
1958 1959
		if (err) {
			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1960 1961
						info->gpmc_irq_fifo, err);
			info->gpmc_irq_fifo = 0;
1962
			goto return_error;
1963 1964 1965 1966 1967 1968
		}

		info->gpmc_irq_count = platform_get_irq(pdev, 1);
		if (info->gpmc_irq_count <= 0) {
			dev_err(&pdev->dev, "error getting count irq\n");
			err = -ENODEV;
1969
			goto return_error;
1970
		}
1971 1972 1973
		err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
					omap_nand_irq, IRQF_SHARED,
					"gpmc-nand-count", info);
1974 1975 1976 1977
		if (err) {
			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
						info->gpmc_irq_count, err);
			info->gpmc_irq_count = 0;
1978
			goto return_error;
1979
		}
1980

1981 1982
		nand_chip->read_buf  = omap_read_buf_irq_pref;
		nand_chip->write_buf = omap_write_buf_irq_pref;
1983

1984 1985
		break;

1986 1987
	default:
		dev_err(&pdev->dev,
1988
			"xfer_type(%d) not supported!\n", info->xfer_type);
1989
		err = -EINVAL;
1990
		goto return_error;
1991 1992
	}

1993 1994 1995 1996 1997
	if (!omap2_nand_ecc_check(info, pdata)) {
		err = -EINVAL;
		goto return_error;
	}

1998 1999
	/*
	 * Bail out earlier to let NAND_ECC_SOFT code create its own
2000
	 * ooblayout instead of using ours.
2001 2002 2003
	 */
	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
		nand_chip->ecc.mode = NAND_ECC_SOFT;
2004
		nand_chip->ecc.algo = NAND_ECC_HAMMING;
2005 2006 2007
		goto scan_tail;
	}

2008
	/* populate MTD interface based on ECC scheme */
2009
	switch (info->ecc_opt) {
2010 2011 2012
	case OMAP_ECC_HAM1_CODE_HW:
		pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
		nand_chip->ecc.mode             = NAND_ECC_HW;
2013 2014 2015 2016 2017 2018
		nand_chip->ecc.bytes            = 3;
		nand_chip->ecc.size             = 512;
		nand_chip->ecc.strength         = 1;
		nand_chip->ecc.calculate        = omap_calculate_ecc;
		nand_chip->ecc.hwctl            = omap_enable_hwecc;
		nand_chip->ecc.correct          = omap_correct_data;
2019 2020 2021 2022 2023 2024
		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
		oobbytes_per_step		= nand_chip->ecc.bytes;

		if (!(nand_chip->options & NAND_BUSWIDTH_16))
			min_oobbytes		= 1;

2025 2026 2027 2028 2029 2030 2031 2032
		break;

	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 7;
		nand_chip->ecc.strength		= 4;
2033
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
2034
		nand_chip->ecc.correct		= nand_bch_correct_data;
2035
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
2036 2037 2038
		mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
		/* Reserve one byte for the OMAP marker */
		oobbytes_per_step		= nand_chip->ecc.bytes + 1;
2039
		/* software bch library is used for locating errors */
2040
		nand_chip->ecc.priv		= nand_bch_init(mtd);
2041
		if (!nand_chip->ecc.priv) {
2042
			dev_err(&info->pdev->dev, "unable to use BCH library\n");
2043
			err = -EINVAL;
2044
			goto return_error;
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
		}
		break;

	case OMAP_ECC_BCH4_CODE_HW:
		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		/* 14th bit is kept reserved for ROM-code compatibility */
		nand_chip->ecc.bytes		= 7 + 1;
		nand_chip->ecc.strength		= 4;
2055
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
2056
		nand_chip->ecc.correct		= omap_elm_correct_data;
2057
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
2058 2059
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;
2060 2061
		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
		oobbytes_per_step		= nand_chip->ecc.bytes;
2062 2063

		err = elm_config(info->elm_dev, BCH4_ECC,
2064
				 mtd->writesize / nand_chip->ecc.size,
2065 2066
				 nand_chip->ecc.size, nand_chip->ecc.bytes);
		if (err < 0)
2067
			goto return_error;
2068 2069 2070 2071 2072 2073 2074 2075
		break;

	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 13;
		nand_chip->ecc.strength		= 8;
2076
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
2077
		nand_chip->ecc.correct		= nand_bch_correct_data;
2078
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
2079 2080 2081
		mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
		/* Reserve one byte for the OMAP marker */
		oobbytes_per_step		= nand_chip->ecc.bytes + 1;
2082
		/* software bch library is used for locating errors */
2083
		nand_chip->ecc.priv		= nand_bch_init(mtd);
2084
		if (!nand_chip->ecc.priv) {
2085
			dev_err(&info->pdev->dev, "unable to use BCH library\n");
2086
			err = -EINVAL;
2087
			goto return_error;
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
		}
		break;

	case OMAP_ECC_BCH8_CODE_HW:
		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		/* 14th bit is kept reserved for ROM-code compatibility */
		nand_chip->ecc.bytes		= 13 + 1;
		nand_chip->ecc.strength		= 8;
2098
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
2099
		nand_chip->ecc.correct		= omap_elm_correct_data;
2100
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
2101 2102
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;
2103 2104
		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
		oobbytes_per_step		= nand_chip->ecc.bytes;
2105 2106

		err = elm_config(info->elm_dev, BCH8_ECC,
2107
				 mtd->writesize / nand_chip->ecc.size,
2108 2109
				 nand_chip->ecc.size, nand_chip->ecc.bytes);
		if (err < 0)
2110
			goto return_error;
2111

2112 2113
		break;

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	case OMAP_ECC_BCH16_CODE_HW:
		pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 26;
		nand_chip->ecc.strength		= 16;
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
		nand_chip->ecc.correct		= omap_elm_correct_data;
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;
2125 2126
		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
		oobbytes_per_step		= nand_chip->ecc.bytes;
2127 2128

		err = elm_config(info->elm_dev, BCH16_ECC,
2129
				 mtd->writesize / nand_chip->ecc.size,
2130 2131
				 nand_chip->ecc.size, nand_chip->ecc.bytes);
		if (err < 0)
2132
			goto return_error;
2133

2134
		break;
2135
	default:
2136
		dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
2137
		err = -EINVAL;
2138
		goto return_error;
2139
	}
2140

2141
	/* check if NAND device's OOB is enough to store ECC signatures */
2142 2143 2144
	min_oobbytes += (oobbytes_per_step *
			 (mtd->writesize / nand_chip->ecc.size));
	if (mtd->oobsize < min_oobbytes) {
2145 2146
		dev_err(&info->pdev->dev,
			"not enough OOB bytes required = %d, available=%d\n",
2147
			min_oobbytes, mtd->oobsize);
2148
		err = -EINVAL;
2149
		goto return_error;
2150
	}
2151

2152
scan_tail:
2153
	/* second phase scan */
2154
	if (nand_scan_tail(mtd)) {
2155
		err = -ENXIO;
2156
		goto return_error;
2157 2158
	}

2159 2160 2161 2162
	if (dev->of_node)
		mtd_device_register(mtd, NULL, 0);
	else
		mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2163

2164
	platform_set_drvdata(pdev, mtd);
2165 2166 2167

	return 0;

2168
return_error:
2169 2170
	if (info->dma)
		dma_release_channel(info->dma);
2171 2172 2173 2174
	if (nand_chip->ecc.priv) {
		nand_bch_free(nand_chip->ecc.priv);
		nand_chip->ecc.priv = NULL;
	}
2175 2176 2177 2178 2179 2180
	return err;
}

static int omap_nand_remove(struct platform_device *pdev)
{
	struct mtd_info *mtd = platform_get_drvdata(pdev);
2181
	struct nand_chip *nand_chip = mtd_to_nand(mtd);
2182
	struct omap_nand_info *info = mtd_to_omap(mtd);
2183 2184 2185 2186
	if (nand_chip->ecc.priv) {
		nand_bch_free(nand_chip->ecc.priv);
		nand_chip->ecc.priv = NULL;
	}
2187 2188
	if (info->dma)
		dma_release_channel(info->dma);
2189
	nand_release(mtd);
2190 2191 2192
	return 0;
}

2193 2194 2195 2196 2197
static const struct of_device_id omap_nand_ids[] = {
	{ .compatible = "ti,omap2-nand", },
	{},
};

2198 2199 2200 2201 2202
static struct platform_driver omap_nand_driver = {
	.probe		= omap_nand_probe,
	.remove		= omap_nand_remove,
	.driver		= {
		.name	= DRIVER_NAME,
2203
		.of_match_table = of_match_ptr(omap_nand_ids),
2204 2205 2206
	},
};

2207
module_platform_driver(omap_nand_driver);
2208

2209
MODULE_ALIAS("platform:" DRIVER_NAME);
2210 2211
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");