mmu.c 141.9 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
32 33
#include <linux/moduleparam.h>
#include <linux/export.h>
34
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
35
#include <linux/hugetlb.h>
36
#include <linux/compiler.h>
37
#include <linux/srcu.h>
38
#include <linux/slab.h>
39
#include <linux/sched/signal.h>
40
#include <linux/uaccess.h>
41
#include <linux/hash.h>
42
#include <linux/kern_levels.h>
A
Avi Kivity 已提交
43

A
Avi Kivity 已提交
44
#include <asm/page.h>
45
#include <asm/pat.h>
A
Avi Kivity 已提交
46
#include <asm/cmpxchg.h>
47
#include <asm/io.h>
48
#include <asm/vmx.h>
49
#include <asm/kvm_page_track.h>
50
#include "trace.h"
A
Avi Kivity 已提交
51

52 53 54 55 56 57 58
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
59
bool tdp_enabled = false;
60

61 62 63 64
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
65 66 67
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
68
};
69

70
#undef MMU_DEBUG
71 72

#ifdef MMU_DEBUG
73 74
static bool dbg = 0;
module_param(dbg, bool, 0644);
75 76 77

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78
#define MMU_WARN_ON(x) WARN_ON(x)
79 80 81
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
82
#define MMU_WARN_ON(x) do { } while (0)
83
#endif
A
Avi Kivity 已提交
84

85 86
#define PTE_PREFETCH_NUM		8

87
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
88 89 90 91 92
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
93
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
94 95 96 97 98 99 100 101

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
102
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
103

104 105 106
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
107 108 109 110 111

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


112
#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
A
Avi Kivity 已提交
113 114
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115 116 117 118 119 120
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
121 122 123 124

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125 126 127
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
128

129
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130
			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
A
Avi Kivity 已提交
131

132 133 134 135 136
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

137 138 139 140
/* The mask for the R/X bits in EPT PTEs */
#define PT64_EPT_READABLE_MASK			0x1ull
#define PT64_EPT_EXECUTABLE_MASK		0x4ull

141 142
#include <trace/events/kvm.h>

143 144 145
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

146 147
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
148

149 150
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

151 152 153
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

154 155 156 157 158 159 160 161 162 163 164 165 166 167
/*
 * Return values of handle_mmio_page_fault and mmu.page_fault:
 * RET_PF_RETRY: let CPU fault again on the address.
 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 *
 * For handle_mmio_page_fault only:
 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
 */
enum {
	RET_PF_RETRY = 0,
	RET_PF_EMULATE = 1,
	RET_PF_INVALID = 2,
};

168 169 170
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
171 172
};

173 174 175 176
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
177
	int level;
178 179 180 181 182 183 184 185
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

186 187 188 189 190 191
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

192
static struct kmem_cache *pte_list_desc_cache;
193
static struct kmem_cache *mmu_page_header_cache;
194
static struct percpu_counter kvm_total_used_mmu_pages;
195

S
Sheng Yang 已提交
196 197 198 199 200
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
201
static u64 __read_mostly shadow_mmio_mask;
202
static u64 __read_mostly shadow_mmio_value;
203
static u64 __read_mostly shadow_present_mask;
204
static u64 __read_mostly shadow_me_mask;
205

206
/*
207 208 209
 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
 * Non-present SPTEs with shadow_acc_track_value set are in place for access
 * tracking.
210 211 212 213 214 215 216 217 218 219 220 221 222 223
 */
static u64 __read_mostly shadow_acc_track_mask;
static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;

/*
 * The mask/shift to use for saving the original R/X bits when marking the PTE
 * as not-present for access tracking purposes. We do not save the W bit as the
 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 * restored only when a write is attempted to the page.
 */
static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
						    PT64_EPT_EXECUTABLE_MASK;
static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;

224
static void mmu_spte_set(u64 *sptep, u64 spte);
225
static void mmu_free_roots(struct kvm_vcpu *vcpu);
226

227
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
228
{
229 230
	BUG_ON((mmio_mask & mmio_value) != mmio_value);
	shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
231
	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
232 233 234
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
{
	return sp->role.ad_disabled;
}

static inline bool spte_ad_enabled(u64 spte)
{
	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
	return !(spte & shadow_acc_track_value);
}

static inline u64 spte_shadow_accessed_mask(u64 spte)
{
	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
}

static inline u64 spte_shadow_dirty_mask(u64 spte)
{
	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
}

258 259
static inline bool is_access_track_spte(u64 spte)
{
260
	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
261 262
}

263
/*
264 265 266 267 268 269 270
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
271
 */
272
#define MMIO_SPTE_GEN_LOW_SHIFT		2
273 274
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

275 276 277
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
278
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
279 280 281 282 283

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
284
	WARN_ON(gen & ~MMIO_GEN_MASK);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

302
static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
303
{
304
	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
305 306
}

307
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
308
			   unsigned access)
309
{
310
	unsigned int gen = kvm_current_mmio_generation(vcpu);
311
	u64 mask = generation_mmio_spte_mask(gen);
312

313
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
314
	mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
315

316
	trace_mark_mmio_spte(sptep, gfn, access, gen);
317
	mmu_spte_set(sptep, mask);
318 319 320 321
}

static bool is_mmio_spte(u64 spte)
{
322
	return (spte & shadow_mmio_mask) == shadow_mmio_value;
323 324 325 326
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
327
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
328
	return (spte & ~mask) >> PAGE_SHIFT;
329 330 331 332
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
333
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
334
	return (spte & ~mask) & ~PAGE_MASK;
335 336
}

337
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
D
Dan Williams 已提交
338
			  kvm_pfn_t pfn, unsigned access)
339 340
{
	if (unlikely(is_noslot_pfn(pfn))) {
341
		mark_mmio_spte(vcpu, sptep, gfn, access);
342 343 344 345 346
		return true;
	}

	return false;
}
347

348
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
349
{
350 351
	unsigned int kvm_gen, spte_gen;

352
	kvm_gen = kvm_current_mmio_generation(vcpu);
353 354 355 356
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
357 358
}

359 360 361 362 363 364 365
/*
 * Sets the shadow PTE masks used by the MMU.
 *
 * Assumptions:
 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 *  - At least one of @accessed_mask or @acc_track_mask must be set
 */
S
Sheng Yang 已提交
366
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
367
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
368
		u64 acc_track_mask, u64 me_mask)
S
Sheng Yang 已提交
369
{
370 371
	BUG_ON(!dirty_mask != !accessed_mask);
	BUG_ON(!accessed_mask && !acc_track_mask);
372
	BUG_ON(acc_track_mask & shadow_acc_track_value);
373

S
Sheng Yang 已提交
374 375 376 377 378
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
379
	shadow_present_mask = p_mask;
380
	shadow_acc_track_mask = acc_track_mask;
381
	shadow_me_mask = me_mask;
S
Sheng Yang 已提交
382 383 384
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

385
static void kvm_mmu_clear_all_pte_masks(void)
386 387 388 389 390 391 392 393 394 395 396
{
	shadow_user_mask = 0;
	shadow_accessed_mask = 0;
	shadow_dirty_mask = 0;
	shadow_nx_mask = 0;
	shadow_x_mask = 0;
	shadow_mmio_mask = 0;
	shadow_present_mask = 0;
	shadow_acc_track_mask = 0;
}

A
Avi Kivity 已提交
397 398 399 400 401
static int is_cpuid_PSE36(void)
{
	return 1;
}

402 403
static int is_nx(struct kvm_vcpu *vcpu)
{
404
	return vcpu->arch.efer & EFER_NX;
405 406
}

407 408
static int is_shadow_present_pte(u64 pte)
{
409
	return (pte != 0) && !is_mmio_spte(pte);
410 411
}

M
Marcelo Tosatti 已提交
412 413 414 415 416
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

417 418 419 420
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
421
	if (is_large_pte(pte))
422 423 424 425
		return 1;
	return 0;
}

426 427 428 429 430
static bool is_executable_pte(u64 spte)
{
	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
}

D
Dan Williams 已提交
431
static kvm_pfn_t spte_to_pfn(u64 pte)
432
{
433
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
434 435
}

436 437 438 439 440 441 442
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

443
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
444
static void __set_spte(u64 *sptep, u64 spte)
445
{
446
	WRITE_ONCE(*sptep, spte);
447 448
}

449
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
450
{
451
	WRITE_ONCE(*sptep, spte);
452 453 454 455 456 457
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
458 459 460

static u64 __get_spte_lockless(u64 *sptep)
{
461
	return READ_ONCE(*sptep);
462
}
463
#else
464 465 466 467 468 469 470
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
471

472 473 474 475 476 477 478 479 480 481 482 483
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

484 485 486
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
487

488 489 490 491 492 493 494 495 496 497 498 499
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

500
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
501 502
}

503 504 505 506 507 508 509
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

510
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
511 512 513 514 515 516 517 518

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
519
	count_spte_clear(sptep, spte);
520 521 522 523 524 525 526 527 528 529 530
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
531 532
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
533
	count_spte_clear(sptep, spte);
534 535 536

	return orig.spte;
}
537 538 539 540

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
541 542 543 544 545 546 547 548 549 550 551 552 553 554
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
578 579
#endif

580
static bool spte_can_locklessly_be_made_writable(u64 spte)
581
{
582 583
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
584 585
}

586 587
static bool spte_has_volatile_bits(u64 spte)
{
588 589 590
	if (!is_shadow_present_pte(spte))
		return false;

591
	/*
592
	 * Always atomically update spte if it can be updated
593 594 595 596
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
597 598
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
599 600
		return true;

601
	if (spte_ad_enabled(spte)) {
602 603 604 605
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
606

607
	return false;
608 609
}

610
static bool is_accessed_spte(u64 spte)
611
{
612 613 614 615
	u64 accessed_mask = spte_shadow_accessed_mask(spte);

	return accessed_mask ? spte & accessed_mask
			     : !is_access_track_spte(spte);
616 617
}

618
static bool is_dirty_spte(u64 spte)
619
{
620 621 622
	u64 dirty_mask = spte_shadow_dirty_mask(spte);

	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
623 624
}

625 626 627 628 629 630 631 632 633 634 635 636
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

637 638 639
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
640
 */
641
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
642
{
643
	u64 old_spte = *sptep;
644

645
	WARN_ON(!is_shadow_present_pte(new_spte));
646

647 648
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
649
		return old_spte;
650
	}
651

652
	if (!spte_has_volatile_bits(old_spte))
653
		__update_clear_spte_fast(sptep, new_spte);
654
	else
655
		old_spte = __update_clear_spte_slow(sptep, new_spte);
656

657 658
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

681 682
	/*
	 * For the spte updated out of mmu-lock is safe, since
683
	 * we always atomically update it, see the comments in
684 685
	 * spte_has_volatile_bits().
	 */
686
	if (spte_can_locklessly_be_made_writable(old_spte) &&
687
	      !is_writable_pte(new_spte))
688
		flush = true;
689

690
	/*
691
	 * Flush TLB when accessed/dirty states are changed in the page tables,
692 693 694
	 * to guarantee consistency between TLB and page tables.
	 */

695 696
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
697
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
698 699 700 701
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
702
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
703
	}
704

705
	return flush;
706 707
}

708 709 710 711
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
712
 * Returns non-zero if the PTE was previously valid.
713 714 715
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
716
	kvm_pfn_t pfn;
717 718 719
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
720
		__update_clear_spte_fast(sptep, 0ull);
721
	else
722
		old_spte = __update_clear_spte_slow(sptep, 0ull);
723

724
	if (!is_shadow_present_pte(old_spte))
725 726 727
		return 0;

	pfn = spte_to_pfn(old_spte);
728 729 730 731 732 733

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
734
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
735

736
	if (is_accessed_spte(old_spte))
737
		kvm_set_pfn_accessed(pfn);
738 739

	if (is_dirty_spte(old_spte))
740
		kvm_set_pfn_dirty(pfn);
741

742 743 744 745 746 747 748 749 750 751
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
752
	__update_clear_spte_fast(sptep, 0ull);
753 754
}

755 756 757 758 759
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

760 761
static u64 mark_spte_for_access_track(u64 spte)
{
762
	if (spte_ad_enabled(spte))
763 764
		return spte & ~shadow_accessed_mask;

765
	if (is_access_track_spte(spte))
766 767 768
		return spte;

	/*
769 770 771
	 * Making an Access Tracking PTE will result in removal of write access
	 * from the PTE. So, verify that we will be able to restore the write
	 * access in the fast page fault path later on.
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	 */
	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
		  !spte_can_locklessly_be_made_writable(spte),
		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");

	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
			  shadow_acc_track_saved_bits_shift),
		  "kvm: Access Tracking saved bit locations are not zero\n");

	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
		shadow_acc_track_saved_bits_shift;
	spte &= ~shadow_acc_track_mask;

	return spte;
}

788 789 790 791 792 793 794
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
			 & shadow_acc_track_saved_bits_mask;

795
	WARN_ON_ONCE(spte_ad_enabled(spte));
796 797 798 799 800 801 802 803 804 805
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
		      shadow_acc_track_saved_bits_shift);
	new_spte |= saved_bits;

	return new_spte;
}

806 807 808 809 810 811 812 813
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

814
	if (spte_ad_enabled(spte)) {
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

832 833
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
834 835 836 837 838
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
839

840 841 842 843
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
844
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
845 846 847 848
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
849 850 851 852 853
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
854
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
855
	local_irq_enable();
856 857
}

858
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
859
				  struct kmem_cache *base_cache, int min)
860 861 862 863
{
	void *obj;

	if (cache->nobjs >= min)
864
		return 0;
865
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
866
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
867
		if (!obj)
868
			return -ENOMEM;
869 870
		cache->objects[cache->nobjs++] = obj;
	}
871
	return 0;
872 873
}

874 875 876 877 878
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

879 880
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
881 882
{
	while (mc->nobjs)
883
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
884 885
}

A
Avi Kivity 已提交
886
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
887
				       int min)
A
Avi Kivity 已提交
888
{
889
	void *page;
A
Avi Kivity 已提交
890 891 892 893

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
894
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
895 896
		if (!page)
			return -ENOMEM;
897
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
898 899 900 901 902 903 904
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
905
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
906 907
}

908
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
909
{
910 911
	int r;

912
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
913
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
914 915
	if (r)
		goto out;
916
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
917 918
	if (r)
		goto out;
919
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
920
				   mmu_page_header_cache, 4);
921 922
out:
	return r;
923 924 925 926
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
927 928
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
929
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
930 931
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
932 933
}

934
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
935 936 937 938 939 940 941 942
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

943
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
944
{
945
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
946 947
}

948
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
949
{
950
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
951 952
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
969
/*
970 971
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
972
 */
973 974 975
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
976 977 978
{
	unsigned long idx;

979
	idx = gfn_to_index(gfn, slot->base_gfn, level);
980
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
981 982
}

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

1006
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1007
{
1008
	struct kvm_memslots *slots;
1009
	struct kvm_memory_slot *slot;
1010
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1011

1012
	kvm->arch.indirect_shadow_pages++;
1013
	gfn = sp->gfn;
1014 1015
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1016 1017 1018 1019 1020 1021

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

1022
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1023 1024
}

1025
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1026
{
1027
	struct kvm_memslots *slots;
1028
	struct kvm_memory_slot *slot;
1029
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1030

1031
	kvm->arch.indirect_shadow_pages--;
1032
	gfn = sp->gfn;
1033 1034
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1035 1036 1037 1038
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

1039
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1040 1041
}

1042 1043
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
					  struct kvm_memory_slot *slot)
M
Marcelo Tosatti 已提交
1044
{
1045
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
1046 1047

	if (slot) {
1048
		linfo = lpage_info_slot(gfn, slot, level);
1049
		return !!linfo->disallow_lpage;
M
Marcelo Tosatti 已提交
1050 1051
	}

1052
	return true;
M
Marcelo Tosatti 已提交
1053 1054
}

1055 1056
static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
					int level)
1057 1058 1059 1060
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1061
	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1062 1063
}

1064
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
1065
{
J
Joerg Roedel 已提交
1066
	unsigned long page_size;
1067
	int i, ret = 0;
M
Marcelo Tosatti 已提交
1068

J
Joerg Roedel 已提交
1069
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
1070

1071
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1072 1073 1074 1075 1076 1077
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

1078
	return ret;
M
Marcelo Tosatti 已提交
1079 1080
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
					  bool no_dirty_log)
{
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return false;
	if (no_dirty_log && slot->dirty_bitmap)
		return false;

	return true;
}

1092 1093 1094
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
1095 1096
{
	struct kvm_memory_slot *slot;
1097

1098
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1099
	if (!memslot_valid_for_gpte(slot, no_dirty_log))
1100 1101 1102 1103 1104
		slot = NULL;

	return slot;
}

1105 1106
static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
			 bool *force_pt_level)
1107 1108
{
	int host_level, level, max_level;
1109 1110
	struct kvm_memory_slot *slot;

1111 1112
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
1113

1114 1115
	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
	*force_pt_level = !memslot_valid_for_gpte(slot, true);
1116 1117 1118
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;

1119 1120 1121 1122 1123
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
1124
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1125 1126

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1127
		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1128 1129 1130
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
1131 1132
}

1133
/*
1134
 * About rmap_head encoding:
1135
 *
1136 1137
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1138
 * pte_list_desc containing more mappings.
1139 1140 1141 1142
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
1143
 */
1144
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1145
			struct kvm_rmap_head *rmap_head)
1146
{
1147
	struct pte_list_desc *desc;
1148
	int i, count = 0;
1149

1150
	if (!rmap_head->val) {
1151
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1152 1153
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
1154 1155
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
1156
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
1157
		desc->sptes[1] = spte;
1158
		rmap_head->val = (unsigned long)desc | 1;
1159
		++count;
1160
	} else {
1161
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1162
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1163
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1164
			desc = desc->more;
1165
			count += PTE_LIST_EXT;
1166
		}
1167 1168
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
1169 1170
			desc = desc->more;
		}
A
Avi Kivity 已提交
1171
		for (i = 0; desc->sptes[i]; ++i)
1172
			++count;
A
Avi Kivity 已提交
1173
		desc->sptes[i] = spte;
1174
	}
1175
	return count;
1176 1177
}

1178
static void
1179 1180 1181
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
1182 1183 1184
{
	int j;

1185
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1186
		;
A
Avi Kivity 已提交
1187 1188
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
1189 1190 1191
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
1192
		rmap_head->val = (unsigned long)desc->sptes[0];
1193 1194 1195 1196
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1197
			rmap_head->val = (unsigned long)desc->more | 1;
1198
	mmu_free_pte_list_desc(desc);
1199 1200
}

1201
static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1202
{
1203 1204
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1205 1206
	int i;

1207
	if (!rmap_head->val) {
1208
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1209
		BUG();
1210
	} else if (!(rmap_head->val & 1)) {
1211
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1212
		if ((u64 *)rmap_head->val != spte) {
1213
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1214 1215
			BUG();
		}
1216
		rmap_head->val = 0;
1217
	} else {
1218
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1219
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1220 1221
		prev_desc = NULL;
		while (desc) {
1222
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1223
				if (desc->sptes[i] == spte) {
1224 1225
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1226 1227
					return;
				}
1228
			}
1229 1230 1231
			prev_desc = desc;
			desc = desc->more;
		}
1232
		pr_err("pte_list_remove: %p many->many\n", spte);
1233 1234 1235 1236
		BUG();
	}
}

1237 1238
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1239
{
1240
	unsigned long idx;
1241

1242
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1243
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1244 1245
}

1246 1247
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1248
{
1249
	struct kvm_memslots *slots;
1250 1251
	struct kvm_memory_slot *slot;

1252 1253
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1254
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1255 1256
}

1257 1258 1259 1260 1261 1262 1263 1264
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1265 1266 1267
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1268
	struct kvm_rmap_head *rmap_head;
1269 1270 1271

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1272 1273
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1274 1275 1276 1277 1278 1279
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1280
	struct kvm_rmap_head *rmap_head;
1281 1282 1283

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1284 1285
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
	pte_list_remove(spte, rmap_head);
1286 1287
}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
1305 1306
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1307
{
1308 1309
	u64 *sptep;

1310
	if (!rmap_head->val)
1311 1312
		return NULL;

1313
	if (!(rmap_head->val & 1)) {
1314
		iter->desc = NULL;
1315 1316
		sptep = (u64 *)rmap_head->val;
		goto out;
1317 1318
	}

1319
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1320
	iter->pos = 0;
1321 1322 1323 1324
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1325 1326 1327 1328 1329 1330 1331 1332 1333
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1334 1335
	u64 *sptep;

1336 1337 1338 1339 1340
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1341
				goto out;
1342 1343 1344 1345 1346 1347 1348
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1349 1350
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1351 1352 1353 1354
		}
	}

	return NULL;
1355 1356 1357
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1358 1359
}

1360 1361
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1362
	     _spte_; _spte_ = rmap_get_next(_iter_))
1363

1364
static void drop_spte(struct kvm *kvm, u64 *sptep)
1365
{
1366
	if (mmu_spte_clear_track_bits(sptep))
1367
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1368 1369
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1391
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1392
 * spte write-protection is caused by protecting shadow page table.
1393
 *
T
Tiejun Chen 已提交
1394
 * Note: write protection is difference between dirty logging and spte
1395 1396 1397 1398 1399
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1400
 *
1401
 * Return true if tlb need be flushed.
1402
 */
1403
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1404 1405 1406
{
	u64 spte = *sptep;

1407
	if (!is_writable_pte(spte) &&
1408
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1409 1410 1411 1412
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1413 1414
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1415
	spte = spte & ~PT_WRITABLE_MASK;
1416

1417
	return mmu_spte_update(sptep, spte);
1418 1419
}

1420 1421
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1422
				 bool pt_protect)
1423
{
1424 1425
	u64 *sptep;
	struct rmap_iterator iter;
1426
	bool flush = false;
1427

1428
	for_each_rmap_spte(rmap_head, &iter, sptep)
1429
		flush |= spte_write_protect(sptep, pt_protect);
1430

1431
	return flush;
1432 1433
}

1434
static bool spte_clear_dirty(u64 *sptep)
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
static bool wrprot_ad_disabled_spte(u64 *sptep)
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
	if (was_writable)
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1461
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1462 1463 1464 1465 1466
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1467
	for_each_rmap_spte(rmap_head, &iter, sptep)
1468 1469 1470 1471
		if (spte_ad_enabled(*sptep))
			flush |= spte_clear_dirty(sptep);
		else
			flush |= wrprot_ad_disabled_spte(sptep);
1472 1473 1474 1475

	return flush;
}

1476
static bool spte_set_dirty(u64 *sptep)
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1487
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1488 1489 1490 1491 1492
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1493
	for_each_rmap_spte(rmap_head, &iter, sptep)
1494 1495
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1496 1497 1498 1499

	return flush;
}

1500
/**
1501
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1502 1503 1504 1505 1506 1507 1508 1509
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1510
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1511 1512
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1513
{
1514
	struct kvm_rmap_head *rmap_head;
1515

1516
	while (mask) {
1517 1518 1519
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1520

1521 1522 1523
		/* clear the first set bit */
		mask &= mask - 1;
	}
1524 1525
}

1526
/**
1527 1528
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1540
	struct kvm_rmap_head *rmap_head;
1541 1542

	while (mask) {
1543 1544 1545
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1546 1547 1548 1549 1550 1551 1552

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1567 1568 1569 1570 1571
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1572 1573
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
/**
 * kvm_arch_write_log_dirty - emulate dirty page logging
 * @vcpu: Guest mode vcpu
 *
 * Emulate arch specific page modification logging for the
 * nested hypervisor
 */
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
{
	if (kvm_x86_ops->write_log_dirty)
		return kvm_x86_ops->write_log_dirty(vcpu);

	return 0;
}

1589 1590
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1591
{
1592
	struct kvm_rmap_head *rmap_head;
1593
	int i;
1594
	bool write_protected = false;
1595

1596
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1597
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1598
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1599 1600 1601
	}

	return write_protected;
1602 1603
}

1604 1605 1606 1607 1608 1609 1610 1611
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1612
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1613
{
1614 1615
	u64 *sptep;
	struct rmap_iterator iter;
1616
	bool flush = false;
1617

1618
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1619
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1620 1621

		drop_spte(kvm, sptep);
1622
		flush = true;
1623
	}
1624

1625 1626 1627
	return flush;
}

1628
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1629 1630 1631
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1632
	return kvm_zap_rmapp(kvm, rmap_head);
1633 1634
}

1635
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1636 1637
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1638
{
1639 1640
	u64 *sptep;
	struct rmap_iterator iter;
1641
	int need_flush = 0;
1642
	u64 new_spte;
1643
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1644
	kvm_pfn_t new_pfn;
1645 1646 1647

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1648

1649
restart:
1650
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1651
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1652
			    sptep, *sptep, gfn, level);
1653

1654
		need_flush = 1;
1655

1656
		if (pte_write(*ptep)) {
1657
			drop_spte(kvm, sptep);
1658
			goto restart;
1659
		} else {
1660
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1661 1662 1663 1664
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1665 1666

			new_spte = mark_spte_for_access_track(new_spte);
1667 1668 1669

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1670 1671
		}
	}
1672

1673 1674 1675 1676 1677 1678
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1689
	struct kvm_rmap_head *rmap;
1690 1691 1692
	int level;

	/* private field. */
1693
	struct kvm_rmap_head *end_rmap;
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1747 1748 1749 1750 1751
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1752
					       struct kvm_rmap_head *rmap_head,
1753
					       struct kvm_memory_slot *slot,
1754 1755
					       gfn_t gfn,
					       int level,
1756
					       unsigned long data))
1757
{
1758
	struct kvm_memslots *slots;
1759
	struct kvm_memory_slot *memslot;
1760 1761
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1762
	int i;
1763

1764 1765 1766 1767 1768
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1769

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1789 1790
	}

1791
	return ret;
1792 1793
}

1794 1795
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1796 1797
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1798
					 struct kvm_memory_slot *slot,
1799
					 gfn_t gfn, int level,
1800 1801 1802
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1803 1804 1805 1806
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1807 1808 1809
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1810 1811 1812 1813 1814
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1815 1816
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1817
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1818 1819
}

1820
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1821 1822
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1823
{
1824
	u64 *sptep;
1825
	struct rmap_iterator uninitialized_var(iter);
1826 1827
	int young = 0;

1828 1829
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1830

1831
	trace_kvm_age_page(gfn, level, slot, young);
1832 1833 1834
	return young;
}

1835
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1836 1837
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1838
{
1839 1840
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1841

1842 1843 1844 1845
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1846 1847
}

1848 1849
#define RMAP_RECYCLE_THRESHOLD 1000

1850
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1851
{
1852
	struct kvm_rmap_head *rmap_head;
1853 1854 1855
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1856

1857
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1858

1859
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1860 1861 1862
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1863
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1864
{
A
Andres Lagar-Cavilla 已提交
1865
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1866 1867
}

A
Andrea Arcangeli 已提交
1868 1869 1870 1871 1872
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1873
#ifdef MMU_DEBUG
1874
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1875
{
1876 1877 1878
	u64 *pos;
	u64 *end;

1879
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1880
		if (is_shadow_present_pte(*pos)) {
1881
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1882
			       pos, *pos);
A
Avi Kivity 已提交
1883
			return 0;
1884
		}
A
Avi Kivity 已提交
1885 1886
	return 1;
}
1887
#endif
A
Avi Kivity 已提交
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1901
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1902
{
1903
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1904
	hlist_del(&sp->hash_link);
1905 1906
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1907 1908
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1909
	kmem_cache_free(mmu_page_header_cache, sp);
1910 1911
}

1912 1913
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1914
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1915 1916
}

1917
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1918
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1919 1920 1921 1922
{
	if (!parent_pte)
		return;

1923
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1924 1925
}

1926
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1927 1928
				       u64 *parent_pte)
{
1929
	pte_list_remove(parent_pte, &sp->parent_ptes);
1930 1931
}

1932 1933 1934 1935
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1936
	mmu_spte_clear_no_track(parent_pte);
1937 1938
}

1939
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1940
{
1941
	struct kvm_mmu_page *sp;
1942

1943 1944
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1945
	if (!direct)
1946
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1947
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1948 1949 1950 1951 1952 1953

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1954 1955 1956
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1957 1958
}

1959
static void mark_unsync(u64 *spte);
1960
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1961
{
1962 1963 1964 1965 1966 1967
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1968 1969
}

1970
static void mark_unsync(u64 *spte)
1971
{
1972
	struct kvm_mmu_page *sp;
1973
	unsigned int index;
1974

1975
	sp = page_header(__pa(spte));
1976 1977
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1978
		return;
1979
	if (sp->unsync_children++)
1980
		return;
1981
	kvm_mmu_mark_parents_unsync(sp);
1982 1983
}

1984
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1985
			       struct kvm_mmu_page *sp)
1986
{
1987
	return 0;
1988 1989
}

M
Marcelo Tosatti 已提交
1990 1991 1992 1993
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1994 1995
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1996
				 const void *pte)
1997 1998 1999 2000
{
	WARN_ON(1);
}

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

2011 2012
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
2013
{
2014
	int i;
2015

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

2027 2028 2029 2030 2031 2032 2033
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

2034 2035 2036 2037
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
2038

2039
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2040
		struct kvm_mmu_page *child;
2041 2042
		u64 ent = sp->spt[i];

2043 2044 2045 2046
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
2047 2048 2049 2050 2051 2052 2053 2054

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
2055 2056 2057 2058
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
2059
				nr_unsync_leaf += ret;
2060
			} else
2061 2062 2063 2064 2065 2066
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
2067
			clear_unsync_child_bit(sp, i);
2068 2069
	}

2070 2071 2072
	return nr_unsync_leaf;
}

2073 2074
#define INVALID_INDEX (-1)

2075 2076 2077
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
2078
	pvec->nr = 0;
2079 2080 2081
	if (!sp->unsync_children)
		return 0;

2082
	mmu_pages_add(pvec, sp, INVALID_INDEX);
2083
	return __mmu_unsync_walk(sp, pvec);
2084 2085 2086 2087 2088
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
2089
	trace_kvm_mmu_sync_page(sp);
2090 2091 2092 2093
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

2094 2095 2096 2097
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
2098

2099 2100 2101 2102 2103 2104
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
2105
 * for_each_valid_sp() has skipped that kind of pages.
2106
 */
2107
#define for_each_valid_sp(_kvm, _sp, _gfn)				\
2108 2109
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2110 2111
		if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
		} else
2112 2113

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2114 2115
	for_each_valid_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2116

2117
/* @sp->gfn should be write-protected at the call site */
2118 2119
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
2120
{
2121
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2122
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2123
		return false;
2124 2125
	}

2126
	if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2127
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2128
		return false;
2129 2130
	}

2131
	return true;
2132 2133
}

2134 2135 2136
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
2137
{
2138 2139 2140 2141
	if (!list_empty(invalid_list)) {
		kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
		return;
	}
2142

2143 2144 2145 2146
	if (remote_flush)
		kvm_flush_remote_tlbs(vcpu->kvm);
	else if (local_flush)
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2147 2148
}

2149 2150 2151 2152 2153 2154 2155
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

2156 2157 2158 2159 2160
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

2161
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2162
			 struct list_head *invalid_list)
2163
{
2164 2165
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
2166 2167
}

2168
/* @gfn should be write-protected at the call site */
2169 2170
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
2171 2172
{
	struct kvm_mmu_page *s;
2173
	bool ret = false;
2174

2175
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2176
		if (!s->unsync)
2177 2178 2179
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2180
		ret |= kvm_sync_page(vcpu, s, invalid_list);
2181 2182
	}

2183
	return ret;
2184 2185
}

2186
struct mmu_page_path {
2187 2188
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2189 2190
};

2191
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2192
		for (i = mmu_pages_first(&pvec, &parents);	\
2193 2194 2195
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2196 2197 2198
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2199 2200 2201 2202 2203
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2204 2205
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2206

P
Paolo Bonzini 已提交
2207 2208 2209
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2210

P
Paolo Bonzini 已提交
2211
		parents->parent[level-2] = sp;
2212 2213 2214 2215 2216
	}

	return n;
}

P
Paolo Bonzini 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2226 2227
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2241
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2242
{
2243 2244 2245 2246 2247 2248 2249 2250 2251
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2252
		WARN_ON(idx == INVALID_INDEX);
2253
		clear_unsync_child_bit(sp, idx);
2254
		level++;
P
Paolo Bonzini 已提交
2255
	} while (!sp->unsync_children);
2256
}
2257

2258 2259 2260 2261 2262 2263 2264
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2265
	LIST_HEAD(invalid_list);
2266
	bool flush = false;
2267 2268

	while (mmu_unsync_walk(parent, &pages)) {
2269
		bool protected = false;
2270 2271

		for_each_sp(pages, sp, parents, i)
2272
			protected |= rmap_write_protect(vcpu, sp->gfn);
2273

2274
		if (protected) {
2275
			kvm_flush_remote_tlbs(vcpu->kvm);
2276 2277
			flush = false;
		}
2278

2279
		for_each_sp(pages, sp, parents, i) {
2280
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2281 2282
			mmu_pages_clear_parents(&parents);
		}
2283 2284 2285 2286 2287
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2288
	}
2289 2290

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2291 2292
}

2293 2294
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2295
	atomic_set(&sp->write_flooding_count,  0);
2296 2297 2298 2299 2300 2301 2302 2303 2304
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2305 2306 2307 2308
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2309
					     int direct,
2310
					     unsigned access)
2311 2312 2313
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2314 2315
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2316
	bool flush = false;
2317
	int collisions = 0;
2318
	LIST_HEAD(invalid_list);
2319

2320
	role = vcpu->arch.mmu.base_role;
2321
	role.level = level;
2322
	role.direct = direct;
2323
	if (role.direct)
2324
		role.cr4_pae = 0;
2325
	role.access = access;
2326 2327
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2328 2329 2330 2331
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2332 2333 2334 2335 2336 2337
	for_each_valid_sp(vcpu->kvm, sp, gfn) {
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2338 2339
		if (!need_sync && sp->unsync)
			need_sync = true;
2340

2341 2342
		if (sp->role.word != role.word)
			continue;
2343

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}
2354

2355
		if (sp->unsync_children)
2356
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2357

2358
		__clear_sp_write_flooding_count(sp);
2359
		trace_kvm_mmu_get_page(sp, false);
2360
		goto out;
2361
	}
2362

A
Avi Kivity 已提交
2363
	++vcpu->kvm->stat.mmu_cache_miss;
2364 2365 2366

	sp = kvm_mmu_alloc_page(vcpu, direct);

2367 2368
	sp->gfn = gfn;
	sp->role = role;
2369 2370
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2371
	if (!direct) {
2372 2373 2374 2375 2376 2377 2378 2379
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2380
			kvm_flush_remote_tlbs(vcpu->kvm);
2381 2382

		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2383
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2384
	}
2385
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2386
	clear_page(sp->spt);
A
Avi Kivity 已提交
2387
	trace_kvm_mmu_get_page(sp, true);
2388 2389

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2390 2391 2392
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2393
	return sp;
2394 2395
}

2396 2397 2398 2399 2400 2401
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2402

2403 2404
	if (iterator->level == PT64_ROOT_4LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2405 2406 2407
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2422

2423 2424 2425 2426 2427
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2428 2429
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2430
{
2431
	if (is_last_spte(spte, iterator->level)) {
2432 2433 2434 2435
		iterator->level = 0;
		return;
	}

2436
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2437 2438 2439
	--iterator->level;
}

2440 2441
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2442
	__shadow_walk_next(iterator, *iterator->sptep);
2443 2444
}

2445 2446
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2447 2448 2449
{
	u64 spte;

2450
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2451

2452
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2453
	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2454 2455 2456 2457 2458

	if (sp_ad_disabled(sp))
		spte |= shadow_acc_track_value;
	else
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2459

2460
	mmu_spte_set(sptep, spte);
2461 2462 2463 2464 2465

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2466 2467
}

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2485
		drop_parent_pte(child, sptep);
2486 2487 2488 2489
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2490
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2491 2492 2493 2494 2495 2496 2497
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2498
		if (is_last_spte(pte, sp->role.level)) {
2499
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2500 2501 2502
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2503
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2504
			drop_parent_pte(child, spte);
2505
		}
X
Xiao Guangrong 已提交
2506 2507 2508 2509
		return true;
	}

	if (is_mmio_spte(pte))
2510
		mmu_spte_clear_no_track(spte);
2511

X
Xiao Guangrong 已提交
2512
	return false;
2513 2514
}

2515
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2516
					 struct kvm_mmu_page *sp)
2517
{
2518 2519
	unsigned i;

2520 2521
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2522 2523
}

2524
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2525
{
2526 2527
	u64 *sptep;
	struct rmap_iterator iter;
2528

2529
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2530
		drop_parent_pte(sp, sptep);
2531 2532
}

2533
static int mmu_zap_unsync_children(struct kvm *kvm,
2534 2535
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2536
{
2537 2538 2539
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2540

2541
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2542
		return 0;
2543 2544 2545 2546 2547

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2548
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2549
			mmu_pages_clear_parents(&parents);
2550
			zapped++;
2551 2552 2553 2554
		}
	}

	return zapped;
2555 2556
}

2557 2558
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2559
{
2560
	int ret;
A
Avi Kivity 已提交
2561

2562
	trace_kvm_mmu_prepare_zap_page(sp);
2563
	++kvm->stat.mmu_shadow_zapped;
2564
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2565
	kvm_mmu_page_unlink_children(kvm, sp);
2566
	kvm_mmu_unlink_parents(kvm, sp);
2567

2568
	if (!sp->role.invalid && !sp->role.direct)
2569
		unaccount_shadowed(kvm, sp);
2570

2571 2572
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2573
	if (!sp->root_count) {
2574 2575
		/* Count self */
		ret++;
2576
		list_move(&sp->link, invalid_list);
2577
		kvm_mod_used_mmu_pages(kvm, -1);
2578
	} else {
A
Avi Kivity 已提交
2579
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2580 2581 2582 2583 2584 2585 2586

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2587
	}
2588 2589

	sp->role.invalid = 1;
2590
	return ret;
2591 2592
}

2593 2594 2595
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2596
	struct kvm_mmu_page *sp, *nsp;
2597 2598 2599 2600

	if (list_empty(invalid_list))
		return;

2601
	/*
2602 2603 2604 2605 2606 2607 2608
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2609 2610
	 */
	kvm_flush_remote_tlbs(kvm);
2611

2612
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2613
		WARN_ON(!sp->role.invalid || sp->root_count);
2614
		kvm_mmu_free_page(sp);
2615
	}
2616 2617
}

2618 2619 2620 2621 2622 2623 2624 2625
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2626 2627
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2628
	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2629 2630
}

2631 2632
/*
 * Changing the number of mmu pages allocated to the vm
2633
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2634
 */
2635
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2636
{
2637
	LIST_HEAD(invalid_list);
2638

2639 2640
	spin_lock(&kvm->mmu_lock);

2641
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2642 2643 2644 2645
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2646

2647
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2648
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2649 2650
	}

2651
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2652 2653

	spin_unlock(&kvm->mmu_lock);
2654 2655
}

2656
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2657
{
2658
	struct kvm_mmu_page *sp;
2659
	LIST_HEAD(invalid_list);
2660 2661
	int r;

2662
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2663
	r = 0;
2664
	spin_lock(&kvm->mmu_lock);
2665
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2666
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2667 2668
			 sp->role.word);
		r = 1;
2669
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2670
	}
2671
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2672 2673
	spin_unlock(&kvm->mmu_lock);

2674
	return r;
2675
}
2676
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2677

2678
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2679 2680 2681 2682 2683 2684 2685 2686
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2687 2688
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2689
{
2690
	struct kvm_mmu_page *sp;
2691

2692 2693
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2694

2695
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2696
		if (!can_unsync)
2697
			return true;
2698

2699 2700
		if (sp->unsync)
			continue;
2701

2702 2703
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
2704
	}
2705 2706

	return false;
2707 2708
}

D
Dan Williams 已提交
2709
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2710 2711
{
	if (pfn_valid(pfn))
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
			/*
			 * Some reserved pages, such as those from NVDIMM
			 * DAX devices, are not for MMIO, and can be mapped
			 * with cached memory type for better performance.
			 * However, the above check misconceives those pages
			 * as MMIO, and results in KVM mapping them with UC
			 * memory type, which would hurt the performance.
			 * Therefore, we check the host memory type in addition
			 * and only treat UC/UC-/WC pages as MMIO.
			 */
			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2724 2725 2726 2727

	return true;
}

A
Avi Kivity 已提交
2728
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2729
		    unsigned pte_access, int level,
D
Dan Williams 已提交
2730
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2731
		    bool can_unsync, bool host_writable)
2732
{
2733
	u64 spte = 0;
M
Marcelo Tosatti 已提交
2734
	int ret = 0;
2735
	struct kvm_mmu_page *sp;
S
Sheng Yang 已提交
2736

2737
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2738 2739
		return 0;

2740 2741 2742 2743
	sp = page_header(__pa(sptep));
	if (sp_ad_disabled(sp))
		spte |= shadow_acc_track_value;

2744 2745 2746 2747 2748 2749
	/*
	 * For the EPT case, shadow_present_mask is 0 if hardware
	 * supports exec-only page table entries.  In that case,
	 * ACC_USER_MASK and shadow_user_mask are used to represent
	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
	 */
2750
	spte |= shadow_present_mask;
2751
	if (!speculative)
2752
		spte |= spte_shadow_accessed_mask(spte);
2753

S
Sheng Yang 已提交
2754 2755 2756 2757
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2758

2759
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2760
		spte |= shadow_user_mask;
2761

2762
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2763
		spte |= PT_PAGE_SIZE_MASK;
2764
	if (tdp_enabled)
2765
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2766
			kvm_is_mmio_pfn(pfn));
2767

2768
	if (host_writable)
2769
		spte |= SPTE_HOST_WRITEABLE;
2770 2771
	else
		pte_access &= ~ACC_WRITE_MASK;
2772

2773
	spte |= (u64)pfn << PAGE_SHIFT;
2774
	spte |= shadow_me_mask;
2775

2776
	if (pte_access & ACC_WRITE_MASK) {
2777

X
Xiao Guangrong 已提交
2778
		/*
2779 2780 2781 2782
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2783
		 */
2784
		if (level > PT_PAGE_TABLE_LEVEL &&
2785
		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
A
Avi Kivity 已提交
2786
			goto done;
2787

2788
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2789

2790 2791 2792 2793 2794 2795
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2796
		if (!can_unsync && is_writable_pte(*sptep))
2797 2798
			goto set_pte;

2799
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2800
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2801
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2802
			ret = 1;
2803
			pte_access &= ~ACC_WRITE_MASK;
2804
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2805 2806 2807
		}
	}

2808
	if (pte_access & ACC_WRITE_MASK) {
2809
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2810
		spte |= spte_shadow_dirty_mask(spte);
2811
	}
2812

2813 2814 2815
	if (speculative)
		spte = mark_spte_for_access_track(spte);

2816
set_pte:
2817
	if (mmu_spte_update(sptep, spte))
2818
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2819
done:
M
Marcelo Tosatti 已提交
2820 2821 2822
	return ret;
}

2823 2824 2825
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
			int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
		       	bool speculative, bool host_writable)
M
Marcelo Tosatti 已提交
2826 2827
{
	int was_rmapped = 0;
2828
	int rmap_count;
2829
	int ret = RET_PF_RETRY;
M
Marcelo Tosatti 已提交
2830

2831 2832
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2833

2834
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2835 2836 2837 2838
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2839 2840
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2841
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2842
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2843 2844

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2845
			drop_parent_pte(child, sptep);
2846
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2847
		} else if (pfn != spte_to_pfn(*sptep)) {
2848
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2849
				 spte_to_pfn(*sptep), pfn);
2850
			drop_spte(vcpu->kvm, sptep);
2851
			kvm_flush_remote_tlbs(vcpu->kvm);
2852 2853
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2854
	}
2855

2856 2857
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2858
		if (write_fault)
2859
			ret = RET_PF_EMULATE;
2860
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2861
	}
M
Marcelo Tosatti 已提交
2862

2863
	if (unlikely(is_mmio_spte(*sptep)))
2864
		ret = RET_PF_EMULATE;
2865

A
Avi Kivity 已提交
2866
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2867
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2868
		 is_large_pte(*sptep)? "2MB" : "4kB",
2869
		 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2870
		 *sptep, sptep);
A
Avi Kivity 已提交
2871
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2872 2873
		++vcpu->kvm->stat.lpages;

2874 2875 2876 2877 2878 2879
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2880
	}
2881

X
Xiao Guangrong 已提交
2882
	kvm_release_pfn_clean(pfn);
2883

2884
	return ret;
2885 2886
}

D
Dan Williams 已提交
2887
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2888 2889 2890 2891
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2892
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2893
	if (!slot)
2894
		return KVM_PFN_ERR_FAULT;
2895

2896
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2897 2898 2899 2900 2901 2902 2903
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2904
	struct kvm_memory_slot *slot;
2905 2906 2907 2908 2909
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2910 2911
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2912 2913
		return -1;

2914
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2915 2916 2917 2918
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2919 2920
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2937
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2952 2953
	sp = page_header(__pa(sptep));

2954
	/*
2955 2956 2957
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2958
	 */
2959
	if (sp_ad_disabled(sp))
2960 2961 2962 2963 2964 2965 2966 2967
		return;

	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2968
static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
D
Dan Williams 已提交
2969
			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2970
{
2971
	struct kvm_shadow_walk_iterator iterator;
2972
	struct kvm_mmu_page *sp;
2973
	int emulate = 0;
2974
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2975

2976 2977 2978
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2979
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2980
		if (iterator.level == level) {
2981 2982 2983
			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
					       write, level, gfn, pfn, prefault,
					       map_writable);
2984
			direct_pte_prefetch(vcpu, iterator.sptep);
2985 2986
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2987 2988
		}

2989
		drop_large_spte(vcpu, iterator.sptep);
2990
		if (!is_shadow_present_pte(*iterator.sptep)) {
2991 2992 2993 2994
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2995
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2996
					      iterator.level - 1, 1, ACC_ALL);
2997

2998
			link_shadow_page(vcpu, iterator.sptep, sp);
2999 3000
		}
	}
3001
	return emulate;
A
Avi Kivity 已提交
3002 3003
}

H
Huang Ying 已提交
3004
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3005
{
H
Huang Ying 已提交
3006 3007 3008 3009 3010 3011 3012
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
3013

H
Huang Ying 已提交
3014
	send_sig_info(SIGBUS, &info, tsk);
3015 3016
}

D
Dan Williams 已提交
3017
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3018
{
X
Xiao Guangrong 已提交
3019 3020 3021 3022 3023 3024
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3025
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3026

3027
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3028
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3029
		return RET_PF_RETRY;
3030
	}
3031

3032
	return -EFAULT;
3033 3034
}

3035
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
D
Dan Williams 已提交
3036 3037
					gfn_t *gfnp, kvm_pfn_t *pfnp,
					int *levelp)
3038
{
D
Dan Williams 已提交
3039
	kvm_pfn_t pfn = *pfnp;
3040 3041 3042 3043 3044 3045 3046 3047 3048
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
3049
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3050
	    level == PT_PAGE_TABLE_LEVEL &&
3051
	    PageTransCompoundMap(pfn_to_page(pfn)) &&
3052
	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
3071
			kvm_get_pfn(pfn);
3072 3073 3074 3075 3076
			*pfnp = pfn;
		}
	}
}

3077
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
D
Dan Williams 已提交
3078
				kvm_pfn_t pfn, unsigned access, int *ret_val)
3079 3080
{
	/* The pfn is invalid, report the error! */
3081
	if (unlikely(is_error_pfn(pfn))) {
3082
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3083
		return true;
3084 3085
	}

3086
	if (unlikely(is_noslot_pfn(pfn)))
3087 3088
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

3089
	return false;
3090 3091
}

3092
static bool page_fault_can_be_fast(u32 error_code)
3093
{
3094 3095 3096 3097 3098 3099 3100
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3101 3102 3103 3104 3105
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3106
	/*
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3118 3119
	 */

3120 3121 3122
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3123 3124
}

3125 3126 3127 3128
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3129
static bool
3130
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3131
			u64 *sptep, u64 old_spte, u64 new_spte)
3132 3133 3134 3135 3136
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3149
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3150 3151
		return false;

3152
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3153 3154 3155 3156 3157 3158 3159
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3160 3161 3162 3163

	return true;
}

3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3176 3177 3178 3179 3180 3181 3182 3183 3184
/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
3185
	struct kvm_mmu_page *sp;
3186
	bool fault_handled = false;
3187
	u64 spte = 0ull;
3188
	uint retry_count = 0;
3189

3190 3191 3192
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

3193
	if (!page_fault_can_be_fast(error_code))
3194 3195 3196 3197
		return false;

	walk_shadow_page_lockless_begin(vcpu);

3198
	do {
3199
		u64 new_spte;
3200

3201 3202 3203 3204 3205
		for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
			if (!is_shadow_present_pte(spte) ||
			    iterator.level < level)
				break;

3206 3207 3208
		sp = page_header(__pa(iterator.sptep));
		if (!is_last_spte(spte, sp->role.level))
			break;
3209

3210
		/*
3211 3212 3213 3214 3215
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3216 3217 3218 3219
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3220 3221 3222 3223
		if (is_access_allowed(error_code, spte)) {
			fault_handled = true;
			break;
		}
3224

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
		    spte_can_locklessly_be_made_writable(spte))
		{
			new_spte |= PT_WRITABLE_MASK;
3239 3240

			/*
3241 3242 3243 3244 3245 3246 3247 3248 3249
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3250
			 */
3251
			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3252
				break;
3253
		}
3254

3255
		/* Verify that the fault can be handled in the fast path */
3256 3257
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3258 3259 3260 3261 3262 3263 3264 3265
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
		 * Documentation/virtual/kvm/locking.txt to get more detail.
		 */
		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3266
							iterator.sptep, spte,
3267
							new_spte);
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
		if (fault_handled)
			break;

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3278

X
Xiao Guangrong 已提交
3279
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3280
			      spte, fault_handled);
3281 3282
	walk_shadow_page_lockless_end(vcpu);

3283
	return fault_handled;
3284 3285
}

3286
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3287
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3288
static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3289

3290 3291
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
3292 3293
{
	int r;
3294
	int level;
3295
	bool force_pt_level = false;
D
Dan Williams 已提交
3296
	kvm_pfn_t pfn;
3297
	unsigned long mmu_seq;
3298
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3299

3300
	level = mapping_level(vcpu, gfn, &force_pt_level);
3301 3302 3303 3304 3305 3306 3307 3308
	if (likely(!force_pt_level)) {
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
3309

3310
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3311
	}
M
Marcelo Tosatti 已提交
3312

3313
	if (fast_page_fault(vcpu, v, level, error_code))
3314
		return RET_PF_RETRY;
3315

3316
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3317
	smp_rmb();
3318

3319
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3320
		return RET_PF_RETRY;
3321

3322 3323
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
3324

3325
	spin_lock(&vcpu->kvm->mmu_lock);
3326
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3327
		goto out_unlock;
3328 3329
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
3330 3331
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3332
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3333 3334
	spin_unlock(&vcpu->kvm->mmu_lock);

3335
	return r;
3336 3337 3338 3339

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
3340
	return RET_PF_RETRY;
3341 3342 3343
}


3344 3345 3346
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
3347
	struct kvm_mmu_page *sp;
3348
	LIST_HEAD(invalid_list);
3349

3350
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
3351
		return;
3352

3353 3354
	if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL &&
	    (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL ||
3355
	     vcpu->arch.mmu.direct_map)) {
3356
		hpa_t root = vcpu->arch.mmu.root_hpa;
3357

3358
		spin_lock(&vcpu->kvm->mmu_lock);
3359 3360
		sp = page_header(root);
		--sp->root_count;
3361 3362 3363 3364
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
3365
		spin_unlock(&vcpu->kvm->mmu_lock);
3366
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3367 3368
		return;
	}
3369 3370

	spin_lock(&vcpu->kvm->mmu_lock);
3371
	for (i = 0; i < 4; ++i) {
3372
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3373

A
Avi Kivity 已提交
3374 3375
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3376 3377
			sp = page_header(root);
			--sp->root_count;
3378
			if (!sp->root_count && sp->role.invalid)
3379 3380
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3381
		}
3382
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3383
	}
3384
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3385
	spin_unlock(&vcpu->kvm->mmu_lock);
3386
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3387 3388
}

3389 3390 3391 3392 3393
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3394
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3395 3396 3397 3398 3399 3400
		ret = 1;
	}

	return ret;
}

3401 3402 3403
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3404
	unsigned i;
3405

3406
	if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3407
		spin_lock(&vcpu->kvm->mmu_lock);
3408 3409
		if(make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3410
			return -ENOSPC;
3411
		}
3412 3413
		sp = kvm_mmu_get_page(vcpu, 0, 0,
				vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3414 3415 3416 3417 3418 3419 3420
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3421
			MMU_WARN_ON(VALID_PAGE(root));
3422
			spin_lock(&vcpu->kvm->mmu_lock);
3423 3424
			if (make_mmu_pages_available(vcpu) < 0) {
				spin_unlock(&vcpu->kvm->mmu_lock);
3425
				return -ENOSPC;
3426
			}
3427
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3428
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3429 3430 3431 3432 3433
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3434
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3435 3436 3437 3438 3439 3440 3441
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3442
{
3443
	struct kvm_mmu_page *sp;
3444 3445 3446
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3447

3448
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3449

3450 3451 3452 3453 3454 3455 3456
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3457
	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3458
		hpa_t root = vcpu->arch.mmu.root_hpa;
3459

3460
		MMU_WARN_ON(VALID_PAGE(root));
3461

3462
		spin_lock(&vcpu->kvm->mmu_lock);
3463 3464
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3465
			return -ENOSPC;
3466
		}
3467 3468
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
				vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3469 3470
		root = __pa(sp->spt);
		++sp->root_count;
3471
		spin_unlock(&vcpu->kvm->mmu_lock);
3472
		vcpu->arch.mmu.root_hpa = root;
3473
		return 0;
3474
	}
3475

3476 3477
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3478 3479
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3480
	 */
3481
	pm_mask = PT_PRESENT_MASK;
3482
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3483 3484
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3485
	for (i = 0; i < 4; ++i) {
3486
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3487

3488
		MMU_WARN_ON(VALID_PAGE(root));
3489
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3490
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
B
Bandan Das 已提交
3491
			if (!(pdptr & PT_PRESENT_MASK)) {
3492
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3493 3494
				continue;
			}
A
Avi Kivity 已提交
3495
			root_gfn = pdptr >> PAGE_SHIFT;
3496 3497
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3498
		}
3499
		spin_lock(&vcpu->kvm->mmu_lock);
3500 3501
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3502
			return -ENOSPC;
3503
		}
3504 3505
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3506 3507
		root = __pa(sp->spt);
		++sp->root_count;
3508 3509
		spin_unlock(&vcpu->kvm->mmu_lock);

3510
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3511
	}
3512
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3513 3514 3515 3516 3517

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
3518
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3539
	return 0;
3540 3541
}

3542 3543 3544 3545 3546 3547 3548 3549
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3550 3551 3552 3553 3554
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3555 3556 3557
	if (vcpu->arch.mmu.direct_map)
		return;

3558 3559
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3560

3561
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3562
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3563
	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3564 3565 3566
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3567
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3568 3569 3570 3571 3572
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3573
		if (root && VALID_PAGE(root)) {
3574 3575 3576 3577 3578
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3579
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3580 3581 3582 3583 3584 3585
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3586
	spin_unlock(&vcpu->kvm->mmu_lock);
3587
}
N
Nadav Har'El 已提交
3588
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3589

3590
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3591
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3592
{
3593 3594
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3595 3596 3597
	return vaddr;
}

3598
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3599 3600
					 u32 access,
					 struct x86_exception *exception)
3601
{
3602 3603
	if (exception)
		exception->error_code = 0;
3604
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3605 3606
}

3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;

	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
}

static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
}

static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
{
	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
}

3626
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3627
{
3628 3629 3630 3631 3632 3633 3634
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3635 3636 3637 3638 3639 3640
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3641 3642 3643
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3644 3645
{
	struct kvm_shadow_walk_iterator iterator;
3646
	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3647 3648
	int root, leaf;
	bool reserved = false;
3649

3650
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3651
		goto exit;
3652

3653
	walk_shadow_page_lockless_begin(vcpu);
3654

3655 3656
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3657 3658 3659 3660 3661
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3662
		leaf--;
3663

3664 3665
		if (!is_shadow_present_pte(spte))
			break;
3666 3667

		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3668
						    iterator.level);
3669 3670
	}

3671 3672
	walk_shadow_page_lockless_end(vcpu);

3673 3674 3675
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3676
		while (root > leaf) {
3677 3678 3679 3680 3681 3682 3683 3684
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
exit:
	*sptep = spte;
	return reserved;
3685 3686
}

P
Paolo Bonzini 已提交
3687
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3688 3689
{
	u64 spte;
3690
	bool reserved;
3691

3692
	if (mmio_info_in_cache(vcpu, addr, direct))
3693
		return RET_PF_EMULATE;
3694

3695
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3696
	if (WARN_ON(reserved))
3697
		return -EINVAL;
3698 3699 3700 3701 3702

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3703
		if (!check_mmio_spte(vcpu, spte))
3704
			return RET_PF_INVALID;
3705

3706 3707
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3708 3709

		trace_handle_mmio_page_fault(addr, gfn, access);
3710
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3711
		return RET_PF_EMULATE;
3712 3713 3714 3715 3716 3717
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3718
	return RET_PF_RETRY;
3719
}
3720
EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3721

3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

A
Avi Kivity 已提交
3759
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3760
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3761
{
3762
	gfn_t gfn = gva >> PAGE_SHIFT;
3763
	int r;
A
Avi Kivity 已提交
3764

3765
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3766

3767
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3768
		return RET_PF_EMULATE;
3769

3770 3771 3772
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3773

3774
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3775 3776


3777
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3778
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3779 3780
}

3781
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3782 3783
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3784

3785
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3786
	arch.gfn = gfn;
3787
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3788
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3789

3790
	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3791 3792
}

3793
bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3794
{
3795
	if (unlikely(!lapic_in_kernel(vcpu) ||
3796 3797
		     kvm_event_needs_reinjection(vcpu) ||
		     vcpu->arch.exception.pending))
3798 3799
		return false;

3800
	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3801 3802
		return false;

3803 3804 3805
	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3806
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3807
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3808
{
3809
	struct kvm_memory_slot *slot;
3810 3811
	bool async;

3812
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3813 3814
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3815 3816 3817
	if (!async)
		return false; /* *pfn has correct page already */

3818
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3819
		trace_kvm_try_async_get_page(gva, gfn);
3820 3821 3822 3823 3824 3825 3826 3827
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3828
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3829 3830 3831
	return false;
}

3832
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3833
				u64 fault_address, char *insn, int insn_len)
3834 3835 3836 3837 3838 3839 3840
{
	int r = 1;

	switch (vcpu->arch.apf.host_apf_reason) {
	default:
		trace_kvm_page_fault(fault_address, error_code);

3841
		if (kvm_event_needs_reinjection(vcpu))
3842 3843 3844 3845 3846 3847 3848
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
		break;
	case KVM_PV_REASON_PAGE_NOT_PRESENT:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
3849
		kvm_async_pf_task_wait(fault_address, 0);
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
		local_irq_enable();
		break;
	case KVM_PV_REASON_PAGE_READY:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
		kvm_async_pf_task_wake(fault_address);
		local_irq_enable();
		break;
	}
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
static bool
check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
{
	int page_num = KVM_PAGES_PER_HPAGE(level);

	gfn &= ~(page_num - 1);

	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
}

G
Gleb Natapov 已提交
3873
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3874
			  bool prefault)
3875
{
D
Dan Williams 已提交
3876
	kvm_pfn_t pfn;
3877
	int r;
3878
	int level;
3879
	bool force_pt_level;
M
Marcelo Tosatti 已提交
3880
	gfn_t gfn = gpa >> PAGE_SHIFT;
3881
	unsigned long mmu_seq;
3882 3883
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3884

3885
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3886

3887
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3888
		return RET_PF_EMULATE;
3889

3890 3891 3892 3893
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3894 3895 3896
	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
							   PT_DIRECTORY_LEVEL);
	level = mapping_level(vcpu, gfn, &force_pt_level);
3897
	if (likely(!force_pt_level)) {
3898 3899 3900
		if (level > PT_DIRECTORY_LEVEL &&
		    !check_hugepage_cache_consistency(vcpu, gfn, level))
			level = PT_DIRECTORY_LEVEL;
3901
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3902
	}
3903

3904
	if (fast_page_fault(vcpu, gpa, level, error_code))
3905
		return RET_PF_RETRY;
3906

3907
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3908
	smp_rmb();
3909

3910
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3911
		return RET_PF_RETRY;
3912

3913 3914 3915
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3916
	spin_lock(&vcpu->kvm->mmu_lock);
3917
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3918
		goto out_unlock;
3919 3920
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
3921 3922
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3923
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3924 3925 3926
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3927 3928 3929 3930

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
3931
	return RET_PF_RETRY;
3932 3933
}

3934 3935
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3936 3937 3938
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3939
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3940
	context->invlpg = nonpaging_invlpg;
3941
	context->update_pte = nonpaging_update_pte;
3942
	context->root_level = 0;
A
Avi Kivity 已提交
3943
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3944
	context->root_hpa = INVALID_PAGE;
3945
	context->direct_map = true;
3946
	context->nx = false;
A
Avi Kivity 已提交
3947 3948
}

3949
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3950
{
3951
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3952 3953
}

3954 3955
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3956
	return kvm_read_cr3(vcpu);
3957 3958
}

3959 3960
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3961
{
3962
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3963 3964
}

3965
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3966
			   unsigned access, int *nr_present)
3967 3968 3969 3970 3971 3972 3973 3974
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3975
		mark_mmio_spte(vcpu, sptep, gfn, access);
3976 3977 3978 3979 3980 3981
		return true;
	}

	return false;
}

3982 3983
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3984
{
3985 3986 3987 3988 3989 3990 3991
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

3992 3993 3994 3995 3996 3997 3998
	/*
	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;

3999
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
4000 4001
}

4002 4003 4004 4005 4006
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4007 4008 4009 4010 4011 4012 4013 4014
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4015 4016 4017 4018
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
4019
			bool pse, bool amd)
4020 4021
{
	u64 exb_bit_rsvd = 0;
4022
	u64 gbpages_bit_rsvd = 0;
4023
	u64 nonleaf_bit8_rsvd = 0;
4024

4025
	rsvd_check->bad_mt_xwr = 0;
4026

4027
	if (!nx)
4028
		exb_bit_rsvd = rsvd_bits(63, 63);
4029
	if (!gbpages)
4030
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4031 4032 4033 4034 4035

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4036
	if (amd)
4037 4038
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4039
	switch (level) {
4040 4041
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4042 4043 4044 4045
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4046

4047
		if (!pse) {
4048
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4049 4050 4051
			break;
		}

4052 4053
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4054
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4055 4056
		else
			/* 32 bits PSE 4MB page */
4057
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4058 4059
		break;
	case PT32E_ROOT_LEVEL:
4060
		rsvd_check->rsvd_bits_mask[0][2] =
4061
			rsvd_bits(maxphyaddr, 63) |
4062
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4063
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4064
			rsvd_bits(maxphyaddr, 62);	/* PDE */
4065
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4066
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4067
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4068 4069
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
4070 4071
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4072
		break;
4073 4074 4075 4076 4077 4078
	case PT64_ROOT_5LEVEL:
		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4079
	case PT64_ROOT_4LEVEL:
4080 4081
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4082
			rsvd_bits(maxphyaddr, 51);
4083 4084
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4085
			rsvd_bits(maxphyaddr, 51);
4086 4087 4088 4089 4090 4091 4092
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4093
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4094
			rsvd_bits(13, 29);
4095
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4096 4097
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
4098 4099
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4100 4101 4102 4103
		break;
	}
}

4104 4105 4106 4107 4108
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
4109 4110
				context->nx,
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4111
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4112 4113
}

4114 4115 4116
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
4117
{
4118
	u64 bad_mt_xwr;
4119

4120 4121
	rsvd_check->rsvd_bits_mask[0][4] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4122
	rsvd_check->rsvd_bits_mask[0][3] =
4123
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4124
	rsvd_check->rsvd_bits_mask[0][2] =
4125
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4126
	rsvd_check->rsvd_bits_mask[0][1] =
4127
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4128
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4129 4130

	/* large page */
4131
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4132 4133
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
4134
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4135
	rsvd_check->rsvd_bits_mask[1][1] =
4136
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4137
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4138

4139 4140 4141 4142 4143 4144 4145 4146
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4147
	}
4148
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4149 4150
}

4151 4152 4153 4154 4155 4156 4157
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4158 4159 4160 4161 4162 4163 4164 4165
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4166
	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4167 4168
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4169

4170 4171 4172 4173
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4174 4175
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4176
				boot_cpu_data.x86_phys_bits,
4177
				context->shadow_root_level, uses_nx,
4178 4179
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4180 4181 4182 4183 4184 4185 4186 4187 4188

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4189 4190 4191
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4192 4193 4194 4195 4196 4197
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4198 4199 4200 4201 4202 4203 4204 4205
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4206 4207 4208 4209 4210
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4211
	if (boot_cpu_is_amd())
4212
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4213 4214
					boot_cpu_data.x86_phys_bits,
					context->shadow_root_level, false,
4215 4216
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4217
	else
4218
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4219 4220 4221
					    boot_cpu_data.x86_phys_bits,
					    false);

4222 4223 4224 4225 4226 4227 4228
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
				    boot_cpu_data.x86_phys_bits, execonly);
}

4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4253 4254
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4255
{
4256 4257 4258 4259 4260 4261 4262 4263 4264
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4265 4266

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4267 4268
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4269
		/*
4270 4271
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4272
		 */
4273

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
		/* Faults from writes to non-writable pages */
		u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
		/* Faults from user mode accesses to supervisor pages */
		u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
		/* Faults from fetches of non-executable pages*/
		u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
			 * conditions are ture:
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4319
		}
4320 4321

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4322 4323 4324
	}
}

4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4400
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4401
{
4402 4403 4404 4405 4406
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4407 4408
}

4409 4410 4411
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4412
{
4413
	context->nx = is_nx(vcpu);
4414
	context->root_level = level;
4415

4416
	reset_rsvds_bits_mask(vcpu, context);
4417
	update_permission_bitmask(vcpu, context, false);
4418
	update_pkru_bitmask(vcpu, context, false);
4419
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4420

4421
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4422 4423
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4424
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4425
	context->invlpg = paging64_invlpg;
4426
	context->update_pte = paging64_update_pte;
4427
	context->shadow_root_level = level;
A
Avi Kivity 已提交
4428
	context->root_hpa = INVALID_PAGE;
4429
	context->direct_map = false;
A
Avi Kivity 已提交
4430 4431
}

4432 4433
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4434
{
4435 4436 4437 4438
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4439 4440
}

4441 4442
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4443
{
4444
	context->nx = false;
4445
	context->root_level = PT32_ROOT_LEVEL;
4446

4447
	reset_rsvds_bits_mask(vcpu, context);
4448
	update_permission_bitmask(vcpu, context, false);
4449
	update_pkru_bitmask(vcpu, context, false);
4450
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4451 4452 4453

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4454
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4455
	context->invlpg = paging32_invlpg;
4456
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4457
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
4458
	context->root_hpa = INVALID_PAGE;
4459
	context->direct_map = false;
A
Avi Kivity 已提交
4460 4461
}

4462 4463
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4464
{
4465
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4466 4467
}

4468
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4469
{
4470
	struct kvm_mmu *context = &vcpu->arch.mmu;
4471

4472
	context->base_role.word = 0;
4473
	context->base_role.smm = is_smm(vcpu);
4474
	context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4475
	context->page_fault = tdp_page_fault;
4476
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4477
	context->invlpg = nonpaging_invlpg;
4478
	context->update_pte = nonpaging_update_pte;
4479
	context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4480
	context->root_hpa = INVALID_PAGE;
4481
	context->direct_map = true;
4482
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4483
	context->get_cr3 = get_cr3;
4484
	context->get_pdptr = kvm_pdptr_read;
4485
	context->inject_page_fault = kvm_inject_page_fault;
4486 4487

	if (!is_paging(vcpu)) {
4488
		context->nx = false;
4489 4490 4491
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4492
		context->nx = is_nx(vcpu);
4493 4494
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4495 4496
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4497
	} else if (is_pae(vcpu)) {
4498
		context->nx = is_nx(vcpu);
4499
		context->root_level = PT32E_ROOT_LEVEL;
4500 4501
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4502
	} else {
4503
		context->nx = false;
4504
		context->root_level = PT32_ROOT_LEVEL;
4505 4506
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4507 4508
	}

4509
	update_permission_bitmask(vcpu, context, false);
4510
	update_pkru_bitmask(vcpu, context, false);
4511
	update_last_nonleaf_level(vcpu, context);
4512
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4513 4514
}

4515
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4516
{
4517
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4518
	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4519 4520
	struct kvm_mmu *context = &vcpu->arch.mmu;

4521
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
4522 4523

	if (!is_paging(vcpu))
4524
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
4525
	else if (is_long_mode(vcpu))
4526
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
4527
	else if (is_pae(vcpu))
4528
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4529
	else
4530
		paging32_init_context(vcpu, context);
4531

4532 4533 4534 4535
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
4536
		= smep && !is_write_protection(vcpu);
4537 4538
	context->base_role.smap_andnot_wp
		= smap && !is_write_protection(vcpu);
4539
	context->base_role.smm = is_smm(vcpu);
4540
	reset_shadow_zero_bits_mask(vcpu, context);
4541 4542 4543
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4544 4545
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
			     bool accessed_dirty)
N
Nadav Har'El 已提交
4546
{
4547 4548
	struct kvm_mmu *context = &vcpu->arch.mmu;

4549
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
4550

4551
	context->shadow_root_level = PT64_ROOT_4LEVEL;
N
Nadav Har'El 已提交
4552 4553

	context->nx = true;
4554
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4555 4556 4557 4558 4559
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
4560
	context->root_level = PT64_ROOT_4LEVEL;
N
Nadav Har'El 已提交
4561 4562
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;
4563
	context->base_role.ad_disabled = !accessed_dirty;
N
Nadav Har'El 已提交
4564 4565

	update_permission_bitmask(vcpu, context, true);
4566
	update_pkru_bitmask(vcpu, context, true);
4567
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
4568
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4569
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4570 4571 4572
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4573
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4574
{
4575 4576 4577 4578 4579 4580 4581
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4582 4583
}

4584
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4585 4586 4587 4588
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
4589
	g_context->get_pdptr         = kvm_pdptr_read;
4590 4591 4592
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
4593 4594 4595 4596 4597 4598
	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4599 4600
	 */
	if (!is_paging(vcpu)) {
4601
		g_context->nx = false;
4602 4603 4604
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4605
		g_context->nx = is_nx(vcpu);
4606 4607
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4608
		reset_rsvds_bits_mask(vcpu, g_context);
4609 4610
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4611
		g_context->nx = is_nx(vcpu);
4612
		g_context->root_level = PT32E_ROOT_LEVEL;
4613
		reset_rsvds_bits_mask(vcpu, g_context);
4614 4615
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4616
		g_context->nx = false;
4617
		g_context->root_level = PT32_ROOT_LEVEL;
4618
		reset_rsvds_bits_mask(vcpu, g_context);
4619 4620 4621
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4622
	update_permission_bitmask(vcpu, g_context, false);
4623
	update_pkru_bitmask(vcpu, g_context, false);
4624
	update_last_nonleaf_level(vcpu, g_context);
4625 4626
}

4627
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4628
{
4629
	if (mmu_is_nested(vcpu))
4630
		init_kvm_nested_mmu(vcpu);
4631
	else if (tdp_enabled)
4632
		init_kvm_tdp_mmu(vcpu);
4633
	else
4634
		init_kvm_softmmu(vcpu);
4635 4636
}

4637
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4638
{
4639
	kvm_mmu_unload(vcpu);
4640
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4641
}
4642
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4643 4644

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4645
{
4646 4647
	int r;

4648
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
4649 4650
	if (r)
		goto out;
4651
	r = mmu_alloc_roots(vcpu);
4652
	kvm_mmu_sync_roots(vcpu);
4653 4654
	if (r)
		goto out;
4655
	/* set_cr3() should ensure TLB has been flushed */
4656
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4657 4658
out:
	return r;
A
Avi Kivity 已提交
4659
}
A
Avi Kivity 已提交
4660 4661 4662 4663 4664
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
4665
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4666
}
4667
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4668

4669
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4670 4671
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4672
{
4673
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4674 4675
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4676
        }
4677

A
Avi Kivity 已提交
4678
	++vcpu->kvm->stat.mmu_pte_updated;
4679
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4680 4681
}

4682 4683 4684 4685 4686 4687 4688 4689
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4690 4691
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4692 4693 4694
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4695 4696
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
4697
{
4698 4699
	u64 gentry;
	int r;
4700 4701 4702

	/*
	 * Assume that the pte write on a page table of the same type
4703 4704
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4705
	 */
4706
	if (is_pae(vcpu) && *bytes == 4) {
4707
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4708 4709
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4710
		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4711 4712
		if (r)
			gentry = 0;
4713 4714 4715
		new = (const u8 *)&gentry;
	}

4716
	switch (*bytes) {
4717 4718 4719 4720 4721 4722 4723 4724 4725
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4726 4727
	}

4728 4729 4730 4731 4732 4733 4734
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4735
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4736
{
4737 4738 4739 4740
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4741
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4742
		return false;
4743

4744 4745
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4762 4763 4764 4765 4766 4767 4768 4769

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4807
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4808 4809
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
4810 4811 4812 4813 4814 4815
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4816
	bool remote_flush, local_flush;
4817 4818 4819 4820 4821 4822 4823
	union kvm_mmu_page_role mask = { };

	mask.cr0_wp = 1;
	mask.cr4_pae = 1;
	mask.nxe = 1;
	mask.smep_andnot_wp = 1;
	mask.smap_andnot_wp = 1;
4824
	mask.smm = 1;
4825
	mask.ad_disabled = 1;
4826 4827 4828 4829 4830

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
4831
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4832 4833
		return;

4834
	remote_flush = local_flush = false;
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4849
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4850

4851
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4852
		if (detect_write_misaligned(sp, gpa, bytes) ||
4853
		      detect_write_flooding(sp)) {
4854
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
4855
			++vcpu->kvm->stat.mmu_flooded;
4856 4857
			continue;
		}
4858 4859 4860 4861 4862

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4863
		local_flush = true;
4864
		while (npte--) {
4865
			entry = *spte;
4866
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4867 4868
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4869
			      & mask.word) && rmap_can_add(vcpu))
4870
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4871
			if (need_remote_flush(entry, *spte))
4872
				remote_flush = true;
4873
			++spte;
4874 4875
		}
	}
4876
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4877
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4878
	spin_unlock(&vcpu->kvm->mmu_lock);
4879 4880
}

4881 4882
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4883 4884
	gpa_t gpa;
	int r;
4885

4886
	if (vcpu->arch.mmu.direct_map)
4887 4888
		return 0;

4889
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4890 4891

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4892

4893
	return r;
4894
}
4895
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4896

4897
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4898
{
4899
	LIST_HEAD(invalid_list);
4900

4901
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4902
		return 0;
4903

4904 4905 4906
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4907

A
Avi Kivity 已提交
4908
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4909
	}
4910
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4911 4912 4913 4914

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
A
Avi Kivity 已提交
4915 4916
}

4917
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4918
		       void *insn, int insn_len)
4919
{
4920
	int r, emulation_type = EMULTYPE_RETRY;
4921
	enum emulation_result er;
4922
	bool direct = vcpu->arch.mmu.direct_map;
4923

4924 4925 4926 4927 4928
	/* With shadow page tables, fault_address contains a GVA or nGPA.  */
	if (vcpu->arch.mmu.direct_map) {
		vcpu->arch.gpa_available = true;
		vcpu->arch.gpa_val = cr2;
	}
4929

4930
	r = RET_PF_INVALID;
4931 4932
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, cr2, direct);
4933
		if (r == RET_PF_EMULATE) {
4934 4935 4936 4937
			emulation_type = 0;
			goto emulate;
		}
	}
4938

4939 4940 4941 4942 4943 4944 4945 4946
	if (r == RET_PF_INVALID) {
		r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
					      false);
		WARN_ON(r == RET_PF_INVALID);
	}

	if (r == RET_PF_RETRY)
		return 1;
4947
	if (r < 0)
4948
		return r;
4949

4950 4951 4952 4953 4954 4955 4956
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
4957
	if (vcpu->arch.mmu.direct_map &&
4958
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
4959 4960 4961 4962
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
		return 1;
	}

4963
	if (mmio_info_in_cache(vcpu, cr2, direct))
4964
		emulation_type = 0;
4965
emulate:
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
	/*
	 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
	 * This can happen if a guest gets a page-fault on data access but the HW
	 * table walker is not able to read the instruction page (e.g instruction
	 * page is not present in memory). In those cases we simply restart the
	 * guest.
	 */
	if (unlikely(insn && !insn_len))
		return 1;

4976
	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4977 4978 4979 4980

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4981
	case EMULATE_USER_EXIT:
4982
		++vcpu->stat.mmio_exits;
4983
		/* fall through */
4984
	case EMULATE_FAIL:
4985
		return 0;
4986 4987 4988 4989 4990 4991
	default:
		BUG();
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4992 4993 4994
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4995
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4996 4997 4998 4999
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5000 5001 5002 5003 5004 5005
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

5006 5007 5008 5009 5010 5011
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
5012 5013
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
5014
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
5015
	free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
5016 5017 5018 5019
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
5020
	struct page *page;
A
Avi Kivity 已提交
5021 5022
	int i;

5023 5024 5025 5026 5027 5028 5029
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
5030 5031
		return -ENOMEM;

5032
	vcpu->arch.mmu.pae_root = page_address(page);
5033
	for (i = 0; i < 4; ++i)
5034
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5035

A
Avi Kivity 已提交
5036 5037 5038
	return 0;
}

5039
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5040
{
5041 5042 5043 5044
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
5045

5046 5047
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
5048

5049
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5050
{
5051
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5052

5053
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
5054 5055
}

5056
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5057 5058
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5059 5060 5061 5062
{
	kvm_mmu_invalidate_zap_all_pages(kvm);
}

5063 5064 5065 5066 5067
void kvm_mmu_init_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	node->track_write = kvm_mmu_pte_write;
5068
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
	kvm_page_track_register_notifier(kvm, node);
}

void kvm_mmu_uninit_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	kvm_page_track_unregister_notifier(kvm, node);
}

5079
/* The return value indicates if tlb flush on all vcpus is needed. */
5080
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147

/* The caller should hold mmu-lock before calling this function. */
static bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
				kvm_flush_remote_tlbs(kvm);
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
		kvm_flush_remote_tlbs(kvm);
		flush = false;
	}

	return flush;
}

static bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

X
Xiao Guangrong 已提交
5148 5149 5150 5151
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5152
	int i;
X
Xiao Guangrong 已提交
5153 5154

	spin_lock(&kvm->mmu_lock);
5155 5156 5157 5158 5159 5160 5161 5162 5163
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5164

5165 5166 5167 5168
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
		}
X
Xiao Guangrong 已提交
5169 5170 5171 5172 5173
	}

	spin_unlock(&kvm->mmu_lock);
}

5174 5175
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5176
{
5177
	return __rmap_write_protect(kvm, rmap_head, false);
5178 5179
}

5180 5181
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
5182
{
5183
	bool flush;
A
Avi Kivity 已提交
5184

5185
	spin_lock(&kvm->mmu_lock);
5186 5187
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
5188
	spin_unlock(&kvm->mmu_lock);
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5208 5209
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
5210
}
5211

5212
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5213
					 struct kvm_rmap_head *rmap_head)
5214 5215 5216 5217
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5218
	kvm_pfn_t pfn;
5219 5220
	struct kvm_mmu_page *sp;

5221
restart:
5222
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5223 5224 5225 5226
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
5227 5228 5229 5230 5231
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5232 5233 5234
		 */
		if (sp->role.direct &&
			!kvm_is_reserved_pfn(pfn) &&
5235
			PageTransCompoundMap(pfn_to_page(pfn))) {
5236 5237
			drop_spte(kvm, sptep);
			need_tlb_flush = 1;
5238 5239
			goto restart;
		}
5240 5241 5242 5243 5244 5245
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5246
				   const struct kvm_memory_slot *memslot)
5247
{
5248
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5249
	spin_lock(&kvm->mmu_lock);
5250 5251
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5252 5253 5254
	spin_unlock(&kvm->mmu_lock);
}

5255 5256 5257
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5258
	bool flush;
5259 5260

	spin_lock(&kvm->mmu_lock);
5261
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
5280
	bool flush;
5281 5282

	spin_lock(&kvm->mmu_lock);
5283 5284
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
5298
	bool flush;
5299 5300

	spin_lock(&kvm->mmu_lock);
5301
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
5312
#define BATCH_ZAP_PAGES	10
5313 5314 5315
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
5316
	int batch = 0;
5317 5318 5319 5320

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
5321 5322
		int ret;

5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

5338 5339 5340 5341
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
5342
		if (batch >= BATCH_ZAP_PAGES &&
5343
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
5344
			batch = 0;
5345 5346 5347
			goto restart;
		}

5348 5349
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
5350 5351 5352
		batch += ret;

		if (ret)
5353 5354 5355
			goto restart;
	}

5356 5357 5358 5359
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
5360
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
5375
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5376 5377
	kvm->arch.mmu_valid_gen++;

5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5389 5390 5391 5392
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

5393 5394 5395 5396 5397
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5398
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5399 5400 5401 5402 5403
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
5404
	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5405
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5406
		kvm_mmu_invalidate_zap_all_pages(kvm);
5407
	}
5408 5409
}

5410 5411
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5412 5413
{
	struct kvm *kvm;
5414
	int nr_to_scan = sc->nr_to_scan;
5415
	unsigned long freed = 0;
5416

5417
	spin_lock(&kvm_lock);
5418 5419

	list_for_each_entry(kvm, &vm_list, vm_list) {
5420
		int idx;
5421
		LIST_HEAD(invalid_list);
5422

5423 5424 5425 5426 5427 5428 5429 5430
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5431 5432 5433 5434 5435 5436
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5437 5438
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
5439 5440
			continue;

5441
		idx = srcu_read_lock(&kvm->srcu);
5442 5443
		spin_lock(&kvm->mmu_lock);

5444 5445 5446 5447 5448 5449
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5450 5451
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
5452
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
5453

5454
unlock:
5455
		spin_unlock(&kvm->mmu_lock);
5456
		srcu_read_unlock(&kvm->srcu, idx);
5457

5458 5459 5460 5461 5462
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5463 5464
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5465 5466
	}

5467
	spin_unlock(&kvm_lock);
5468 5469 5470 5471 5472 5473
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5474
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5475 5476 5477
}

static struct shrinker mmu_shrinker = {
5478 5479
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5480 5481 5482
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5483
static void mmu_destroy_caches(void)
5484
{
5485 5486
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
5487 5488 5489 5490
}

int kvm_mmu_module_init(void)
{
5491 5492
	int ret = -ENOMEM;

5493 5494
	kvm_mmu_clear_all_pte_masks();

5495 5496
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5497
					    0, SLAB_ACCOUNT, NULL);
5498
	if (!pte_list_desc_cache)
5499
		goto out;
5500

5501 5502
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5503
						  0, SLAB_ACCOUNT, NULL);
5504
	if (!mmu_page_header_cache)
5505
		goto out;
5506

5507
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5508
		goto out;
5509

5510 5511 5512
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
5513

5514 5515
	return 0;

5516
out:
5517
	mmu_destroy_caches();
5518
	return ret;
5519 5520
}

5521 5522 5523 5524 5525 5526 5527
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
5528
	struct kvm_memslots *slots;
5529
	struct kvm_memory_slot *memslot;
5530
	int i;
5531

5532 5533
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5534

5535 5536 5537
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5538 5539 5540

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
5541
			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5542 5543 5544 5545

	return nr_mmu_pages;
}

5546 5547
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5548
	kvm_mmu_unload(vcpu);
5549 5550
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
5551 5552 5553 5554 5555 5556 5557
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5558 5559
	mmu_audit_disable();
}