memcontrol.c 141.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
B
Balbir Singh 已提交
53

54 55
#include <asm/uaccess.h>

56 57
#include <trace/events/vmscan.h>

58 59
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
60
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
61

62
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
63
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64
int do_swap_account __read_mostly;
65 66 67 68 69 70 71 72

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

73 74 75 76 77
#else
#define do_swap_account		(0)
#endif


78 79 80 81 82 83 84 85
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98 99
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 101
	MEM_CGROUP_EVENTS_NSTATS,
};
102 103 104 105 106 107 108 109 110 111 112 113 114
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
115

116
struct mem_cgroup_stat_cpu {
117
	long count[MEM_CGROUP_STAT_NSTATS];
118
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
119
	unsigned long targets[MEM_CGROUP_NTARGETS];
120 121
};

122 123 124 125
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
126 127 128
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
129 130
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
131 132

	struct zone_reclaim_stat reclaim_stat;
133 134 135 136
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
137 138
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
139 140 141 142 143 144 145 146 147 148 149 150
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

171 172 173 174 175
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
176
/* For threshold */
177 178
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
179
	int current_threshold;
180 181 182 183 184
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
185 186 187 188 189 190 191 192 193 194 195 196

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
197 198 199 200 201
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
202 203

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
204
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
205

B
Balbir Singh 已提交
206 207 208 209 210 211 212
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
213 214 215
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
216 217 218 219 220 221 222
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
223 224 225 226
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
227 228 229 230
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
231
	struct mem_cgroup_lru_info info;
232
	/*
233
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
234
	 * reclaimed from.
235
	 */
K
KAMEZAWA Hiroyuki 已提交
236
	int last_scanned_child;
237 238 239 240 241
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	unsigned long   next_scan_node_update;
#endif
242 243 244 245
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
246
	atomic_t	oom_lock;
247
	atomic_t	refcnt;
248

K
KOSAKI Motohiro 已提交
249
	unsigned int	swappiness;
250 251
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
252

253 254 255
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

256 257 258 259
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
260
	struct mem_cgroup_thresholds thresholds;
261

262
	/* thresholds for mem+swap usage. RCU-protected */
263
	struct mem_cgroup_thresholds memsw_thresholds;
264

K
KAMEZAWA Hiroyuki 已提交
265 266 267
	/* For oom notifier event fd */
	struct list_head oom_notify;

268 269 270 271 272
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
273
	/*
274
	 * percpu counter.
275
	 */
276
	struct mem_cgroup_stat_cpu *stat;
277 278 279 280 281 282
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
283 284
};

285 286 287 288 289 290
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
291
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
292
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
293 294 295
	NR_MOVE_TYPE,
};

296 297
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
298
	spinlock_t	  lock; /* for from, to */
299 300 301
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
302
	unsigned long moved_charge;
303
	unsigned long moved_swap;
304 305 306
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
307
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
308 309
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
310

D
Daisuke Nishimura 已提交
311 312 313 314 315 316
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

317 318 319 320 321 322
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

323 324 325 326 327 328 329
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

330 331 332
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
333
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
334
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
335
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
336
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
337 338 339
	NR_CHARGE_TYPE,
};

340 341 342
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
343
#define _OOM_TYPE		(2)
344 345 346
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
347 348
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
349

350 351 352 353 354 355 356
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
357 358
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
359

360 361
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
362
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
363
static void drain_all_stock_async(struct mem_cgroup *mem);
364

365 366 367 368 369 370
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

371 372 373 374 375
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

376
static struct mem_cgroup_per_zone *
377
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
378
{
379 380
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
401
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
402
				struct mem_cgroup_per_zone *mz,
403 404
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
405 406 407 408 409 410 411 412
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

413 414 415
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
432 433 434 435 436 437 438 439 440 441 442 443 444
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

445 446 447 448 449 450
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
451
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
452 453 454 455 456 457
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
458
	unsigned long long excess;
459 460
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
461 462
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
463 464 465
	mctz = soft_limit_tree_from_page(page);

	/*
466 467
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
468
	 */
469 470
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
471
		excess = res_counter_soft_limit_excess(&mem->res);
472 473 474 475
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
476
		if (excess || mz->on_tree) {
477 478 479 480 481
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
482 483
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
484
			 */
485
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
486 487
			spin_unlock(&mctz->lock);
		}
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

506 507 508 509
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
510
	struct mem_cgroup_per_zone *mz;
511 512

retry:
513
	mz = NULL;
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
562 563
static long mem_cgroup_read_stat(struct mem_cgroup *mem,
				 enum mem_cgroup_stat_index idx)
564
{
565
	long val = 0;
566 567
	int cpu;

568 569
	get_online_cpus();
	for_each_online_cpu(cpu)
570
		val += per_cpu(mem->stat->count[idx], cpu);
571 572 573 574 575 576
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
577 578 579
	return val;
}

580
static long mem_cgroup_local_usage(struct mem_cgroup *mem)
581
{
582
	long ret;
583 584 585 586 587 588

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

589 590 591 592
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
593
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
594 595
}

596 597 598 599 600 601 602 603 604 605
void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
}

void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
}

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
		val += per_cpu(mem->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.events[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	return val;
}

622
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
623
					 bool file, int nr_pages)
624
{
625 626
	preempt_disable();

627 628
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
629
	else
630
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
631

632 633
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
634
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
635
	else {
636
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
637 638
		nr_pages = -nr_pages; /* for event */
	}
639

640
	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
641

642
	preempt_enable();
643 644
}

645 646 647 648 649 650 651 652 653 654 655 656 657
static unsigned long
mem_cgroup_get_zonestat_node(struct mem_cgroup *mem, int nid, enum lru_list idx)
{
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
		total += MEM_CGROUP_ZSTAT(mz, idx);
	}
	return total;
}
K
KAMEZAWA Hiroyuki 已提交
658
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
659
					enum lru_list idx)
660
{
661
	int nid;
662 663 664
	u64 total = 0;

	for_each_online_node(nid)
665
		total += mem_cgroup_get_zonestat_node(mem, nid, idx);
666
	return total;
667 668
}

669 670 671 672 673 674 675 676 677 678 679
static bool __memcg_event_check(struct mem_cgroup *mem, int target)
{
	unsigned long val, next;

	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = this_cpu_read(mem->stat->targets[target]);
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
680
{
681
	unsigned long val, next;
682

683
	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
684

685 686 687 688 689 690 691 692 693 694 695 696
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
	default:
		return;
	}

	this_cpu_write(mem->stat->targets[target], next);
697 698 699 700 701 702 703 704 705
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
706
	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
707
		mem_cgroup_threshold(mem);
708 709 710
		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(mem,
			MEM_CGROUP_TARGET_SOFTLIMIT))){
711
			mem_cgroup_update_tree(mem, page);
712 713 714
			__mem_cgroup_target_update(mem,
				MEM_CGROUP_TARGET_SOFTLIMIT);
		}
715 716 717
	}
}

718
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
719 720 721 722 723 724
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

725
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
726
{
727 728 729 730 731 732 733 734
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

735 736 737 738
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

739
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
740 741
{
	struct mem_cgroup *mem = NULL;
742 743 744

	if (!mm)
		return NULL;
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
760 761
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
762
{
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
785 786 787 788 789 790 791 792 793
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
794 795
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
796
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
797

K
KAMEZAWA Hiroyuki 已提交
798
	css_put(&iter->css);
799 800
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
801
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
802

803 804 805
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
806 807
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
808
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
809 810 811

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
812
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
813
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
814
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
815
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
816
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
817
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
818

K
KAMEZAWA Hiroyuki 已提交
819
	return iter;
K
KAMEZAWA Hiroyuki 已提交
820
}
K
KAMEZAWA Hiroyuki 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

834 835 836
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
837

838 839 840 841 842
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
	struct mem_cgroup *mem;

	if (!mm)
		return;

	rcu_read_lock();
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!mem))
		goto out;

	switch (idx) {
	case PGMAJFAULT:
		mem_cgroup_pgmajfault(mem, 1);
		break;
	case PGFAULT:
		mem_cgroup_pgfault(mem, 1);
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
883

K
KAMEZAWA Hiroyuki 已提交
884 885 886 887
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
888

889
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
890 891 892
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
893
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
894
		return;
895
	VM_BUG_ON(!pc->mem_cgroup);
896 897 898 899
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
900
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
901 902
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
903 904 905
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
906
	list_del_init(&pc->lru);
907 908
}

K
KAMEZAWA Hiroyuki 已提交
909
void mem_cgroup_del_lru(struct page *page)
910
{
K
KAMEZAWA Hiroyuki 已提交
911 912
	mem_cgroup_del_lru_list(page, page_lru(page));
}
913

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
936
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
937 938 939
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
940 941 942 943
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
944

945
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
946
		return;
947

K
KAMEZAWA Hiroyuki 已提交
948
	pc = lookup_page_cgroup(page);
949
	/* unused or root page is not rotated. */
950 951 952 953 954
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
955
		return;
956
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
957
	list_move(&pc->lru, &mz->lists[lru]);
958 959
}

K
KAMEZAWA Hiroyuki 已提交
960
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
961
{
K
KAMEZAWA Hiroyuki 已提交
962 963
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
964

965
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
966 967
		return;
	pc = lookup_page_cgroup(page);
968
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
969
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
970
		return;
971 972
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
973
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
974 975
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
976 977 978
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
979 980
	list_add(&pc->lru, &mz->lists[lru]);
}
981

K
KAMEZAWA Hiroyuki 已提交
982
/*
983 984 985 986
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
987
 */
988
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
989
{
990 991 992 993
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

994 995 996 997 998 999 1000 1001 1002 1003 1004
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1005 1006 1007 1008 1009 1010 1011 1012
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1013 1014
}

1015
static void mem_cgroup_lru_add_after_commit(struct page *page)
1016 1017 1018 1019 1020
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1021 1022 1023
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1024 1025
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1026
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1027 1028 1029 1030 1031
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1032 1033 1034
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1035
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1036 1037 1038
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1039 1040
}

1041 1042 1043
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
1044
	struct mem_cgroup *curr = NULL;
1045
	struct task_struct *p;
1046

1047 1048 1049 1050 1051
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1052 1053
	if (!curr)
		return 0;
1054 1055 1056 1057 1058 1059 1060
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
1061 1062 1063 1064
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
1065 1066 1067
	return ret;
}

1068
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1069 1070 1071
{
	unsigned long active;
	unsigned long inactive;
1072 1073
	unsigned long gb;
	unsigned long inactive_ratio;
1074

K
KAMEZAWA Hiroyuki 已提交
1075 1076
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1105 1106 1107 1108 1109
		return 1;

	return 0;
}

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

1121 1122 1123
unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg,
						struct zone *zone,
						enum lru_list lru)
1124
{
1125
	int nid = zone_to_nid(zone);
1126 1127 1128 1129 1130 1131
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
#ifdef CONFIG_NUMA
static unsigned long mem_cgroup_node_nr_file_lru_pages(struct mem_cgroup *memcg,
							int nid)
{
	unsigned long ret;

	ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_FILE) +
		mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_FILE);

	return ret;
}

static unsigned long mem_cgroup_nr_file_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_file_lru_pages(memcg, nid);

	return total;
}

static unsigned long mem_cgroup_node_nr_anon_lru_pages(struct mem_cgroup *memcg,
							int nid)
{
	unsigned long ret;

	ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_ANON) +
		mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_ANON);

	return ret;
}

static unsigned long mem_cgroup_nr_anon_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_anon_lru_pages(memcg, nid);

	return total;
}

static unsigned long
mem_cgroup_node_nr_unevictable_lru_pages(struct mem_cgroup *memcg, int nid)
{
	return mem_cgroup_get_zonestat_node(memcg, nid, LRU_UNEVICTABLE);
}

static unsigned long
mem_cgroup_nr_unevictable_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_unevictable_lru_pages(memcg, nid);

	return total;
}

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
							int nid)
{
	enum lru_list l;
	u64 total = 0;

	for_each_lru(l)
		total += mem_cgroup_get_zonestat_node(memcg, nid, l);

	return total;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_lru_pages(memcg, nid);

	return total;
}
#endif /* CONFIG_NUMA */

K
KOSAKI Motohiro 已提交
1219 1220 1221
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1222
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1239 1240
	if (!PageCgroupUsed(pc))
		return NULL;
1241 1242
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1243
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1244 1245 1246
	return &mz->reclaim_stat;
}

1247 1248 1249 1250 1251
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1252
					int active, int file)
1253 1254 1255 1256 1257 1258
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1259
	struct page_cgroup *pc, *tmp;
1260
	int nid = zone_to_nid(z);
1261 1262
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1263
	int lru = LRU_FILE * file + active;
1264
	int ret;
1265

1266
	BUG_ON(!mem_cont);
1267
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1268
	src = &mz->lists[lru];
1269

1270 1271
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1272
		if (scan >= nr_to_scan)
1273
			break;
K
KAMEZAWA Hiroyuki 已提交
1274

1275 1276
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1277

1278
		page = lookup_cgroup_page(pc);
1279

H
Hugh Dickins 已提交
1280
		if (unlikely(!PageLRU(page)))
1281 1282
			continue;

H
Hugh Dickins 已提交
1283
		scan++;
1284 1285 1286
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1287
			list_move(&page->lru, dst);
1288
			mem_cgroup_del_lru(page);
1289
			nr_taken += hpage_nr_pages(page);
1290 1291 1292 1293 1294 1295 1296
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1297 1298 1299 1300
		}
	}

	*scanned = scan;
1301 1302 1303 1304

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1305 1306 1307
	return nr_taken;
}

1308 1309 1310
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1311
/**
1312 1313
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1314
 *
1315
 * Returns the maximum amount of memory @mem can be charged with, in
1316
 * pages.
1317
 */
1318
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1319
{
1320 1321 1322 1323 1324
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
1325
	return margin >> PAGE_SHIFT;
1326 1327
}

K
KOSAKI Motohiro 已提交
1328 1329 1330 1331 1332 1333 1334 1335
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1336
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1337 1338
}

1339 1340 1341
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1342 1343 1344 1345

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1346
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1347 1348 1349
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1360 1361 1362
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1363
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1364 1365 1366
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1385 1386 1387

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1388 1389
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1390
	bool ret = false;
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1425
/**
1426
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1445
	if (!memcg || !p)
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1492 1493 1494 1495 1496 1497 1498
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1499 1500 1501 1502
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1503 1504 1505
	return num;
}

D
David Rientjes 已提交
1506 1507 1508 1509 1510 1511 1512 1513
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1514 1515 1516
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1517 1518 1519 1520 1521 1522 1523 1524
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1525
/*
K
KAMEZAWA Hiroyuki 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
{
	int nid;

	if (time_after(mem->next_scan_node_update, jiffies))
		return;

	mem->next_scan_node_update = jiffies + 10*HZ;
	/* make a nodemask where this memcg uses memory from */
	mem->scan_nodes = node_states[N_HIGH_MEMORY];

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

		if (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_FILE) ||
		    mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_FILE))
			continue;

		if (total_swap_pages &&
		    (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_ANON) ||
		     mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_ANON)))
			continue;
		node_clear(nid, mem->scan_nodes);
	}
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	int node;

	mem_cgroup_may_update_nodemask(mem);
	node = mem->last_scanned_node;

	node = next_node(node, mem->scan_nodes);
	if (node == MAX_NUMNODES)
		node = first_node(mem->scan_nodes);
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

	mem->last_scanned_node = node;
	return node;
}

#else
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	return 0;
}
#endif

K
KAMEZAWA Hiroyuki 已提交
1637 1638 1639 1640
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1641 1642
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1643 1644 1645
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1646 1647
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1648 1649
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1650
						struct zone *zone,
1651
						gfp_t gfp_mask,
1652 1653
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1654
{
K
KAMEZAWA Hiroyuki 已提交
1655 1656 1657
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1658 1659
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1660
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1661
	unsigned long excess;
1662
	unsigned long nr_scanned;
1663 1664

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1665

1666
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1667
	if (!check_soft && root_mem->memsw_is_minimum)
1668 1669
		noswap = true;

1670
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1671
		victim = mem_cgroup_select_victim(root_mem);
1672
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1673
			loop++;
1674 1675 1676 1677 1678 1679 1680
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1681
				drain_all_stock_async(root_mem);
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1693
				 * We want to do more targeted reclaim.
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1705
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1706 1707
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1708 1709
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1710
		/* we use swappiness of local cgroup */
1711
		if (check_soft) {
1712
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1713 1714 1715 1716
				noswap, get_swappiness(victim), zone,
				&nr_scanned);
			*total_scanned += nr_scanned;
		} else
1717 1718
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1719
		css_put(&victim->css);
1720 1721 1722 1723 1724 1725 1726
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1727
		total += ret;
1728
		if (check_soft) {
1729
			if (!res_counter_soft_limit_excess(&root_mem->res))
1730
				return total;
1731
		} else if (mem_cgroup_margin(root_mem))
1732
			return total;
1733
	}
K
KAMEZAWA Hiroyuki 已提交
1734
	return total;
1735 1736
}

K
KAMEZAWA Hiroyuki 已提交
1737 1738 1739 1740 1741 1742
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1743 1744
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1745

K
KAMEZAWA Hiroyuki 已提交
1746 1747 1748 1749
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1750 1751 1752 1753

	if (lock_count == 1)
		return true;
	return false;
1754
}
1755

K
KAMEZAWA Hiroyuki 已提交
1756
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1757
{
K
KAMEZAWA Hiroyuki 已提交
1758 1759
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1760 1761 1762 1763 1764
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1765 1766
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1767 1768 1769
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1770 1771 1772 1773

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1810 1811
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1812
	if (mem && atomic_read(&mem->oom_lock))
1813 1814 1815
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1816 1817 1818 1819
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1820
{
K
KAMEZAWA Hiroyuki 已提交
1821
	struct oom_wait_info owait;
1822
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1823

K
KAMEZAWA Hiroyuki 已提交
1824 1825 1826 1827 1828
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1829
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1830 1831 1832 1833 1834 1835 1836 1837
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1838 1839 1840 1841
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1842
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1843 1844
	mutex_unlock(&memcg_oom_mutex);

1845 1846
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1847
		mem_cgroup_out_of_memory(mem, mask);
1848
	} else {
K
KAMEZAWA Hiroyuki 已提交
1849
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1850
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1851 1852 1853
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1854
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1855 1856 1857 1858 1859 1860 1861
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1862 1863
}

1864 1865 1866
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1886
 */
1887

1888 1889
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1890 1891
{
	struct mem_cgroup *mem;
1892 1893
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1894
	unsigned long uninitialized_var(flags);
1895 1896 1897 1898

	if (unlikely(!pc))
		return;

1899
	rcu_read_lock();
1900
	mem = pc->mem_cgroup;
1901 1902 1903
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1904
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1905
		/* take a lock against to access pc->mem_cgroup */
1906
		move_lock_page_cgroup(pc, &flags);
1907 1908 1909 1910 1911
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1912 1913

	switch (idx) {
1914
	case MEMCG_NR_FILE_MAPPED:
1915 1916 1917
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1918
			ClearPageCgroupFileMapped(pc);
1919
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1920 1921 1922
		break;
	default:
		BUG();
1923
	}
1924

1925 1926
	this_cpu_add(mem->stat->count[idx], val);

1927 1928
out:
	if (unlikely(need_unlock))
1929
		move_unlock_page_cgroup(pc, &flags);
1930 1931
	rcu_read_unlock();
	return;
1932
}
1933
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1934

1935 1936 1937 1938
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1939
#define CHARGE_BATCH	32U
1940 1941
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1942
	unsigned int nr_pages;
1943
	struct work_struct work;
1944 1945
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1946 1947
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1948
static DEFINE_MUTEX(percpu_charge_mutex);
1949 1950

/*
1951
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1962 1963
	if (mem == stock->cached && stock->nr_pages)
		stock->nr_pages--;
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1977 1978 1979 1980
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
1981
		if (do_swap_account)
1982 1983
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
1996
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1997 1998 1999 2000
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2001
 * This will be consumed by consume_stock() function, later.
2002
 */
2003
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2004 2005 2006 2007 2008 2009 2010
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
2011
	stock->nr_pages += nr_pages;
2012 2013 2014 2015 2016 2017 2018 2019 2020
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2021
static void drain_all_stock_async(struct mem_cgroup *root_mem)
2022
{
2023 2024 2025
	int cpu, curcpu;
	/*
	 * If someone calls draining, avoid adding more kworker runs.
2026
	 */
2027
	if (!mutex_trylock(&percpu_charge_mutex))
2028 2029 2030
		return;
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2031 2032 2033 2034 2035 2036 2037
	/*
	 * Get a hint for avoiding draining charges on the current cpu,
	 * which must be exhausted by our charging.  It is not required that
	 * this be a precise check, so we use raw_smp_processor_id() instead of
	 * getcpu()/putcpu().
	 */
	curcpu = raw_smp_processor_id();
2038 2039
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
		struct mem_cgroup *mem;

		if (cpu == curcpu)
			continue;

		mem = stock->cached;
		if (!mem)
			continue;
		if (mem != root_mem) {
			if (!root_mem->use_hierarchy)
				continue;
			/* check whether "mem" is under tree of "root_mem" */
			if (!css_is_ancestor(&mem->css, &root_mem->css))
				continue;
		}
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
			schedule_work_on(cpu, &stock->work);
2057 2058
	}
 	put_online_cpus();
2059
	mutex_unlock(&percpu_charge_mutex);
2060 2061 2062 2063 2064 2065 2066
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
2067
	mutex_lock(&percpu_charge_mutex);
2068
	schedule_on_each_cpu(drain_local_stock);
2069
	mutex_unlock(&percpu_charge_mutex);
2070 2071
}

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2082
		long x = per_cpu(mem->stat->count[i], cpu);
2083 2084 2085 2086

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
2087 2088 2089 2090 2091 2092
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long x = per_cpu(mem->stat->events[i], cpu);

		per_cpu(mem->stat->events[i], cpu) = 0;
		mem->nocpu_base.events[i] += x;
	}
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2104 2105 2106 2107
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2108 2109 2110 2111 2112
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2113
	struct mem_cgroup *iter;
2114

2115 2116 2117 2118 2119 2120
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2121
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2122
		return NOTIFY_OK;
2123 2124 2125 2126

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2127 2128 2129 2130 2131
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2142 2143
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				unsigned int nr_pages, bool oom_check)
2144
{
2145
	unsigned long csize = nr_pages * PAGE_SIZE;
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

2160
		res_counter_uncharge(&mem->res, csize);
2161 2162 2163 2164
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2165
	/*
2166 2167
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2168 2169 2170 2171
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2172
	if (nr_pages == CHARGE_BATCH)
2173 2174 2175 2176 2177 2178
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2179
					      gfp_mask, flags, NULL);
2180
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2181
		return CHARGE_RETRY;
2182
	/*
2183 2184 2185 2186 2187 2188 2189
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2190
	 */
2191
	if (nr_pages == 1 && ret)
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2211 2212 2213
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2214
 */
2215
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2216
				   gfp_t gfp_mask,
2217 2218 2219
				   unsigned int nr_pages,
				   struct mem_cgroup **memcg,
				   bool oom)
2220
{
2221
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2222 2223 2224
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
2225

K
KAMEZAWA Hiroyuki 已提交
2226 2227 2228 2229 2230 2231 2232 2233
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2234

2235
	/*
2236 2237
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2238 2239 2240
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
2241 2242 2243 2244
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
2245
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
2246 2247 2248
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
2249
		if (nr_pages == 1 && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
2250
			goto done;
2251 2252
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
2253
		struct task_struct *p;
2254

K
KAMEZAWA Hiroyuki 已提交
2255 2256 2257
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2258 2259 2260 2261 2262 2263 2264 2265
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2266 2267
		 */
		mem = mem_cgroup_from_task(p);
2268
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2269 2270 2271
			rcu_read_unlock();
			goto done;
		}
2272
		if (nr_pages == 1 && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2291

2292 2293
	do {
		bool oom_check;
2294

2295
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2296 2297
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
2298
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2299
		}
2300

2301 2302 2303 2304
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2305
		}
2306

2307
		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2308 2309 2310 2311
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2312
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2313 2314 2315
			css_put(&mem->css);
			mem = NULL;
			goto again;
2316
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2317
			css_put(&mem->css);
2318 2319
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2320 2321
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2322
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2323
			}
2324 2325 2326 2327
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2328
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2329
			goto bypass;
2330
		}
2331 2332
	} while (ret != CHARGE_OK);

2333 2334
	if (batch > nr_pages)
		refill_stock(mem, batch - nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2335
	css_put(&mem->css);
2336
done:
K
KAMEZAWA Hiroyuki 已提交
2337
	*memcg = mem;
2338 2339
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2340
	*memcg = NULL;
2341
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2342 2343 2344
bypass:
	*memcg = NULL;
	return 0;
2345
}
2346

2347 2348 2349 2350 2351
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2352
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2353
				       unsigned int nr_pages)
2354 2355
{
	if (!mem_cgroup_is_root(mem)) {
2356 2357 2358
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2359
		if (do_swap_account)
2360
			res_counter_uncharge(&mem->memsw, bytes);
2361
	}
2362 2363
}

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2383
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2384
{
2385
	struct mem_cgroup *mem = NULL;
2386
	struct page_cgroup *pc;
2387
	unsigned short id;
2388 2389
	swp_entry_t ent;

2390 2391 2392
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2393
	lock_page_cgroup(pc);
2394
	if (PageCgroupUsed(pc)) {
2395
		mem = pc->mem_cgroup;
2396 2397
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2398
	} else if (PageSwapCache(page)) {
2399
		ent.val = page_private(page);
2400 2401 2402 2403 2404 2405
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2406
	}
2407
	unlock_page_cgroup(pc);
2408 2409 2410
	return mem;
}

2411
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2412
				       struct page *page,
2413
				       unsigned int nr_pages,
2414
				       struct page_cgroup *pc,
2415
				       enum charge_type ctype)
2416
{
2417 2418 2419
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2420
		__mem_cgroup_cancel_charge(mem, nr_pages);
2421 2422 2423 2424 2425 2426
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2427
	pc->mem_cgroup = mem;
2428 2429 2430 2431 2432 2433 2434
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2435
	smp_wmb();
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2449

2450
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2451
	unlock_page_cgroup(pc);
2452 2453 2454 2455 2456
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2457
	memcg_check_events(mem, page);
2458
}
2459

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2474 2475
	if (mem_cgroup_disabled())
		return;
2476
	/*
2477
	 * We have no races with charge/uncharge but will have races with
2478 2479 2480 2481 2482 2483
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2494
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2495 2496
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2497 2498 2499 2500 2501
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2502
/**
2503
 * mem_cgroup_move_account - move account of the page
2504
 * @page: the page
2505
 * @nr_pages: number of regular pages (>1 for huge pages)
2506 2507 2508
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2509
 * @uncharge: whether we should call uncharge and css_put against @from.
2510 2511
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2512
 * - page is not on LRU (isolate_page() is useful.)
2513
 * - compound_lock is held when nr_pages > 1
2514
 *
2515
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2516
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2517 2518
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2519
 */
2520 2521 2522 2523 2524 2525
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2526
{
2527 2528
	unsigned long flags;
	int ret;
2529

2530
	VM_BUG_ON(from == to);
2531
	VM_BUG_ON(PageLRU(page));
2532 2533 2534 2535 2536 2537 2538
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2539
	if (nr_pages > 1 && !PageTransHuge(page))
2540 2541 2542 2543 2544 2545 2546 2547 2548
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2549

2550
	if (PageCgroupFileMapped(pc)) {
2551 2552 2553 2554 2555
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2556
	}
2557
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2558 2559
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2560
		__mem_cgroup_cancel_charge(from, nr_pages);
2561

2562
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2563
	pc->mem_cgroup = to;
2564
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2565 2566 2567
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2568
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2569
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2570
	 * status here.
2571
	 */
2572 2573 2574
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2575
	unlock_page_cgroup(pc);
2576 2577 2578
	/*
	 * check events
	 */
2579 2580
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2581
out:
2582 2583 2584 2585 2586 2587 2588
	return ret;
}

/*
 * move charges to its parent.
 */

2589 2590
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2591 2592 2593 2594 2595 2596
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2597
	unsigned int nr_pages;
2598
	unsigned long uninitialized_var(flags);
2599 2600 2601 2602 2603 2604
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2605 2606 2607 2608 2609
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2610

2611
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2612

2613
	parent = mem_cgroup_from_cont(pcg);
2614
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2615
	if (ret || !parent)
2616
		goto put_back;
2617

2618
	if (nr_pages > 1)
2619 2620
		flags = compound_lock_irqsave(page);

2621
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2622
	if (ret)
2623
		__mem_cgroup_cancel_charge(parent, nr_pages);
2624

2625
	if (nr_pages > 1)
2626
		compound_unlock_irqrestore(page, flags);
2627
put_back:
K
KAMEZAWA Hiroyuki 已提交
2628
	putback_lru_page(page);
2629
put:
2630
	put_page(page);
2631
out:
2632 2633 2634
	return ret;
}

2635 2636 2637 2638 2639 2640 2641
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2642
				gfp_t gfp_mask, enum charge_type ctype)
2643
{
2644
	struct mem_cgroup *mem = NULL;
2645
	unsigned int nr_pages = 1;
2646
	struct page_cgroup *pc;
2647
	bool oom = true;
2648
	int ret;
A
Andrea Arcangeli 已提交
2649

A
Andrea Arcangeli 已提交
2650
	if (PageTransHuge(page)) {
2651
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2652
		VM_BUG_ON(!PageTransHuge(page));
2653 2654 2655 2656 2657
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2658
	}
2659 2660

	pc = lookup_page_cgroup(page);
2661
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2662

2663
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2664
	if (ret || !mem)
2665 2666
		return ret;

2667
	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2668 2669 2670
	return 0;
}

2671 2672
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2673
{
2674
	if (mem_cgroup_disabled())
2675
		return 0;
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2687
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2688
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2689 2690
}

D
Daisuke Nishimura 已提交
2691 2692 2693 2694
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
static void
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2711 2712
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2713
{
2714
	struct mem_cgroup *mem = NULL;
2715 2716
	int ret;

2717
	if (mem_cgroup_disabled())
2718
		return 0;
2719 2720
	if (PageCompound(page))
		return 0;
2721 2722 2723 2724 2725 2726 2727 2728
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2729 2730
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2731 2732 2733 2734
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2735 2736 2737 2738 2739 2740
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2741 2742
			return 0;
		}
2743
		unlock_page_cgroup(pc);
2744 2745
	}

2746
	if (unlikely(!mm))
2747
		mm = &init_mm;
2748

2749 2750 2751 2752
	if (page_is_file_cache(page)) {
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
		if (ret || !mem)
			return ret;
2753

2754 2755 2756 2757 2758 2759 2760 2761 2762
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
		__mem_cgroup_commit_charge_lrucare(page, mem,
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2763 2764 2765 2766 2767 2768 2769 2770
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2771
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2772 2773

	return ret;
2774 2775
}

2776 2777 2778
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2779
 * struct page_cgroup is acquired. This refcnt will be consumed by
2780 2781
 * "commit()" or removed by "cancel()"
 */
2782 2783 2784 2785 2786
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2787
	int ret;
2788

2789 2790
	*ptr = NULL;

2791
	if (mem_cgroup_disabled())
2792 2793 2794 2795 2796 2797
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2798 2799 2800
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2801 2802
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2803
		goto charge_cur_mm;
2804
	mem = try_get_mem_cgroup_from_page(page);
2805 2806
	if (!mem)
		goto charge_cur_mm;
2807
	*ptr = mem;
2808
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2809 2810
	css_put(&mem->css);
	return ret;
2811 2812 2813
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2814
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2815 2816
}

D
Daisuke Nishimura 已提交
2817 2818 2819
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2820
{
2821
	if (mem_cgroup_disabled())
2822 2823 2824
		return;
	if (!ptr)
		return;
2825
	cgroup_exclude_rmdir(&ptr->css);
2826 2827

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2828 2829 2830
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2831 2832 2833
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2834
	 */
2835
	if (do_swap_account && PageSwapCache(page)) {
2836
		swp_entry_t ent = {.val = page_private(page)};
2837
		unsigned short id;
2838
		struct mem_cgroup *memcg;
2839 2840 2841 2842

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2843
		if (memcg) {
2844 2845 2846 2847
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2848
			if (!mem_cgroup_is_root(memcg))
2849
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2850
			mem_cgroup_swap_statistics(memcg, false);
2851 2852
			mem_cgroup_put(memcg);
		}
2853
		rcu_read_unlock();
2854
	}
2855 2856 2857 2858 2859 2860
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2861 2862
}

D
Daisuke Nishimura 已提交
2863 2864 2865 2866 2867 2868
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2869 2870
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2871
	if (mem_cgroup_disabled())
2872 2873 2874
		return;
	if (!mem)
		return;
2875
	__mem_cgroup_cancel_charge(mem, 1);
2876 2877
}

2878 2879 2880
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2881 2882 2883
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2884

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2897 2898
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2899
	 * In those cases, all pages freed continuously can be expected to be in
2900 2901 2902 2903 2904 2905 2906 2907
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2908
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2909 2910
		goto direct_uncharge;

2911 2912 2913 2914 2915 2916 2917 2918
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2919
	batch->nr_pages++;
2920
	if (uncharge_memsw)
2921
		batch->memsw_nr_pages++;
2922 2923
	return;
direct_uncharge:
2924
	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2925
	if (uncharge_memsw)
2926
		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2927 2928
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2929 2930
	return;
}
2931

2932
/*
2933
 * uncharge if !page_mapped(page)
2934
 */
2935
static struct mem_cgroup *
2936
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2937
{
2938
	struct mem_cgroup *mem = NULL;
2939 2940
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2941

2942
	if (mem_cgroup_disabled())
2943
		return NULL;
2944

K
KAMEZAWA Hiroyuki 已提交
2945
	if (PageSwapCache(page))
2946
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2947

A
Andrea Arcangeli 已提交
2948
	if (PageTransHuge(page)) {
2949
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2950 2951
		VM_BUG_ON(!PageTransHuge(page));
	}
2952
	/*
2953
	 * Check if our page_cgroup is valid
2954
	 */
2955 2956
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2957
		return NULL;
2958

2959
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2960

2961 2962
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2963 2964 2965 2966 2967
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2968
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2969 2970
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2982
	}
K
KAMEZAWA Hiroyuki 已提交
2983

2984
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2985

2986
	ClearPageCgroupUsed(pc);
2987 2988 2989 2990 2991 2992
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2993

2994
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2995 2996 2997 2998
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2999
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
3000 3001 3002 3003 3004
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
3005
		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3006

3007
	return mem;
K
KAMEZAWA Hiroyuki 已提交
3008 3009 3010

unlock_out:
	unlock_page_cgroup(pc);
3011
	return NULL;
3012 3013
}

3014 3015
void mem_cgroup_uncharge_page(struct page *page)
{
3016 3017 3018 3019 3020
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3021 3022 3023 3024 3025 3026
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3027
	VM_BUG_ON(page->mapping);
3028 3029 3030
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3045 3046
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3067 3068 3069 3070 3071 3072
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3073
	memcg_oom_recover(batch->memcg);
3074 3075 3076 3077
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3078
#ifdef CONFIG_SWAP
3079
/*
3080
 * called after __delete_from_swap_cache() and drop "page" account.
3081 3082
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3083 3084
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3085 3086
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3087 3088 3089 3090 3091 3092
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3093

K
KAMEZAWA Hiroyuki 已提交
3094 3095 3096 3097 3098
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3099
		swap_cgroup_record(ent, css_id(&memcg->css));
3100
}
3101
#endif
3102 3103 3104 3105 3106 3107 3108

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3109
{
3110
	struct mem_cgroup *memcg;
3111
	unsigned short id;
3112 3113 3114 3115

	if (!do_swap_account)
		return;

3116 3117 3118
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3119
	if (memcg) {
3120 3121 3122 3123
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3124
		if (!mem_cgroup_is_root(memcg))
3125
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3126
		mem_cgroup_swap_statistics(memcg, false);
3127 3128
		mem_cgroup_put(memcg);
	}
3129
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3130
}
3131 3132 3133 3134 3135 3136

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3137
 * @need_fixup: whether we should fixup res_counters and refcounts.
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3148
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3149 3150 3151 3152 3153 3154 3155 3156
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3157
		mem_cgroup_swap_statistics(to, true);
3158
		/*
3159 3160 3161 3162 3163 3164
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3165 3166
		 */
		mem_cgroup_get(to);
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3178 3179 3180 3181 3182 3183
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3184
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3185 3186 3187
{
	return -EINVAL;
}
3188
#endif
K
KAMEZAWA Hiroyuki 已提交
3189

3190
/*
3191 3192
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3193
 */
3194
int mem_cgroup_prepare_migration(struct page *page,
3195
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3196
{
3197
	struct mem_cgroup *mem = NULL;
3198
	struct page_cgroup *pc;
3199
	enum charge_type ctype;
3200
	int ret = 0;
3201

3202 3203
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3204
	VM_BUG_ON(PageTransHuge(page));
3205
	if (mem_cgroup_disabled())
3206 3207
		return 0;

3208 3209 3210
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3211 3212
		mem = pc->mem_cgroup;
		css_get(&mem->css);
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3244
	}
3245
	unlock_page_cgroup(pc);
3246 3247 3248 3249 3250 3251
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
3252

A
Andrea Arcangeli 已提交
3253
	*ptr = mem;
3254
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3267
	}
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3281
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3282
	return ret;
3283
}
3284

3285
/* remove redundant charge if migration failed*/
3286
void mem_cgroup_end_migration(struct mem_cgroup *mem,
3287
	struct page *oldpage, struct page *newpage, bool migration_ok)
3288
{
3289
	struct page *used, *unused;
3290 3291 3292 3293
	struct page_cgroup *pc;

	if (!mem)
		return;
3294
	/* blocks rmdir() */
3295
	cgroup_exclude_rmdir(&mem->css);
3296
	if (!migration_ok) {
3297 3298
		used = oldpage;
		unused = newpage;
3299
	} else {
3300
		used = newpage;
3301 3302
		unused = oldpage;
	}
3303
	/*
3304 3305 3306
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3307
	 */
3308 3309 3310 3311
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3312

3313 3314
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3315
	/*
3316 3317 3318 3319 3320 3321
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3322
	 */
3323 3324
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3325
	/*
3326 3327
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3328 3329 3330 3331
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3332
}
3333

3334
/*
3335 3336 3337 3338 3339 3340
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3341
 */
3342
int mem_cgroup_shmem_charge_fallback(struct page *page,
3343 3344
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3345
{
3346
	struct mem_cgroup *mem;
3347
	int ret;
3348

3349
	if (mem_cgroup_disabled())
3350
		return 0;
3351

3352 3353 3354
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3355

3356
	return ret;
3357 3358
}

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3405 3406
static DEFINE_MUTEX(set_limit_mutex);

3407
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3408
				unsigned long long val)
3409
{
3410
	int retry_count;
3411
	u64 memswlimit, memlimit;
3412
	int ret = 0;
3413 3414
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3415
	int enlarge;
3416 3417 3418 3419 3420 3421 3422 3423 3424

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3425

3426
	enlarge = 0;
3427
	while (retry_count) {
3428 3429 3430 3431
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3442 3443
			break;
		}
3444 3445 3446 3447 3448

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3449
		ret = res_counter_set_limit(&memcg->res, val);
3450 3451 3452 3453 3454 3455
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3456 3457 3458 3459 3460
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3461
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3462 3463
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3464 3465 3466 3467 3468 3469
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3470
	}
3471 3472
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3473

3474 3475 3476
	return ret;
}

L
Li Zefan 已提交
3477 3478
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3479
{
3480
	int retry_count;
3481
	u64 memlimit, memswlimit, oldusage, curusage;
3482 3483
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3484
	int enlarge = 0;
3485

3486 3487 3488
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3506 3507 3508
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3509
		ret = res_counter_set_limit(&memcg->memsw, val);
3510 3511 3512 3513 3514 3515
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3516 3517 3518 3519 3520
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3521
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3522
						MEM_CGROUP_RECLAIM_NOSWAP |
3523 3524
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3525
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3526
		/* Usage is reduced ? */
3527
		if (curusage >= oldusage)
3528
			retry_count--;
3529 3530
		else
			oldusage = curusage;
3531
	}
3532 3533
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3534 3535 3536
	return ret;
}

3537
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3538 3539
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3540 3541 3542 3543 3544 3545
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3546
	unsigned long long excess;
3547
	unsigned long nr_scanned;
3548 3549 3550 3551

	if (order > 0)
		return 0;

3552
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3566
		nr_scanned = 0;
3567 3568
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3569 3570
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3571
		nr_reclaimed += reclaimed;
3572
		*total_scanned += nr_scanned;
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3595
				if (next_mz == mz)
3596
					css_put(&next_mz->mem->css);
3597
				else /* next_mz == NULL or other memcg */
3598 3599 3600 3601
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3602
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3603 3604 3605 3606 3607 3608 3609 3610
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3611 3612
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3631 3632 3633 3634
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3635
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3636
				int node, int zid, enum lru_list lru)
3637
{
K
KAMEZAWA Hiroyuki 已提交
3638 3639
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3640
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3641
	unsigned long flags, loop;
3642
	struct list_head *list;
3643
	int ret = 0;
3644

K
KAMEZAWA Hiroyuki 已提交
3645 3646
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3647
	list = &mz->lists[lru];
3648

3649 3650 3651 3652 3653
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3654 3655
		struct page *page;

3656
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3657
		spin_lock_irqsave(&zone->lru_lock, flags);
3658
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3659
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3660
			break;
3661 3662 3663 3664
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3665
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3666
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3667 3668
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3669
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3670

3671
		page = lookup_cgroup_page(pc);
3672 3673

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3674
		if (ret == -ENOMEM)
3675
			break;
3676 3677 3678 3679 3680 3681 3682

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3683
	}
K
KAMEZAWA Hiroyuki 已提交
3684

3685 3686 3687
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3688 3689 3690 3691 3692 3693
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3694
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3695
{
3696 3697 3698
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3699
	struct cgroup *cgrp = mem->css.cgroup;
3700

3701
	css_get(&mem->css);
3702 3703

	shrink = 0;
3704 3705 3706
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3707
move_account:
3708
	do {
3709
		ret = -EBUSY;
3710 3711 3712 3713
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3714
			goto out;
3715 3716
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3717
		drain_all_stock_sync();
3718
		ret = 0;
3719
		mem_cgroup_start_move(mem);
3720
		for_each_node_state(node, N_HIGH_MEMORY) {
3721
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3722
				enum lru_list l;
3723 3724
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3725
							node, zid, l);
3726 3727 3728
					if (ret)
						break;
				}
3729
			}
3730 3731 3732
			if (ret)
				break;
		}
3733
		mem_cgroup_end_move(mem);
3734
		memcg_oom_recover(mem);
3735 3736 3737
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3738
		cond_resched();
3739 3740
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3741 3742 3743
out:
	css_put(&mem->css);
	return ret;
3744 3745

try_to_free:
3746 3747
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3748 3749 3750
		ret = -EBUSY;
		goto out;
	}
3751 3752
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3753 3754 3755 3756
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3757 3758 3759 3760 3761

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3762 3763
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3764
		if (!progress) {
3765
			nr_retries--;
3766
			/* maybe some writeback is necessary */
3767
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3768
		}
3769 3770

	}
K
KAMEZAWA Hiroyuki 已提交
3771
	lru_add_drain();
3772
	/* try move_account...there may be some *locked* pages. */
3773
	goto move_account;
3774 3775
}

3776 3777 3778 3779 3780 3781
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3800
	 * If parent's use_hierarchy is set, we can't make any modifications
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3820

3821 3822
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
					       enum mem_cgroup_stat_index idx)
3823
{
K
KAMEZAWA Hiroyuki 已提交
3824
	struct mem_cgroup *iter;
3825
	long val = 0;
3826

3827
	/* Per-cpu values can be negative, use a signed accumulator */
K
KAMEZAWA Hiroyuki 已提交
3828 3829 3830 3831 3832 3833
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3834 3835
}

3836 3837
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3838
	u64 val;
3839 3840 3841 3842 3843 3844 3845 3846

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

3847 3848
	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3849

K
KAMEZAWA Hiroyuki 已提交
3850
	if (swap)
3851
		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3852 3853 3854 3855

	return val << PAGE_SHIFT;
}

3856
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3857
{
3858
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3859
	u64 val;
3860 3861 3862 3863 3864 3865
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3866 3867 3868
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3869
			val = res_counter_read_u64(&mem->res, name);
3870 3871
		break;
	case _MEMSWAP:
3872 3873 3874
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3875
			val = res_counter_read_u64(&mem->memsw, name);
3876 3877 3878 3879 3880 3881
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3882
}
3883 3884 3885 3886
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3887 3888
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3889
{
3890
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3891
	int type, name;
3892 3893 3894
	unsigned long long val;
	int ret;

3895 3896 3897
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3898
	case RES_LIMIT:
3899 3900 3901 3902
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3903 3904
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3905 3906 3907
		if (ret)
			break;
		if (type == _MEM)
3908
			ret = mem_cgroup_resize_limit(memcg, val);
3909 3910
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3911
		break;
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3926 3927 3928 3929 3930
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3931 3932
}

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3961
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3962 3963
{
	struct mem_cgroup *mem;
3964
	int type, name;
3965 3966

	mem = mem_cgroup_from_cont(cont);
3967 3968 3969
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3970
	case RES_MAX_USAGE:
3971 3972 3973 3974
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3975 3976
		break;
	case RES_FAILCNT:
3977 3978 3979 3980
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3981 3982
		break;
	}
3983

3984
	return 0;
3985 3986
}

3987 3988 3989 3990 3991 3992
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3993
#ifdef CONFIG_MMU
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
4012 4013 4014 4015 4016 4017 4018
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4019

K
KAMEZAWA Hiroyuki 已提交
4020 4021 4022 4023 4024

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4025
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4026 4027
	MCS_PGPGIN,
	MCS_PGPGOUT,
4028
	MCS_SWAP,
4029 4030
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4041 4042
};

K
KAMEZAWA Hiroyuki 已提交
4043 4044 4045 4046 4047 4048
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4049
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4050 4051
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4052
	{"swap", "total_swap"},
4053 4054
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4055 4056 4057 4058 4059 4060 4061 4062
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4063 4064
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4065 4066 4067 4068
{
	s64 val;

	/* per cpu stat */
4069
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4070
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4071
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4072
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4073
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4074
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4075
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4076
	s->stat[MCS_PGPGIN] += val;
4077
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4078
	s->stat[MCS_PGPGOUT] += val;
4079
	if (do_swap_account) {
4080
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4081 4082
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4083 4084 4085 4086
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
	s->stat[MCS_PGFAULT] += val;
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
4104 4105 4106 4107
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4108 4109
}

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

	total_nr = mem_cgroup_nr_lru_pages(mem_cont);
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

	file_nr = mem_cgroup_nr_file_lru_pages(mem_cont);
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_file_lru_pages(mem_cont, nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

	anon_nr = mem_cgroup_nr_anon_lru_pages(mem_cont);
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_anon_lru_pages(mem_cont, nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

	unevictable_nr = mem_cgroup_nr_unevictable_lru_pages(mem_cont);
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_unevictable_lru_pages(mem_cont,
									nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4155 4156
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4157 4158
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4159
	struct mcs_total_stat mystat;
4160 4161
	int i;

K
KAMEZAWA Hiroyuki 已提交
4162 4163
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4164

4165

4166 4167 4168
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4169
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4170
	}
L
Lee Schermerhorn 已提交
4171

K
KAMEZAWA Hiroyuki 已提交
4172
	/* Hierarchical information */
4173 4174 4175 4176 4177 4178 4179
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4180

K
KAMEZAWA Hiroyuki 已提交
4181 4182
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4183 4184 4185
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4186
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4187
	}
K
KAMEZAWA Hiroyuki 已提交
4188

K
KOSAKI Motohiro 已提交
4189
#ifdef CONFIG_DEBUG_VM
4190
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4218 4219 4220
	return 0;
}

K
KOSAKI Motohiro 已提交
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4233

K
KOSAKI Motohiro 已提交
4234 4235 4236 4237 4238 4239 4240
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4241 4242 4243

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4244 4245
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4246 4247
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4248
		return -EINVAL;
4249
	}
K
KOSAKI Motohiro 已提交
4250 4251 4252

	memcg->swappiness = val;

4253 4254
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4255 4256 4257
	return 0;
}

4258 4259 4260 4261 4262 4263 4264 4265
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4266
		t = rcu_dereference(memcg->thresholds.primary);
4267
	else
4268
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4280
	i = t->current_threshold;
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4304
	t->current_threshold = i - 1;
4305 4306 4307 4308 4309 4310
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4311 4312 4313 4314 4315 4316 4317
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
4328
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
4339 4340 4341 4342
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4343 4344 4345 4346
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4347 4348
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4349 4350
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4351 4352
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4353
	int i, size, ret;
4354 4355 4356 4357 4358 4359

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4360

4361
	if (type == _MEM)
4362
		thresholds = &memcg->thresholds;
4363
	else if (type == _MEMSWAP)
4364
		thresholds = &memcg->memsw_thresholds;
4365 4366 4367 4368 4369 4370
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4371
	if (thresholds->primary)
4372 4373
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4374
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4375 4376

	/* Allocate memory for new array of thresholds */
4377
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4378
			GFP_KERNEL);
4379
	if (!new) {
4380 4381 4382
		ret = -ENOMEM;
		goto unlock;
	}
4383
	new->size = size;
4384 4385

	/* Copy thresholds (if any) to new array */
4386 4387
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4388
				sizeof(struct mem_cgroup_threshold));
4389 4390
	}

4391
	/* Add new threshold */
4392 4393
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4394 4395

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4396
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4397 4398 4399
			compare_thresholds, NULL);

	/* Find current threshold */
4400
	new->current_threshold = -1;
4401
	for (i = 0; i < size; i++) {
4402
		if (new->entries[i].threshold < usage) {
4403
			/*
4404 4405
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4406 4407
			 * it here.
			 */
4408
			++new->current_threshold;
4409 4410 4411
		}
	}

4412 4413 4414 4415 4416
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4417

4418
	/* To be sure that nobody uses thresholds */
4419 4420 4421 4422 4423 4424 4425 4426
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4427
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4428
	struct cftype *cft, struct eventfd_ctx *eventfd)
4429 4430
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4431 4432
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4433 4434
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4435
	int i, j, size;
4436 4437 4438

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4439
		thresholds = &memcg->thresholds;
4440
	else if (type == _MEMSWAP)
4441
		thresholds = &memcg->memsw_thresholds;
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4457 4458 4459
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4460 4461 4462
			size++;
	}

4463
	new = thresholds->spare;
4464

4465 4466
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4467 4468
		kfree(new);
		new = NULL;
4469
		goto swap_buffers;
4470 4471
	}

4472
	new->size = size;
4473 4474

	/* Copy thresholds and find current threshold */
4475 4476 4477
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4478 4479
			continue;

4480 4481
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4482
			/*
4483
			 * new->current_threshold will not be used
4484 4485 4486
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4487
			++new->current_threshold;
4488 4489 4490 4491
		}
		j++;
	}

4492
swap_buffers:
4493 4494 4495
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4496

4497
	/* To be sure that nobody uses thresholds */
4498 4499 4500 4501
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4502

K
KAMEZAWA Hiroyuki 已提交
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4528
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4583 4584
	if (!val)
		memcg_oom_recover(mem);
4585 4586 4587 4588
	cgroup_unlock();
	return 0;
}

4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

B
Balbir Singh 已提交
4605 4606
static struct cftype mem_cgroup_files[] = {
	{
4607
		.name = "usage_in_bytes",
4608
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4609
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4610 4611
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4612
	},
4613 4614
	{
		.name = "max_usage_in_bytes",
4615
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4616
		.trigger = mem_cgroup_reset,
4617 4618
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4619
	{
4620
		.name = "limit_in_bytes",
4621
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4622
		.write_string = mem_cgroup_write,
4623
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4624
	},
4625 4626 4627 4628 4629 4630
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4631 4632
	{
		.name = "failcnt",
4633
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4634
		.trigger = mem_cgroup_reset,
4635
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4636
	},
4637 4638
	{
		.name = "stat",
4639
		.read_map = mem_control_stat_show,
4640
	},
4641 4642 4643 4644
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4645 4646 4647 4648 4649
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4650 4651 4652 4653 4654
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4655 4656 4657 4658 4659
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4660 4661
	{
		.name = "oom_control",
4662 4663
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4664 4665 4666 4667
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4668 4669 4670 4671
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4672
		.mode = S_IRUGO,
4673 4674
	},
#endif
B
Balbir Singh 已提交
4675 4676
};

4677 4678 4679 4680 4681 4682
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4683 4684
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4720 4721 4722
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4723
	struct mem_cgroup_per_zone *mz;
4724
	enum lru_list l;
4725
	int zone, tmp = node;
4726 4727 4728 4729 4730 4731 4732 4733
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4734 4735
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4736
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4737 4738
	if (!pn)
		return 1;
4739

4740
	mem->info.nodeinfo[node] = pn;
4741 4742
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4743 4744
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4745
		mz->usage_in_excess = 0;
4746 4747
		mz->on_tree = false;
		mz->mem = mem;
4748
	}
4749 4750 4751
	return 0;
}

4752 4753 4754 4755 4756
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4757 4758 4759
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4760
	int size = sizeof(struct mem_cgroup);
4761

4762
	/* Can be very big if MAX_NUMNODES is very big */
4763
	if (size < PAGE_SIZE)
4764
		mem = kzalloc(size, GFP_KERNEL);
4765
	else
4766
		mem = vzalloc(size);
4767

4768 4769 4770
	if (!mem)
		return NULL;

4771
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4772 4773
	if (!mem->stat)
		goto out_free;
4774
	spin_lock_init(&mem->pcp_counter_lock);
4775
	return mem;
4776 4777 4778 4779 4780 4781 4782

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4783 4784
}

4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4796
static void __mem_cgroup_free(struct mem_cgroup *mem)
4797
{
K
KAMEZAWA Hiroyuki 已提交
4798 4799
	int node;

4800
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4801 4802
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4803 4804 4805
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4806 4807
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4808 4809 4810 4811 4812
		kfree(mem);
	else
		vfree(mem);
}

4813 4814 4815 4816 4817
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4818
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4819
{
4820
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4821
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4822
		__mem_cgroup_free(mem);
4823 4824 4825
		if (parent)
			mem_cgroup_put(parent);
	}
4826 4827
}

4828 4829 4830 4831 4832
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4833 4834 4835 4836 4837 4838 4839 4840 4841
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4842

4843 4844 4845
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4846
	if (!mem_cgroup_disabled() && really_do_swap_account)
4847 4848 4849 4850 4851 4852 4853 4854
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4880
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4881 4882
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4883
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4884
	long error = -ENOMEM;
4885
	int node;
B
Balbir Singh 已提交
4886

4887 4888
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4889
		return ERR_PTR(error);
4890

4891 4892 4893
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4894

4895
	/* root ? */
4896
	if (cont->parent == NULL) {
4897
		int cpu;
4898
		enable_swap_cgroup();
4899
		parent = NULL;
4900
		root_mem_cgroup = mem;
4901 4902
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4903 4904 4905 4906 4907
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4908
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4909
	} else {
4910
		parent = mem_cgroup_from_cont(cont->parent);
4911
		mem->use_hierarchy = parent->use_hierarchy;
4912
		mem->oom_kill_disable = parent->oom_kill_disable;
4913
	}
4914

4915 4916 4917
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4918 4919 4920 4921 4922 4923 4924
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4925 4926 4927 4928
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4929
	mem->last_scanned_child = 0;
4930
	mem->last_scanned_node = MAX_NUMNODES;
K
KAMEZAWA Hiroyuki 已提交
4931
	INIT_LIST_HEAD(&mem->oom_notify);
4932

K
KOSAKI Motohiro 已提交
4933 4934
	if (parent)
		mem->swappiness = get_swappiness(parent);
4935
	atomic_set(&mem->refcnt, 1);
4936
	mem->move_charge_at_immigrate = 0;
4937
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4938
	return &mem->css;
4939
free_out:
4940
	__mem_cgroup_free(mem);
4941
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4942
	return ERR_PTR(error);
B
Balbir Singh 已提交
4943 4944
}

4945
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4946 4947 4948
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4949 4950

	return mem_cgroup_force_empty(mem, false);
4951 4952
}

B
Balbir Singh 已提交
4953 4954 4955
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4956 4957 4958
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4959 4960 4961 4962 4963
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4964 4965 4966 4967 4968 4969 4970 4971
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4972 4973
}

4974
#ifdef CONFIG_MMU
4975
/* Handlers for move charge at task migration. */
4976 4977
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4978
{
4979 4980
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4981 4982
	struct mem_cgroup *mem = mc.to;

4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5018
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5019 5020 5021 5022 5023
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5024 5025 5026 5027 5028 5029 5030 5031
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5032
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5033 5034 5035 5036 5037 5038
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5039 5040 5041
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5042 5043 5044 5045 5046
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5047
	swp_entry_t	ent;
5048 5049 5050 5051 5052
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5053
	MC_TARGET_SWAP,
5054 5055
};

D
Daisuke Nishimura 已提交
5056 5057
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5058
{
D
Daisuke Nishimura 已提交
5059
	struct page *page = vm_normal_page(vma, addr, ptent);
5060

D
Daisuke Nishimura 已提交
5061 5062 5063 5064 5065 5066
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5067 5068
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5087 5088
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5089
		return NULL;
5090
	}
D
Daisuke Nishimura 已提交
5091 5092 5093 5094 5095 5096
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5142 5143
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5144 5145 5146

	if (!page && !ent.val)
		return 0;
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5162 5163
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5164 5165 5166 5167
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5180 5181
	split_huge_page_pmd(walk->mm, pmd);

5182 5183 5184 5185 5186 5187 5188
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5189 5190 5191
	return 0;
}

5192 5193 5194 5195 5196
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5197
	down_read(&mm->mmap_sem);
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5209
	up_read(&mm->mmap_sem);
5210 5211 5212 5213 5214 5215 5216 5217 5218

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5219 5220 5221 5222 5223
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5224 5225
}

5226 5227
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5228
{
5229 5230 5231
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5232
	/* we must uncharge all the leftover precharges from mc.to */
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5244
	}
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5279
	spin_lock(&mc.lock);
5280 5281
	mc.from = NULL;
	mc.to = NULL;
5282
	spin_unlock(&mc.lock);
5283
	mem_cgroup_end_move(from);
5284 5285
}

5286 5287
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5288
				struct task_struct *p)
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5303 5304 5305 5306
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5307
			VM_BUG_ON(mc.moved_charge);
5308
			VM_BUG_ON(mc.moved_swap);
5309
			mem_cgroup_start_move(from);
5310
			spin_lock(&mc.lock);
5311 5312
			mc.from = from;
			mc.to = mem;
5313
			spin_unlock(&mc.lock);
5314
			/* We set mc.moving_task later */
5315 5316 5317 5318

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5319 5320
		}
		mmput(mm);
5321 5322 5323 5324 5325 5326
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5327
				struct task_struct *p)
5328
{
5329
	mem_cgroup_clear_mc();
5330 5331
}

5332 5333 5334
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5335
{
5336 5337 5338 5339 5340
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5341
	split_huge_page_pmd(walk->mm, pmd);
5342 5343 5344 5345 5346 5347 5348 5349
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5350
		swp_entry_t ent;
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5362 5363
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5364
				mc.precharge--;
5365 5366
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5367 5368 5369 5370 5371
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5372 5373
		case MC_TARGET_SWAP:
			ent = target.ent;
5374 5375
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5376
				mc.precharge--;
5377 5378 5379
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5380
			break;
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5395
		ret = mem_cgroup_do_precharge(1);
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5439
	up_read(&mm->mmap_sem);
5440 5441
}

B
Balbir Singh 已提交
5442 5443 5444
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5445
				struct task_struct *p)
B
Balbir Singh 已提交
5446
{
5447
	struct mm_struct *mm = get_task_mm(p);
5448 5449

	if (mm) {
5450 5451 5452
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5453 5454
		mmput(mm);
	}
5455 5456
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5457
}
5458 5459 5460
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5461
				struct task_struct *p)
5462 5463 5464 5465 5466
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5467
				struct task_struct *p)
5468 5469 5470 5471 5472
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5473
				struct task_struct *p)
5474 5475 5476
{
}
#endif
B
Balbir Singh 已提交
5477

B
Balbir Singh 已提交
5478 5479 5480 5481
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5482
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5483 5484
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5485 5486
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5487
	.attach = mem_cgroup_move_task,
5488
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5489
	.use_id = 1,
B
Balbir Singh 已提交
5490
};
5491 5492

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5493 5494 5495
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5496
	if (!strcmp(s, "1"))
5497
		really_do_swap_account = 1;
5498
	else if (!strcmp(s, "0"))
5499 5500 5501
		really_do_swap_account = 0;
	return 1;
}
5502
__setup("swapaccount=", enable_swap_account);
5503 5504

#endif