cputime.c 22.3 KB
Newer Older
1 2 3
/*
 * Simple CPU accounting cgroup controller
 */
4 5 6 7 8 9
#include "sched.h"

#ifdef CONFIG_IRQ_TIME_ACCOUNTING

/*
 * There are no locks covering percpu hardirq/softirq time.
10
 * They are only modified in vtime_account, on corresponding CPU
11 12 13
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
14
 * race with irq/vtime_account on this CPU. We would either get old
15 16 17 18
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
 */
19
DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
20 21 22 23 24 25 26 27 28 29 30 31 32

static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

33 34 35 36 37 38 39 40 41 42 43 44
static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
				  enum cpu_usage_stat idx)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;

	u64_stats_update_begin(&irqtime->sync);
	cpustat[idx] += delta;
	irqtime->total += delta;
	irqtime->tick_delta += delta;
	u64_stats_update_end(&irqtime->sync);
}

45 46 47 48
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
49
void irqtime_account_irq(struct task_struct *curr)
50
{
51
	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
52 53 54 55 56 57 58
	s64 delta;
	int cpu;

	if (!sched_clock_irqtime)
		return;

	cpu = smp_processor_id();
59 60
	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
	irqtime->irq_start_time += delta;
61 62 63 64 65 66 67

	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
68 69 70 71
	if (hardirq_count())
		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
72
}
73
EXPORT_SYMBOL_GPL(irqtime_account_irq);
74

75
static u64 irqtime_tick_accounted(u64 maxtime)
76
{
77
	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
78
	u64 delta;
79

80 81
	delta = min(irqtime->tick_delta, maxtime);
	irqtime->tick_delta -= delta;
82

83
	return delta;
84 85 86 87 88 89
}

#else /* CONFIG_IRQ_TIME_ACCOUNTING */

#define sched_clock_irqtime	(0)

90
static u64 irqtime_tick_accounted(u64 dummy)
91 92 93 94
{
	return 0;
}

95 96 97 98 99 100 101 102 103 104 105
#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */

static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
{
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
106
	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
107

108
	cgroup_account_cputime_field(p, index, tmp);
109 110 111
}

/*
112 113 114
 * Account user CPU time to a process.
 * @p: the process that the CPU time gets accounted to
 * @cputime: the CPU time spent in user space since the last update
115
 */
116
void account_user_time(struct task_struct *p, u64 cputime)
117 118 119 120
{
	int index;

	/* Add user time to process. */
121 122
	p->utime += cputime;
	account_group_user_time(p, cputime);
123

124
	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
125 126

	/* Add user time to cpustat. */
127
	task_group_account_field(p, index, cputime);
128 129

	/* Account for user time used */
130
	acct_account_cputime(p);
131 132 133
}

/*
134 135 136
 * Account guest CPU time to a process.
 * @p: the process that the CPU time gets accounted to
 * @cputime: the CPU time spent in virtual machine since the last update
137
 */
138
void account_guest_time(struct task_struct *p, u64 cputime)
139 140
{
	/* Add guest time to process. */
141 142 143
	p->utime += cputime;
	account_group_user_time(p, cputime);
	p->gtime += cputime;
144 145

	/* Add guest time to cpustat. */
146
	if (task_nice(p) > 0) {
147 148
		task_group_account_field(p, CPUTIME_NICE, cputime);
		task_group_account_field(p, CPUTIME_GUEST_NICE, cputime);
149
	} else {
150 151
		task_group_account_field(p, CPUTIME_USER, cputime);
		task_group_account_field(p, CPUTIME_GUEST, cputime);
152 153 154 155
	}
}

/*
156 157 158
 * Account system CPU time to a process and desired cpustat field
 * @p: the process that the CPU time gets accounted to
 * @cputime: the CPU time spent in kernel space since the last update
159
 * @index: pointer to cpustat field that has to be updated
160
 */
161
void account_system_index_time(struct task_struct *p,
162
			       u64 cputime, enum cpu_usage_stat index)
163 164
{
	/* Add system time to process. */
165 166
	p->stime += cputime;
	account_group_system_time(p, cputime);
167 168

	/* Add system time to cpustat. */
169
	task_group_account_field(p, index, cputime);
170 171

	/* Account for system time used */
172
	acct_account_cputime(p);
173 174 175
}

/*
176 177
 * Account system CPU time to a process.
 * @p: the process that the CPU time gets accounted to
178
 * @hardirq_offset: the offset to subtract from hardirq_count()
179
 * @cputime: the CPU time spent in kernel space since the last update
180
 */
181
void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
182 183 184 185
{
	int index;

	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
186
		account_guest_time(p, cputime);
187 188 189 190 191 192 193 194 195 196
		return;
	}

	if (hardirq_count() - hardirq_offset)
		index = CPUTIME_IRQ;
	else if (in_serving_softirq())
		index = CPUTIME_SOFTIRQ;
	else
		index = CPUTIME_SYSTEM;

197
	account_system_index_time(p, cputime, index);
198 199 200 201
}

/*
 * Account for involuntary wait time.
202
 * @cputime: the CPU time spent in involuntary wait
203
 */
204
void account_steal_time(u64 cputime)
205 206 207
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;

208
	cpustat[CPUTIME_STEAL] += cputime;
209 210 211 212
}

/*
 * Account for idle time.
213
 * @cputime: the CPU time spent in idle wait
214
 */
215
void account_idle_time(u64 cputime)
216 217 218 219 220
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;
	struct rq *rq = this_rq();

	if (atomic_read(&rq->nr_iowait) > 0)
221
		cpustat[CPUTIME_IOWAIT] += cputime;
222
	else
223
		cpustat[CPUTIME_IDLE] += cputime;
224 225
}

226 227 228 229 230
/*
 * When a guest is interrupted for a longer amount of time, missed clock
 * ticks are not redelivered later. Due to that, this function may on
 * occasion account more time than the calling functions think elapsed.
 */
231
static __always_inline u64 steal_account_process_time(u64 maxtime)
232 233 234
{
#ifdef CONFIG_PARAVIRT
	if (static_key_false(&paravirt_steal_enabled)) {
235
		u64 steal;
236 237 238

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;
239 240 241
		steal = min(steal, maxtime);
		account_steal_time(steal);
		this_rq()->prev_steal_time += steal;
242

243
		return steal;
244 245
	}
#endif
246
	return 0;
247 248
}

249 250 251
/*
 * Account how much elapsed time was spent in steal, irq, or softirq time.
 */
252
static inline u64 account_other_time(u64 max)
253
{
254
	u64 accounted;
255

256
	lockdep_assert_irqs_disabled();
257

258 259 260
	accounted = steal_account_process_time(max);

	if (accounted < max)
261
		accounted += irqtime_tick_accounted(max - accounted);
262 263 264 265

	return accounted;
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
#ifdef CONFIG_64BIT
static inline u64 read_sum_exec_runtime(struct task_struct *t)
{
	return t->se.sum_exec_runtime;
}
#else
static u64 read_sum_exec_runtime(struct task_struct *t)
{
	u64 ns;
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(t, &rf);
	ns = t->se.sum_exec_runtime;
	task_rq_unlock(rq, t, &rf);

	return ns;
}
#endif

286 287 288 289 290 291 292
/*
 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 * tasks (sum on group iteration) belonging to @tsk's group.
 */
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
{
	struct signal_struct *sig = tsk->signal;
293
	u64 utime, stime;
294
	struct task_struct *t;
295
	unsigned int seq, nextseq;
296
	unsigned long flags;
297

298 299 300 301 302 303 304 305 306 307 308
	/*
	 * Update current task runtime to account pending time since last
	 * scheduler action or thread_group_cputime() call. This thread group
	 * might have other running tasks on different CPUs, but updating
	 * their runtime can affect syscall performance, so we skip account
	 * those pending times and rely only on values updated on tick or
	 * other scheduler action.
	 */
	if (same_thread_group(current, tsk))
		(void) task_sched_runtime(current);

309
	rcu_read_lock();
310 311 312 313
	/* Attempt a lockless read on the first round. */
	nextseq = 0;
	do {
		seq = nextseq;
314
		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
315 316 317 318 319 320 321 322
		times->utime = sig->utime;
		times->stime = sig->stime;
		times->sum_exec_runtime = sig->sum_sched_runtime;

		for_each_thread(tsk, t) {
			task_cputime(t, &utime, &stime);
			times->utime += utime;
			times->stime += stime;
323
			times->sum_exec_runtime += read_sum_exec_runtime(t);
324 325 326 327
		}
		/* If lockless access failed, take the lock. */
		nextseq = 1;
	} while (need_seqretry(&sig->stats_lock, seq));
328
	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
329 330 331
	rcu_read_unlock();
}

332 333 334
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
335
 * @p: the process that the CPU time gets accounted to
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
355
					 struct rq *rq, int ticks)
356
{
357
	u64 other, cputime = TICK_NSEC * ticks;
358

359 360 361 362 363 364 365
	/*
	 * When returning from idle, many ticks can get accounted at
	 * once, including some ticks of steal, irq, and softirq time.
	 * Subtract those ticks from the amount of time accounted to
	 * idle, or potentially user or system time. Due to rounding,
	 * other time can exceed ticks occasionally.
	 */
366
	other = account_other_time(ULONG_MAX);
367
	if (other >= cputime)
368
		return;
369

370
	cputime -= other;
371

372
	if (this_cpu_ksoftirqd() == p) {
373 374 375 376 377
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
378
		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
379
	} else if (user_tick) {
380
		account_user_time(p, cputime);
381
	} else if (p == rq->idle) {
382
		account_idle_time(cputime);
383
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
384
		account_guest_time(p, cputime);
385
	} else {
386
		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
387 388 389 390 391 392 393
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	struct rq *rq = this_rq();

394
	irqtime_account_process_tick(current, 0, rq, ticks);
395 396
}
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
397
static inline void irqtime_account_idle_ticks(int ticks) { }
398
static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
399
						struct rq *rq, int nr_ticks) { }
400 401 402 403 404 405
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
406
# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
407
void vtime_common_task_switch(struct task_struct *prev)
408 409 410 411 412 413
{
	if (is_idle_task(prev))
		vtime_account_idle(prev);
	else
		vtime_account_system(prev);

414
	vtime_flush(prev);
415 416
	arch_vtime_task_switch(prev);
}
417
# endif
418 419 420 421
#endif /* CONFIG_VIRT_CPU_ACCOUNTING */


#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
422 423 424
/*
 * Archs that account the whole time spent in the idle task
 * (outside irq) as idle time can rely on this and just implement
425
 * vtime_account_system() and vtime_account_idle(). Archs that
426 427 428 429 430
 * have other meaning of the idle time (s390 only includes the
 * time spent by the CPU when it's in low power mode) must override
 * vtime_account().
 */
#ifndef __ARCH_HAS_VTIME_ACCOUNT
431
void vtime_account_irq_enter(struct task_struct *tsk)
432
{
433 434 435 436
	if (!in_interrupt() && is_idle_task(tsk))
		vtime_account_idle(tsk);
	else
		vtime_account_system(tsk);
437
}
438
EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
439
#endif /* __ARCH_HAS_VTIME_ACCOUNT */
440

441 442 443 444 445 446 447
void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
		    u64 *ut, u64 *st)
{
	*ut = curr->utime;
	*st = curr->stime;
}

448
void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
449 450 451 452
{
	*ut = p->utime;
	*st = p->stime;
}
453
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
454

455
void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
456 457
{
	struct task_cputime cputime;
458

459 460 461 462 463
	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
}
464 465 466

#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */

467
/*
468 469
 * Account a single tick of CPU time.
 * @p: the process that the CPU time gets accounted to
470 471 472
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
473
{
474
	u64 cputime, steal;
475
	struct rq *rq = this_rq();
476

477
	if (vtime_accounting_cpu_enabled())
478 479 480
		return;

	if (sched_clock_irqtime) {
481
		irqtime_account_process_tick(p, user_tick, rq, 1);
482 483 484
		return;
	}

485
	cputime = TICK_NSEC;
486
	steal = steal_account_process_time(ULONG_MAX);
487

488
	if (steal >= cputime)
489
		return;
490

491
	cputime -= steal;
492

493
	if (user_tick)
494
		account_user_time(p, cputime);
495
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
496
		account_system_time(p, HARDIRQ_OFFSET, cputime);
497
	else
498
		account_idle_time(cputime);
499
}
500

501 502 503 504 505 506
/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
507
	u64 cputime, steal;
508

509 510 511 512 513
	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

514
	cputime = ticks * TICK_NSEC;
515
	steal = steal_account_process_time(ULONG_MAX);
516 517 518 519 520 521

	if (steal >= cputime)
		return;

	cputime -= steal;
	account_idle_time(cputime);
522
}
523

524
/*
525 526
 * Perform (stime * rtime) / total, but avoid multiplication overflow by
 * loosing precision when the numbers are big.
527
 */
528
static u64 scale_stime(u64 stime, u64 rtime, u64 total)
529
{
530
	u64 scaled;
531

532 533
	for (;;) {
		/* Make sure "rtime" is the bigger of stime/rtime */
534 535
		if (stime > rtime)
			swap(rtime, stime);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

		/* Make sure 'total' fits in 32 bits */
		if (total >> 32)
			goto drop_precision;

		/* Does rtime (and thus stime) fit in 32 bits? */
		if (!(rtime >> 32))
			break;

		/* Can we just balance rtime/stime rather than dropping bits? */
		if (stime >> 31)
			goto drop_precision;

		/* We can grow stime and shrink rtime and try to make them both fit */
		stime <<= 1;
		rtime >>= 1;
		continue;

drop_precision:
		/* We drop from rtime, it has more bits than stime */
		rtime >>= 1;
		total >>= 1;
558
	}
559

560 561 562 563 564
	/*
	 * Make sure gcc understands that this is a 32x32->64 multiply,
	 * followed by a 64/32->64 divide.
	 */
	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
565
	return scaled;
566 567
}

568
/*
569 570
 * Adjust tick based cputime random precision against scheduler runtime
 * accounting.
571
 *
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
 * Tick based cputime accounting depend on random scheduling timeslices of a
 * task to be interrupted or not by the timer.  Depending on these
 * circumstances, the number of these interrupts may be over or
 * under-optimistic, matching the real user and system cputime with a variable
 * precision.
 *
 * Fix this by scaling these tick based values against the total runtime
 * accounted by the CFS scheduler.
 *
 * This code provides the following guarantees:
 *
 *   stime + utime == rtime
 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 *
 * Assuming that rtime_i+1 >= rtime_i.
587
 */
588 589
void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
		    u64 *ut, u64 *st)
590
{
591
	u64 rtime, stime, utime;
592
	unsigned long flags;
593

594 595
	/* Serialize concurrent callers such that we can honour our guarantees */
	raw_spin_lock_irqsave(&prev->lock, flags);
596
	rtime = curr->sum_exec_runtime;
597

598
	/*
599 600 601 602 603 604
	 * This is possible under two circumstances:
	 *  - rtime isn't monotonic after all (a bug);
	 *  - we got reordered by the lock.
	 *
	 * In both cases this acts as a filter such that the rest of the code
	 * can assume it is monotonic regardless of anything else.
605 606 607 608
	 */
	if (prev->stime + prev->utime >= rtime)
		goto out;

609 610 611
	stime = curr->stime;
	utime = curr->utime;

612
	/*
613 614 615
	 * If either stime or utime are 0, assume all runtime is userspace.
	 * Once a task gets some ticks, the monotonicy code at 'update:'
	 * will ensure things converge to the observed ratio.
616
	 */
617 618 619
	if (stime == 0) {
		utime = rtime;
		goto update;
620
	}
621

622 623 624 625 626 627 628 629
	if (utime == 0) {
		stime = rtime;
		goto update;
	}

	stime = scale_stime(stime, rtime, stime + utime);

update:
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
	/*
	 * Make sure stime doesn't go backwards; this preserves monotonicity
	 * for utime because rtime is monotonic.
	 *
	 *  utime_i+1 = rtime_i+1 - stime_i
	 *            = rtime_i+1 - (rtime_i - utime_i)
	 *            = (rtime_i+1 - rtime_i) + utime_i
	 *            >= utime_i
	 */
	if (stime < prev->stime)
		stime = prev->stime;
	utime = rtime - stime;

	/*
	 * Make sure utime doesn't go backwards; this still preserves
	 * monotonicity for stime, analogous argument to above.
	 */
	if (utime < prev->utime) {
		utime = prev->utime;
		stime = rtime - utime;
	}
651

652 653
	prev->stime = stime;
	prev->utime = utime;
654
out:
655 656
	*ut = prev->utime;
	*st = prev->stime;
657
	raw_spin_unlock_irqrestore(&prev->lock, flags);
658
}
659

660
void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
661 662 663 664 665
{
	struct task_cputime cputime = {
		.sum_exec_runtime = p->se.sum_exec_runtime,
	};

666
	task_cputime(p, &cputime.utime, &cputime.stime);
667
	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
668
}
669
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
670

671
void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
672 673 674 675
{
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);
676
	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
677
}
678
#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
679 680

#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
681
static u64 vtime_delta(struct vtime *vtime)
682
{
683
	unsigned long long clock;
684

685
	clock = sched_clock();
686
	if (clock < vtime->starttime)
687
		return 0;
688

689
	return clock - vtime->starttime;
690 691
}

692
static u64 get_vtime_delta(struct vtime *vtime)
693
{
694 695
	u64 delta = vtime_delta(vtime);
	u64 other;
696

697 698 699 700 701 702 703
	/*
	 * Unlike tick based timing, vtime based timing never has lost
	 * ticks, and no need for steal time accounting to make up for
	 * lost ticks. Vtime accounts a rounded version of actual
	 * elapsed time. Limit account_other_time to prevent rounding
	 * errors from causing elapsed vtime to go negative.
	 */
704
	other = account_other_time(delta);
705
	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
706
	vtime->starttime += delta;
707

708
	return delta - other;
709 710
}

711 712
static void __vtime_account_system(struct task_struct *tsk,
				   struct vtime *vtime)
713
{
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
	vtime->stime += get_vtime_delta(vtime);
	if (vtime->stime >= TICK_NSEC) {
		account_system_time(tsk, irq_count(), vtime->stime);
		vtime->stime = 0;
	}
}

static void vtime_account_guest(struct task_struct *tsk,
				struct vtime *vtime)
{
	vtime->gtime += get_vtime_delta(vtime);
	if (vtime->gtime >= TICK_NSEC) {
		account_guest_time(tsk, vtime->gtime);
		vtime->gtime = 0;
	}
729 730
}

731 732
void vtime_account_system(struct task_struct *tsk)
{
733 734 735
	struct vtime *vtime = &tsk->vtime;

	if (!vtime_delta(vtime))
736 737
		return;

738
	write_seqcount_begin(&vtime->seqcount);
739
	/* We might have scheduled out from guest path */
740
	if (tsk->flags & PF_VCPU)
741 742 743
		vtime_account_guest(tsk, vtime);
	else
		__vtime_account_system(tsk, vtime);
744
	write_seqcount_end(&vtime->seqcount);
745
}
746

747
void vtime_user_enter(struct task_struct *tsk)
748
{
749 750 751
	struct vtime *vtime = &tsk->vtime;

	write_seqcount_begin(&vtime->seqcount);
752
	__vtime_account_system(tsk, vtime);
753 754
	vtime->state = VTIME_USER;
	write_seqcount_end(&vtime->seqcount);
755 756
}

757
void vtime_user_exit(struct task_struct *tsk)
758
{
759 760 761
	struct vtime *vtime = &tsk->vtime;

	write_seqcount_begin(&vtime->seqcount);
762 763 764 765 766
	vtime->utime += get_vtime_delta(vtime);
	if (vtime->utime >= TICK_NSEC) {
		account_user_time(tsk, vtime->utime);
		vtime->utime = 0;
	}
767 768
	vtime->state = VTIME_SYS;
	write_seqcount_end(&vtime->seqcount);
769 770 771 772
}

void vtime_guest_enter(struct task_struct *tsk)
{
773
	struct vtime *vtime = &tsk->vtime;
774 775
	/*
	 * The flags must be updated under the lock with
776
	 * the vtime_starttime flush and update.
777 778 779 780
	 * That enforces a right ordering and update sequence
	 * synchronization against the reader (task_gtime())
	 * that can thus safely catch up with a tickless delta.
	 */
781
	write_seqcount_begin(&vtime->seqcount);
782
	__vtime_account_system(tsk, vtime);
783
	tsk->flags |= PF_VCPU;
784
	write_seqcount_end(&vtime->seqcount);
785
}
786
EXPORT_SYMBOL_GPL(vtime_guest_enter);
787 788 789

void vtime_guest_exit(struct task_struct *tsk)
{
790 791 792
	struct vtime *vtime = &tsk->vtime;

	write_seqcount_begin(&vtime->seqcount);
793
	vtime_account_guest(tsk, vtime);
794
	tsk->flags &= ~PF_VCPU;
795
	write_seqcount_end(&vtime->seqcount);
796
}
797
EXPORT_SYMBOL_GPL(vtime_guest_exit);
798 799 800

void vtime_account_idle(struct task_struct *tsk)
{
801
	account_idle_time(get_vtime_delta(&tsk->vtime));
802
}
803

804 805
void arch_vtime_task_switch(struct task_struct *prev)
{
806
	struct vtime *vtime = &prev->vtime;
807

808 809 810 811 812 813 814 815
	write_seqcount_begin(&vtime->seqcount);
	vtime->state = VTIME_INACTIVE;
	write_seqcount_end(&vtime->seqcount);

	vtime = &current->vtime;

	write_seqcount_begin(&vtime->seqcount);
	vtime->state = VTIME_SYS;
816
	vtime->starttime = sched_clock();
817
	write_seqcount_end(&vtime->seqcount);
818 819
}

820
void vtime_init_idle(struct task_struct *t, int cpu)
821
{
822
	struct vtime *vtime = &t->vtime;
823 824
	unsigned long flags;

825
	local_irq_save(flags);
826 827
	write_seqcount_begin(&vtime->seqcount);
	vtime->state = VTIME_SYS;
828
	vtime->starttime = sched_clock();
829
	write_seqcount_end(&vtime->seqcount);
830
	local_irq_restore(flags);
831 832
}

833
u64 task_gtime(struct task_struct *t)
834
{
835
	struct vtime *vtime = &t->vtime;
836
	unsigned int seq;
837
	u64 gtime;
838

839
	if (!vtime_accounting_enabled())
840 841
		return t->gtime;

842
	do {
843
		seq = read_seqcount_begin(&vtime->seqcount);
844 845

		gtime = t->gtime;
846
		if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
847
			gtime += vtime->gtime + vtime_delta(vtime);
848

849
	} while (read_seqcount_retry(&vtime->seqcount, seq));
850 851 852 853 854 855 856 857 858

	return gtime;
}

/*
 * Fetch cputime raw values from fields of task_struct and
 * add up the pending nohz execution time since the last
 * cputime snapshot.
 */
859
void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
860
{
861
	struct vtime *vtime = &t->vtime;
862
	unsigned int seq;
863
	u64 delta;
864

865 866 867 868 869
	if (!vtime_accounting_enabled()) {
		*utime = t->utime;
		*stime = t->stime;
		return;
	}
870

871
	do {
872
		seq = read_seqcount_begin(&vtime->seqcount);
873

874 875
		*utime = t->utime;
		*stime = t->stime;
876 877

		/* Task is sleeping, nothing to add */
878
		if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
879 880
			continue;

881
		delta = vtime_delta(vtime);
882 883 884 885 886

		/*
		 * Task runs either in user or kernel space, add pending nohz time to
		 * the right place.
		 */
887
		if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
888
			*utime += vtime->utime + delta;
889
		else if (vtime->state == VTIME_SYS)
890
			*stime += vtime->stime + delta;
891
	} while (read_seqcount_retry(&vtime->seqcount, seq));
892
}
893
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */