cputime.c 21.7 KB
Newer Older
1 2 3 4 5
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/tsacct_kern.h>
#include <linux/kernel_stat.h>
#include <linux/static_key.h>
6
#include <linux/context_tracking.h>
7 8 9 10 11 12 13
#include "sched.h"


#ifdef CONFIG_IRQ_TIME_ACCOUNTING

/*
 * There are no locks covering percpu hardirq/softirq time.
14
 * They are only modified in vtime_account, on corresponding CPU
15 16 17
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
18
 * race with irq/vtime_account on this CPU. We would either get old
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
 */
DEFINE_PER_CPU(u64, cpu_hardirq_time);
DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

#ifndef CONFIG_64BIT
DEFINE_PER_CPU(seqcount_t, irq_time_seq);
#endif /* CONFIG_64BIT */

/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
47
void irqtime_account_irq(struct task_struct *curr)
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
{
	unsigned long flags;
	s64 delta;
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

	irq_time_write_begin();
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
		__this_cpu_add(cpu_hardirq_time, delta);
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
		__this_cpu_add(cpu_softirq_time, delta);

	irq_time_write_end();
	local_irq_restore(flags);
}
77
EXPORT_SYMBOL_GPL(irqtime_account_irq);
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

static int irqtime_account_hi_update(void)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

#else /* CONFIG_IRQ_TIME_ACCOUNTING */

#define sched_clock_irqtime	(0)

#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */

static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
{
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
124
	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
125

126
	cpuacct_account_field(p, index, tmp);
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 */
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
{
	int index;

	/* Add user time to process. */
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
	account_group_user_time(p, cputime);

145
	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146 147 148 149 150

	/* Add user time to cpustat. */
	task_group_account_field(p, index, (__force u64) cputime);

	/* Account for user time used */
151
	acct_account_cputime(p);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
}

/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 */
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;

	/* Add guest time to process. */
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
	account_group_user_time(p, cputime);
	p->gtime += cputime;

	/* Add guest time to cpustat. */
172
	if (task_nice(p) > 0) {
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
		cpustat[CPUTIME_NICE] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
	} else {
		cpustat[CPUTIME_USER] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
	}
}

/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
			cputime_t cputime_scaled, int index)
{
	/* Add system time to process. */
	p->stime += cputime;
	p->stimescaled += cputime_scaled;
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
	task_group_account_field(p, index, (__force u64) cputime);

	/* Account for system time used */
201
	acct_account_cputime(p);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime, cputime_t cputime_scaled)
{
	int index;

	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime, cputime_scaled);
		return;
	}

	if (hardirq_count() - hardirq_offset)
		index = CPUTIME_IRQ;
	else if (in_serving_softirq())
		index = CPUTIME_SOFTIRQ;
	else
		index = CPUTIME_SYSTEM;

	__account_system_time(p, cputime, cputime_scaled, index);
}

/*
 * Account for involuntary wait time.
 * @cputime: the cpu time spent in involuntary wait
 */
void account_steal_time(cputime_t cputime)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;

	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
}

/*
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
 */
void account_idle_time(cputime_t cputime)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;
	struct rq *rq = this_rq();

	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
	else
		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
}

static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
	if (static_key_false(&paravirt_steal_enabled)) {
261 262
		u64 steal;
		cputime_t steal_ct;
263 264 265 266

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

267 268 269 270 271 272 273
		/*
		 * cputime_t may be less precise than nsecs (eg: if it's
		 * based on jiffies). Lets cast the result to cputime
		 * granularity and account the rest on the next rounds.
		 */
		steal_ct = nsecs_to_cputime(steal);
		this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
274

275 276
		account_steal_time(steal_ct);
		return steal_ct;
277 278 279 280 281
	}
#endif
	return false;
}

282 283 284 285 286 287 288
/*
 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 * tasks (sum on group iteration) belonging to @tsk's group.
 */
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
{
	struct signal_struct *sig = tsk->signal;
289
	cputime_t utime, stime;
290
	struct task_struct *t;
291
	unsigned int seq, nextseq;
292 293

	rcu_read_lock();
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	/* Attempt a lockless read on the first round. */
	nextseq = 0;
	do {
		seq = nextseq;
		read_seqbegin_or_lock(&sig->stats_lock, &seq);
		times->utime = sig->utime;
		times->stime = sig->stime;
		times->sum_exec_runtime = sig->sum_sched_runtime;

		for_each_thread(tsk, t) {
			task_cputime(t, &utime, &stime);
			times->utime += utime;
			times->stime += stime;
			times->sum_exec_runtime += task_sched_runtime(t);
		}
		/* If lockless access failed, take the lock. */
		nextseq = 1;
	} while (need_seqretry(&sig->stats_lock, seq));
	done_seqretry(&sig->stats_lock, seq);
313 314 315
	rcu_read_unlock();
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
339
					 struct rq *rq, int ticks)
340
{
341 342
	cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
	u64 cputime = (__force u64) cputime_one_jiffy;
343 344 345 346 347
	u64 *cpustat = kcpustat_this_cpu->cpustat;

	if (steal_account_process_tick())
		return;

348 349 350
	cputime *= ticks;
	scaled *= ticks;

351
	if (irqtime_account_hi_update()) {
352
		cpustat[CPUTIME_IRQ] += cputime;
353
	} else if (irqtime_account_si_update()) {
354
		cpustat[CPUTIME_SOFTIRQ] += cputime;
355 356 357 358 359 360
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
361
		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
362
	} else if (user_tick) {
363
		account_user_time(p, cputime, scaled);
364
	} else if (p == rq->idle) {
365
		account_idle_time(cputime);
366
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
367
		account_guest_time(p, cputime, scaled);
368
	} else {
369
		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
370 371 372 373 374 375 376
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	struct rq *rq = this_rq();

377
	irqtime_account_process_tick(current, 0, rq, ticks);
378 379
}
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
380 381
static inline void irqtime_account_idle_ticks(int ticks) {}
static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
382
						struct rq *rq, int nr_ticks) {}
383 384 385 386 387 388
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
389

390
#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
391
void vtime_common_task_switch(struct task_struct *prev)
392 393 394 395 396 397
{
	if (is_idle_task(prev))
		vtime_account_idle(prev);
	else
		vtime_account_system(prev);

398
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
399
	vtime_account_user(prev);
400
#endif
401 402 403
	arch_vtime_task_switch(prev);
}
#endif
404

405 406 407
/*
 * Archs that account the whole time spent in the idle task
 * (outside irq) as idle time can rely on this and just implement
408
 * vtime_account_system() and vtime_account_idle(). Archs that
409 410 411 412 413
 * have other meaning of the idle time (s390 only includes the
 * time spent by the CPU when it's in low power mode) must override
 * vtime_account().
 */
#ifndef __ARCH_HAS_VTIME_ACCOUNT
414
void vtime_common_account_irq_enter(struct task_struct *tsk)
415
{
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
	if (!in_interrupt()) {
		/*
		 * If we interrupted user, context_tracking_in_user()
		 * is 1 because the context tracking don't hook
		 * on irq entry/exit. This way we know if
		 * we need to flush user time on kernel entry.
		 */
		if (context_tracking_in_user()) {
			vtime_account_user(tsk);
			return;
		}

		if (is_idle_task(tsk)) {
			vtime_account_idle(tsk);
			return;
		}
	}
	vtime_account_system(tsk);
434
}
435
EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
436
#endif /* __ARCH_HAS_VTIME_ACCOUNT */
437 438 439 440 441 442 443 444 445
#endif /* CONFIG_VIRT_CPU_ACCOUNTING */


#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
	*ut = p->utime;
	*st = p->stime;
}
446

447 448 449
void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
	struct task_cputime cputime;
450

451 452 453 454 455 456 457 458 459 460 461 462
	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
}
#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
463
{
464 465
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
	struct rq *rq = this_rq();
466

467 468 469 470
	if (vtime_accounting_enabled())
		return;

	if (sched_clock_irqtime) {
471
		irqtime_account_process_tick(p, user_tick, rq, 1);
472 473 474 475 476
		return;
	}

	if (steal_account_process_tick())
		return;
477

478 479 480 481 482
	if (user_tick)
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
				    one_jiffy_scaled);
483
	else
484 485
		account_idle_time(cputime_one_jiffy);
}
486

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

	account_idle_time(jiffies_to_cputime(ticks));
}
511

512
/*
513 514
 * Perform (stime * rtime) / total, but avoid multiplication overflow by
 * loosing precision when the numbers are big.
515 516
 */
static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
517
{
518
	u64 scaled;
519

520 521
	for (;;) {
		/* Make sure "rtime" is the bigger of stime/rtime */
522 523
		if (stime > rtime)
			swap(rtime, stime);
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

		/* Make sure 'total' fits in 32 bits */
		if (total >> 32)
			goto drop_precision;

		/* Does rtime (and thus stime) fit in 32 bits? */
		if (!(rtime >> 32))
			break;

		/* Can we just balance rtime/stime rather than dropping bits? */
		if (stime >> 31)
			goto drop_precision;

		/* We can grow stime and shrink rtime and try to make them both fit */
		stime <<= 1;
		rtime >>= 1;
		continue;

drop_precision:
		/* We drop from rtime, it has more bits than stime */
		rtime >>= 1;
		total >>= 1;
546
	}
547

548 549 550 551 552
	/*
	 * Make sure gcc understands that this is a 32x32->64 multiply,
	 * followed by a 64/32->64 divide.
	 */
	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
553
	return (__force cputime_t) scaled;
554 555
}

556 557 558 559
/*
 * Adjust tick based cputime random precision against scheduler
 * runtime accounting.
 */
560 561 562
static void cputime_adjust(struct task_cputime *curr,
			   struct cputime *prev,
			   cputime_t *ut, cputime_t *st)
563
{
564
	cputime_t rtime, stime, utime;
565

566
	/*
567 568 569 570 571 572 573 574
	 * Tick based cputime accounting depend on random scheduling
	 * timeslices of a task to be interrupted or not by the timer.
	 * Depending on these circumstances, the number of these interrupts
	 * may be over or under-optimistic, matching the real user and system
	 * cputime with a variable precision.
	 *
	 * Fix this by scaling these tick based values against the total
	 * runtime accounted by the CFS scheduler.
575
	 */
576
	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
577

578 579 580 581 582 583 584 585
	/*
	 * Update userspace visible utime/stime values only if actual execution
	 * time is bigger than already exported. Note that can happen, that we
	 * provided bigger values due to scaling inaccuracy on big numbers.
	 */
	if (prev->stime + prev->utime >= rtime)
		goto out;

586 587 588 589 590 591 592 593 594 595
	stime = curr->stime;
	utime = curr->utime;

	if (utime == 0) {
		stime = rtime;
	} else if (stime == 0) {
		utime = rtime;
	} else {
		cputime_t total = stime + utime;

596 597
		stime = scale_stime((__force u64)stime,
				    (__force u64)rtime, (__force u64)total);
598
		utime = rtime - stime;
599
	}
600 601

	/*
602 603 604
	 * If the tick based count grows faster than the scheduler one,
	 * the result of the scaling may go backward.
	 * Let's enforce monotonicity.
605
	 * Atomic exchange protects against concurrent cputime_adjust().
606
	 */
607 608 609 610
	while (stime > (rtime = ACCESS_ONCE(prev->stime)))
		cmpxchg(&prev->stime, rtime, stime);
	while (utime > (rtime = ACCESS_ONCE(prev->utime)))
		cmpxchg(&prev->utime, rtime, utime);
611

612
out:
613 614 615
	*ut = prev->utime;
	*st = prev->stime;
}
616

617 618 619 620 621 622
void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
	struct task_cputime cputime = {
		.sum_exec_runtime = p->se.sum_exec_runtime,
	};

623
	task_cputime(p, &cputime.utime, &cputime.stime);
624
	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
625 626
}

627
void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
628 629 630 631
{
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);
632
	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
633
}
634
#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
635 636

#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
637 638 639 640
static unsigned long long vtime_delta(struct task_struct *tsk)
{
	unsigned long long clock;

641
	clock = local_clock();
642 643
	if (clock < tsk->vtime_snap)
		return 0;
644

645 646 647 648
	return clock - tsk->vtime_snap;
}

static cputime_t get_vtime_delta(struct task_struct *tsk)
649
{
650
	unsigned long long delta = vtime_delta(tsk);
651

652 653
	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
	tsk->vtime_snap += delta;
654 655 656 657 658

	/* CHECKME: always safe to convert nsecs to cputime? */
	return nsecs_to_cputime(delta);
}

659 660 661 662 663 664 665
static void __vtime_account_system(struct task_struct *tsk)
{
	cputime_t delta_cpu = get_vtime_delta(tsk);

	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
}

666 667
void vtime_account_system(struct task_struct *tsk)
{
668 669 670 671
	write_seqlock(&tsk->vtime_seqlock);
	__vtime_account_system(tsk);
	write_sequnlock(&tsk->vtime_seqlock);
}
672

673
void vtime_gen_account_irq_exit(struct task_struct *tsk)
674 675
{
	write_seqlock(&tsk->vtime_seqlock);
676
	__vtime_account_system(tsk);
677 678 679
	if (context_tracking_in_user())
		tsk->vtime_snap_whence = VTIME_USER;
	write_sequnlock(&tsk->vtime_seqlock);
680 681 682 683
}

void vtime_account_user(struct task_struct *tsk)
{
684 685
	cputime_t delta_cpu;

686
	write_seqlock(&tsk->vtime_seqlock);
687
	delta_cpu = get_vtime_delta(tsk);
688
	tsk->vtime_snap_whence = VTIME_SYS;
689
	account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
690 691 692 693 694 695 696
	write_sequnlock(&tsk->vtime_seqlock);
}

void vtime_user_enter(struct task_struct *tsk)
{
	write_seqlock(&tsk->vtime_seqlock);
	__vtime_account_system(tsk);
697
	tsk->vtime_snap_whence = VTIME_USER;
698 699 700 701 702
	write_sequnlock(&tsk->vtime_seqlock);
}

void vtime_guest_enter(struct task_struct *tsk)
{
703 704 705 706 707 708 709
	/*
	 * The flags must be updated under the lock with
	 * the vtime_snap flush and update.
	 * That enforces a right ordering and update sequence
	 * synchronization against the reader (task_gtime())
	 * that can thus safely catch up with a tickless delta.
	 */
710 711 712 713 714
	write_seqlock(&tsk->vtime_seqlock);
	__vtime_account_system(tsk);
	current->flags |= PF_VCPU;
	write_sequnlock(&tsk->vtime_seqlock);
}
715
EXPORT_SYMBOL_GPL(vtime_guest_enter);
716 717 718 719 720 721 722

void vtime_guest_exit(struct task_struct *tsk)
{
	write_seqlock(&tsk->vtime_seqlock);
	__vtime_account_system(tsk);
	current->flags &= ~PF_VCPU;
	write_sequnlock(&tsk->vtime_seqlock);
723
}
724
EXPORT_SYMBOL_GPL(vtime_guest_exit);
725 726 727

void vtime_account_idle(struct task_struct *tsk)
{
728
	cputime_t delta_cpu = get_vtime_delta(tsk);
729 730 731

	account_idle_time(delta_cpu);
}
732

733 734 735 736 737 738 739 740
void arch_vtime_task_switch(struct task_struct *prev)
{
	write_seqlock(&prev->vtime_seqlock);
	prev->vtime_snap_whence = VTIME_SLEEPING;
	write_sequnlock(&prev->vtime_seqlock);

	write_seqlock(&current->vtime_seqlock);
	current->vtime_snap_whence = VTIME_SYS;
741
	current->vtime_snap = sched_clock_cpu(smp_processor_id());
742 743 744
	write_sequnlock(&current->vtime_seqlock);
}

745
void vtime_init_idle(struct task_struct *t, int cpu)
746 747 748 749 750
{
	unsigned long flags;

	write_seqlock_irqsave(&t->vtime_seqlock, flags);
	t->vtime_snap_whence = VTIME_SYS;
751
	t->vtime_snap = sched_clock_cpu(cpu);
752 753 754 755 756 757 758 759 760
	write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
}

cputime_t task_gtime(struct task_struct *t)
{
	unsigned int seq;
	cputime_t gtime;

	do {
761
		seq = read_seqbegin(&t->vtime_seqlock);
762 763 764 765 766

		gtime = t->gtime;
		if (t->flags & PF_VCPU)
			gtime += vtime_delta(t);

767
	} while (read_seqretry(&t->vtime_seqlock, seq));
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789

	return gtime;
}

/*
 * Fetch cputime raw values from fields of task_struct and
 * add up the pending nohz execution time since the last
 * cputime snapshot.
 */
static void
fetch_task_cputime(struct task_struct *t,
		   cputime_t *u_dst, cputime_t *s_dst,
		   cputime_t *u_src, cputime_t *s_src,
		   cputime_t *udelta, cputime_t *sdelta)
{
	unsigned int seq;
	unsigned long long delta;

	do {
		*udelta = 0;
		*sdelta = 0;

790
		seq = read_seqbegin(&t->vtime_seqlock);
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813

		if (u_dst)
			*u_dst = *u_src;
		if (s_dst)
			*s_dst = *s_src;

		/* Task is sleeping, nothing to add */
		if (t->vtime_snap_whence == VTIME_SLEEPING ||
		    is_idle_task(t))
			continue;

		delta = vtime_delta(t);

		/*
		 * Task runs either in user or kernel space, add pending nohz time to
		 * the right place.
		 */
		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
			*udelta = delta;
		} else {
			if (t->vtime_snap_whence == VTIME_SYS)
				*sdelta = delta;
		}
814
	} while (read_seqretry(&t->vtime_seqlock, seq));
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
}


void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
{
	cputime_t udelta, sdelta;

	fetch_task_cputime(t, utime, stime, &t->utime,
			   &t->stime, &udelta, &sdelta);
	if (utime)
		*utime += udelta;
	if (stime)
		*stime += sdelta;
}

void task_cputime_scaled(struct task_struct *t,
			 cputime_t *utimescaled, cputime_t *stimescaled)
{
	cputime_t udelta, sdelta;

	fetch_task_cputime(t, utimescaled, stimescaled,
			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
	if (utimescaled)
		*utimescaled += cputime_to_scaled(udelta);
	if (stimescaled)
		*stimescaled += cputime_to_scaled(sdelta);
}
842
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */