cputime.c 22.5 KB
Newer Older
1 2 3 4 5
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/tsacct_kern.h>
#include <linux/kernel_stat.h>
#include <linux/static_key.h>
6
#include <linux/context_tracking.h>
7
#include "sched.h"
8 9 10
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
11 12 13 14 15 16


#ifdef CONFIG_IRQ_TIME_ACCOUNTING

/*
 * There are no locks covering percpu hardirq/softirq time.
17
 * They are only modified in vtime_account, on corresponding CPU
18 19 20
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
21
 * race with irq/vtime_account on this CPU. We would either get old
22 23 24 25
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
 */
26
DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
44
void irqtime_account_irq(struct task_struct *curr)
45
{
46
	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
47
	u64 *cpustat = kcpustat_this_cpu->cpustat;
48 49 50 51 52 53 54
	s64 delta;
	int cpu;

	if (!sched_clock_irqtime)
		return;

	cpu = smp_processor_id();
55 56
	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
	irqtime->irq_start_time += delta;
57

58
	u64_stats_update_begin(&irqtime->sync);
59 60 61 62 63 64
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
65 66 67 68 69 70 71
	if (hardirq_count()) {
		cpustat[CPUTIME_IRQ] += delta;
		irqtime->tick_delta += delta;
	} else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) {
		cpustat[CPUTIME_SOFTIRQ] += delta;
		irqtime->tick_delta += delta;
	}
72

73
	u64_stats_update_end(&irqtime->sync);
74
}
75
EXPORT_SYMBOL_GPL(irqtime_account_irq);
76

77
static cputime_t irqtime_tick_accounted(cputime_t maxtime)
78
{
79 80
	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
	cputime_t delta;
81

82 83 84
	delta = nsecs_to_cputime(irqtime->tick_delta);
	delta = min(delta, maxtime);
	irqtime->tick_delta -= cputime_to_nsecs(delta);
85

86
	return delta;
87 88 89 90 91 92
}

#else /* CONFIG_IRQ_TIME_ACCOUNTING */

#define sched_clock_irqtime	(0)

93
static cputime_t irqtime_tick_accounted(cputime_t dummy)
94 95 96 97
{
	return 0;
}

98 99 100 101 102 103 104 105 106 107 108
#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */

static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
{
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
109
	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
110

111
	cpuacct_account_field(p, index, tmp);
112 113 114 115 116 117 118
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
119
void account_user_time(struct task_struct *p, u64 cputime)
120 121 122 123
{
	int index;

	/* Add user time to process. */
124 125
	p->utime += cputime;
	account_group_user_time(p, cputime);
126

127
	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
128 129

	/* Add user time to cpustat. */
130
	task_group_account_field(p, index, cputime);
131 132

	/* Account for user time used */
133
	acct_account_cputime(p);
134 135 136 137 138 139 140
}

/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
141
void account_guest_time(struct task_struct *p, cputime_t cputime)
142 143 144 145
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;

	/* Add guest time to process. */
146
	p->utime += cputime_to_nsecs(cputime);
147
	account_group_user_time(p, cputime_to_nsecs(cputime));
148
	p->gtime += cputime_to_nsecs(cputime);
149 150

	/* Add guest time to cpustat. */
151
	if (task_nice(p) > 0) {
152 153
		cpustat[CPUTIME_NICE] += cputime_to_nsecs(cputime);
		cpustat[CPUTIME_GUEST_NICE] += cputime_to_nsecs(cputime);
154
	} else {
155 156
		cpustat[CPUTIME_USER] += cputime_to_nsecs(cputime);
		cpustat[CPUTIME_GUEST] += cputime_to_nsecs(cputime);
157 158 159 160 161 162 163
	}
}

/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
164
 * @index: pointer to cpustat field that has to be updated
165
 */
166 167
void account_system_index_time(struct task_struct *p,
			       cputime_t cputime, enum cpu_usage_stat index)
168 169
{
	/* Add system time to process. */
170
	p->stime += cputime_to_nsecs(cputime);
171
	account_group_system_time(p, cputime_to_nsecs(cputime));
172 173

	/* Add system time to cpustat. */
174
	task_group_account_field(p, index, cputime_to_nsecs(cputime));
175 176

	/* Account for system time used */
177
	acct_account_cputime(p);
178 179 180 181 182 183 184 185 186
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
187
			 cputime_t cputime)
188 189 190 191
{
	int index;

	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
192
		account_guest_time(p, cputime);
193 194 195 196 197 198 199 200 201 202
		return;
	}

	if (hardirq_count() - hardirq_offset)
		index = CPUTIME_IRQ;
	else if (in_serving_softirq())
		index = CPUTIME_SOFTIRQ;
	else
		index = CPUTIME_SYSTEM;

203
	account_system_index_time(p, cputime, index);
204 205 206 207 208 209
}

/*
 * Account for involuntary wait time.
 * @cputime: the cpu time spent in involuntary wait
 */
210
void account_steal_time(u64 cputime)
211 212 213
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;

214
	cpustat[CPUTIME_STEAL] += cputime;
215 216 217 218 219 220 221 222 223 224 225 226
}

/*
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
 */
void account_idle_time(cputime_t cputime)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;
	struct rq *rq = this_rq();

	if (atomic_read(&rq->nr_iowait) > 0)
227
		cpustat[CPUTIME_IOWAIT] += cputime_to_nsecs(cputime);
228
	else
229
		cpustat[CPUTIME_IDLE] += cputime_to_nsecs(cputime);
230 231
}

232 233 234 235 236
/*
 * When a guest is interrupted for a longer amount of time, missed clock
 * ticks are not redelivered later. Due to that, this function may on
 * occasion account more time than the calling functions think elapsed.
 */
237
static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
238 239 240
{
#ifdef CONFIG_PARAVIRT
	if (static_key_false(&paravirt_steal_enabled)) {
241
		cputime_t steal_cputime;
242
		u64 steal, rounded;
243 244 245 246

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

247
		steal_cputime = min(nsecs_to_cputime(steal), maxtime);
248 249 250
		rounded = cputime_to_nsecs(steal_cputime);
		account_steal_time(rounded);
		this_rq()->prev_steal_time += rounded;
251

252
		return steal_cputime;
253 254
	}
#endif
255
	return 0;
256 257
}

258 259 260 261 262 263 264
/*
 * Account how much elapsed time was spent in steal, irq, or softirq time.
 */
static inline cputime_t account_other_time(cputime_t max)
{
	cputime_t accounted;

265 266 267
	/* Shall be converted to a lockdep-enabled lightweight check */
	WARN_ON_ONCE(!irqs_disabled());

268 269 270
	accounted = steal_account_process_time(max);

	if (accounted < max)
271
		accounted += irqtime_tick_accounted(max - accounted);
272 273 274 275

	return accounted;
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
#ifdef CONFIG_64BIT
static inline u64 read_sum_exec_runtime(struct task_struct *t)
{
	return t->se.sum_exec_runtime;
}
#else
static u64 read_sum_exec_runtime(struct task_struct *t)
{
	u64 ns;
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(t, &rf);
	ns = t->se.sum_exec_runtime;
	task_rq_unlock(rq, t, &rf);

	return ns;
}
#endif

296 297 298 299 300 301 302
/*
 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 * tasks (sum on group iteration) belonging to @tsk's group.
 */
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
{
	struct signal_struct *sig = tsk->signal;
303
	u64 utime, stime;
304
	struct task_struct *t;
305
	unsigned int seq, nextseq;
306
	unsigned long flags;
307

308 309 310 311 312 313 314 315 316 317 318
	/*
	 * Update current task runtime to account pending time since last
	 * scheduler action or thread_group_cputime() call. This thread group
	 * might have other running tasks on different CPUs, but updating
	 * their runtime can affect syscall performance, so we skip account
	 * those pending times and rely only on values updated on tick or
	 * other scheduler action.
	 */
	if (same_thread_group(current, tsk))
		(void) task_sched_runtime(current);

319
	rcu_read_lock();
320 321 322 323
	/* Attempt a lockless read on the first round. */
	nextseq = 0;
	do {
		seq = nextseq;
324
		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
325 326 327 328 329 330 331 332
		times->utime = sig->utime;
		times->stime = sig->stime;
		times->sum_exec_runtime = sig->sum_sched_runtime;

		for_each_thread(tsk, t) {
			task_cputime(t, &utime, &stime);
			times->utime += utime;
			times->stime += stime;
333
			times->sum_exec_runtime += read_sum_exec_runtime(t);
334 335 336 337
		}
		/* If lockless access failed, take the lock. */
		nextseq = 1;
	} while (need_seqretry(&sig->stats_lock, seq));
338
	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
339 340 341
	rcu_read_unlock();
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
365
					 struct rq *rq, int ticks)
366
{
367
	u64 old_cputime = (__force u64) cputime_one_jiffy * ticks;
368
	cputime_t other;
369
	u64 cputime;
370

371 372 373 374 375 376 377
	/*
	 * When returning from idle, many ticks can get accounted at
	 * once, including some ticks of steal, irq, and softirq time.
	 * Subtract those ticks from the amount of time accounted to
	 * idle, or potentially user or system time. Due to rounding,
	 * other time can exceed ticks occasionally.
	 */
378
	other = account_other_time(ULONG_MAX);
379
	if (other >= old_cputime)
380
		return;
381 382 383

	old_cputime -= other;
	cputime = cputime_to_nsecs(old_cputime);
384

385
	if (this_cpu_ksoftirqd() == p) {
386 387 388 389 390
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
391
		account_system_index_time(p, old_cputime, CPUTIME_SOFTIRQ);
392
	} else if (user_tick) {
393
		account_user_time(p, cputime);
394
	} else if (p == rq->idle) {
395
		account_idle_time(old_cputime);
396
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
397 398

		account_guest_time(p, old_cputime);
399
	} else {
400
		account_system_index_time(p, old_cputime, CPUTIME_SYSTEM);
401 402 403 404 405 406 407
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	struct rq *rq = this_rq();

408
	irqtime_account_process_tick(current, 0, rq, ticks);
409 410
}
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
411 412
static inline void irqtime_account_idle_ticks(int ticks) {}
static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
413
						struct rq *rq, int nr_ticks) {}
414 415 416 417 418 419
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
420

421
#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
422
void vtime_common_task_switch(struct task_struct *prev)
423 424 425 426 427 428
{
	if (is_idle_task(prev))
		vtime_account_idle(prev);
	else
		vtime_account_system(prev);

429
	vtime_flush(prev);
430 431 432
	arch_vtime_task_switch(prev);
}
#endif
433

434 435 436 437
#endif /* CONFIG_VIRT_CPU_ACCOUNTING */


#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
438 439 440
/*
 * Archs that account the whole time spent in the idle task
 * (outside irq) as idle time can rely on this and just implement
441
 * vtime_account_system() and vtime_account_idle(). Archs that
442 443 444 445 446
 * have other meaning of the idle time (s390 only includes the
 * time spent by the CPU when it's in low power mode) must override
 * vtime_account().
 */
#ifndef __ARCH_HAS_VTIME_ACCOUNT
447
void vtime_account_irq_enter(struct task_struct *tsk)
448
{
449 450 451 452
	if (!in_interrupt() && is_idle_task(tsk))
		vtime_account_idle(tsk);
	else
		vtime_account_system(tsk);
453
}
454
EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
455
#endif /* __ARCH_HAS_VTIME_ACCOUNT */
456

457
void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
458 459 460 461
{
	*ut = p->utime;
	*st = p->stime;
}
462
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
463

464
void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
465 466
{
	struct task_cputime cputime;
467

468 469 470 471 472 473 474 475 476 477 478 479
	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
}
#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
480
{
481 482
	cputime_t old_cputime, steal;
	u64 cputime;
483
	struct rq *rq = this_rq();
484

485
	if (vtime_accounting_cpu_enabled())
486 487 488
		return;

	if (sched_clock_irqtime) {
489
		irqtime_account_process_tick(p, user_tick, rq, 1);
490 491 492
		return;
	}

493
	old_cputime = cputime_one_jiffy;
494
	steal = steal_account_process_time(ULONG_MAX);
495

496
	if (steal >= old_cputime)
497
		return;
498

499 500
	old_cputime -= steal;
	cputime = cputime_to_nsecs(old_cputime);
501

502
	if (user_tick)
503
		account_user_time(p, cputime);
504
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
505
		account_system_time(p, HARDIRQ_OFFSET, old_cputime);
506
	else
507
		account_idle_time(old_cputime);
508
}
509

510 511 512 513 514 515
/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
516
	cputime_t cputime, steal;
517

518 519 520 521 522
	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

523
	cputime = jiffies_to_cputime(ticks);
524
	steal = steal_account_process_time(ULONG_MAX);
525 526 527 528 529 530

	if (steal >= cputime)
		return;

	cputime -= steal;
	account_idle_time(cputime);
531
}
532

533
/*
534 535
 * Perform (stime * rtime) / total, but avoid multiplication overflow by
 * loosing precision when the numbers are big.
536
 */
537
static u64 scale_stime(u64 stime, u64 rtime, u64 total)
538
{
539
	u64 scaled;
540

541 542
	for (;;) {
		/* Make sure "rtime" is the bigger of stime/rtime */
543 544
		if (stime > rtime)
			swap(rtime, stime);
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

		/* Make sure 'total' fits in 32 bits */
		if (total >> 32)
			goto drop_precision;

		/* Does rtime (and thus stime) fit in 32 bits? */
		if (!(rtime >> 32))
			break;

		/* Can we just balance rtime/stime rather than dropping bits? */
		if (stime >> 31)
			goto drop_precision;

		/* We can grow stime and shrink rtime and try to make them both fit */
		stime <<= 1;
		rtime >>= 1;
		continue;

drop_precision:
		/* We drop from rtime, it has more bits than stime */
		rtime >>= 1;
		total >>= 1;
567
	}
568

569 570 571 572 573
	/*
	 * Make sure gcc understands that this is a 32x32->64 multiply,
	 * followed by a 64/32->64 divide.
	 */
	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
574
	return scaled;
575 576
}

577
/*
578 579
 * Adjust tick based cputime random precision against scheduler runtime
 * accounting.
580
 *
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
 * Tick based cputime accounting depend on random scheduling timeslices of a
 * task to be interrupted or not by the timer.  Depending on these
 * circumstances, the number of these interrupts may be over or
 * under-optimistic, matching the real user and system cputime with a variable
 * precision.
 *
 * Fix this by scaling these tick based values against the total runtime
 * accounted by the CFS scheduler.
 *
 * This code provides the following guarantees:
 *
 *   stime + utime == rtime
 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 *
 * Assuming that rtime_i+1 >= rtime_i.
596
 */
597
static void cputime_adjust(struct task_cputime *curr,
598
			   struct prev_cputime *prev,
599
			   u64 *ut, u64 *st)
600
{
601
	u64 rtime, stime, utime;
602
	unsigned long flags;
603

604 605
	/* Serialize concurrent callers such that we can honour our guarantees */
	raw_spin_lock_irqsave(&prev->lock, flags);
606
	rtime = curr->sum_exec_runtime;
607

608
	/*
609 610 611 612 613 614
	 * This is possible under two circumstances:
	 *  - rtime isn't monotonic after all (a bug);
	 *  - we got reordered by the lock.
	 *
	 * In both cases this acts as a filter such that the rest of the code
	 * can assume it is monotonic regardless of anything else.
615 616 617 618
	 */
	if (prev->stime + prev->utime >= rtime)
		goto out;

619 620 621
	stime = curr->stime;
	utime = curr->utime;

622 623 624 625 626 627 628
	/*
	 * If either stime or both stime and utime are 0, assume all runtime is
	 * userspace. Once a task gets some ticks, the monotonicy code at
	 * 'update' will ensure things converge to the observed ratio.
	 */
	if (stime == 0) {
		utime = rtime;
629 630
		goto update;
	}
631

632 633
	if (utime == 0) {
		stime = rtime;
634
		goto update;
635
	}
636

637
	stime = scale_stime(stime, rtime, stime + utime);
638

639
update:
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	/*
	 * Make sure stime doesn't go backwards; this preserves monotonicity
	 * for utime because rtime is monotonic.
	 *
	 *  utime_i+1 = rtime_i+1 - stime_i
	 *            = rtime_i+1 - (rtime_i - utime_i)
	 *            = (rtime_i+1 - rtime_i) + utime_i
	 *            >= utime_i
	 */
	if (stime < prev->stime)
		stime = prev->stime;
	utime = rtime - stime;

	/*
	 * Make sure utime doesn't go backwards; this still preserves
	 * monotonicity for stime, analogous argument to above.
	 */
	if (utime < prev->utime) {
		utime = prev->utime;
		stime = rtime - utime;
	}
661

662 663
	prev->stime = stime;
	prev->utime = utime;
664
out:
665 666
	*ut = prev->utime;
	*st = prev->stime;
667
	raw_spin_unlock_irqrestore(&prev->lock, flags);
668
}
669

670
void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
671 672 673 674 675
{
	struct task_cputime cputime = {
		.sum_exec_runtime = p->se.sum_exec_runtime,
	};

676
	task_cputime(p, &cputime.utime, &cputime.stime);
677
	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
678
}
679
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
680

681
void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
682 683 684 685
{
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);
686
	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
687
}
688
#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
689 690

#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
691
static cputime_t vtime_delta(struct task_struct *tsk)
692
{
693
	unsigned long now = READ_ONCE(jiffies);
694

695
	if (time_before(now, (unsigned long)tsk->vtime_snap))
696
		return 0;
697

698
	return jiffies_to_cputime(now - tsk->vtime_snap);
699 700 701
}

static cputime_t get_vtime_delta(struct task_struct *tsk)
702
{
703
	unsigned long now = READ_ONCE(jiffies);
704
	cputime_t delta, other;
705

706 707 708 709 710 711 712
	/*
	 * Unlike tick based timing, vtime based timing never has lost
	 * ticks, and no need for steal time accounting to make up for
	 * lost ticks. Vtime accounts a rounded version of actual
	 * elapsed time. Limit account_other_time to prevent rounding
	 * errors from causing elapsed vtime to go negative.
	 */
713
	delta = jiffies_to_cputime(now - tsk->vtime_snap);
714
	other = account_other_time(delta);
715
	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
716
	tsk->vtime_snap = now;
717

718
	return delta - other;
719 720
}

721 722 723 724
static void __vtime_account_system(struct task_struct *tsk)
{
	cputime_t delta_cpu = get_vtime_delta(tsk);

725
	account_system_time(tsk, irq_count(), delta_cpu);
726 727
}

728 729
void vtime_account_system(struct task_struct *tsk)
{
730 731 732
	if (!vtime_delta(tsk))
		return;

733
	write_seqcount_begin(&tsk->vtime_seqcount);
734
	__vtime_account_system(tsk);
735
	write_seqcount_end(&tsk->vtime_seqcount);
736
}
737

738 739
void vtime_account_user(struct task_struct *tsk)
{
740 741
	cputime_t delta_cpu;

742
	write_seqcount_begin(&tsk->vtime_seqcount);
743
	tsk->vtime_snap_whence = VTIME_SYS;
744 745
	if (vtime_delta(tsk)) {
		delta_cpu = get_vtime_delta(tsk);
746
		account_user_time(tsk, cputime_to_nsecs(delta_cpu));
747
	}
748
	write_seqcount_end(&tsk->vtime_seqcount);
749 750 751 752
}

void vtime_user_enter(struct task_struct *tsk)
{
753
	write_seqcount_begin(&tsk->vtime_seqcount);
754 755
	if (vtime_delta(tsk))
		__vtime_account_system(tsk);
756
	tsk->vtime_snap_whence = VTIME_USER;
757
	write_seqcount_end(&tsk->vtime_seqcount);
758 759 760 761
}

void vtime_guest_enter(struct task_struct *tsk)
{
762 763 764 765 766 767 768
	/*
	 * The flags must be updated under the lock with
	 * the vtime_snap flush and update.
	 * That enforces a right ordering and update sequence
	 * synchronization against the reader (task_gtime())
	 * that can thus safely catch up with a tickless delta.
	 */
769
	write_seqcount_begin(&tsk->vtime_seqcount);
770 771
	if (vtime_delta(tsk))
		__vtime_account_system(tsk);
772
	current->flags |= PF_VCPU;
773
	write_seqcount_end(&tsk->vtime_seqcount);
774
}
775
EXPORT_SYMBOL_GPL(vtime_guest_enter);
776 777 778

void vtime_guest_exit(struct task_struct *tsk)
{
779
	write_seqcount_begin(&tsk->vtime_seqcount);
780 781
	__vtime_account_system(tsk);
	current->flags &= ~PF_VCPU;
782
	write_seqcount_end(&tsk->vtime_seqcount);
783
}
784
EXPORT_SYMBOL_GPL(vtime_guest_exit);
785 786 787

void vtime_account_idle(struct task_struct *tsk)
{
788
	cputime_t delta_cpu = get_vtime_delta(tsk);
789 790 791

	account_idle_time(delta_cpu);
}
792

793 794
void arch_vtime_task_switch(struct task_struct *prev)
{
795
	write_seqcount_begin(&prev->vtime_seqcount);
796
	prev->vtime_snap_whence = VTIME_INACTIVE;
797
	write_seqcount_end(&prev->vtime_seqcount);
798

799
	write_seqcount_begin(&current->vtime_seqcount);
800
	current->vtime_snap_whence = VTIME_SYS;
801
	current->vtime_snap = jiffies;
802
	write_seqcount_end(&current->vtime_seqcount);
803 804
}

805
void vtime_init_idle(struct task_struct *t, int cpu)
806 807 808
{
	unsigned long flags;

809 810
	local_irq_save(flags);
	write_seqcount_begin(&t->vtime_seqcount);
811
	t->vtime_snap_whence = VTIME_SYS;
812
	t->vtime_snap = jiffies;
813 814
	write_seqcount_end(&t->vtime_seqcount);
	local_irq_restore(flags);
815 816
}

817
u64 task_gtime(struct task_struct *t)
818 819
{
	unsigned int seq;
820
	u64 gtime;
821

822
	if (!vtime_accounting_enabled())
823 824
		return t->gtime;

825
	do {
826
		seq = read_seqcount_begin(&t->vtime_seqcount);
827 828

		gtime = t->gtime;
829
		if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
830
			gtime += cputime_to_nsecs(vtime_delta(t));
831

832
	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
833 834 835 836 837 838 839 840 841

	return gtime;
}

/*
 * Fetch cputime raw values from fields of task_struct and
 * add up the pending nohz execution time since the last
 * cputime snapshot.
 */
842
void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
843
{
844
	u64 delta;
845 846
	unsigned int seq;

847 848 849 850 851
	if (!vtime_accounting_enabled()) {
		*utime = t->utime;
		*stime = t->stime;
		return;
	}
852

853
	do {
854
		seq = read_seqcount_begin(&t->vtime_seqcount);
855

856 857
		*utime = t->utime;
		*stime = t->stime;
858 859

		/* Task is sleeping, nothing to add */
860
		if (t->vtime_snap_whence == VTIME_INACTIVE || is_idle_task(t))
861 862
			continue;

863
		delta = cputime_to_nsecs(vtime_delta(t));
864 865 866 867 868

		/*
		 * Task runs either in user or kernel space, add pending nohz time to
		 * the right place.
		 */
869 870 871 872
		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU)
			*utime += delta;
		else if (t->vtime_snap_whence == VTIME_SYS)
			*stime += delta;
873
	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
874
}
875
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */