cputime.c 24.6 KB
Newer Older
1 2 3 4 5
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/tsacct_kern.h>
#include <linux/kernel_stat.h>
#include <linux/static_key.h>
6
#include <linux/context_tracking.h>
7
#include "sched.h"
8 9 10
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
11 12 13 14 15 16


#ifdef CONFIG_IRQ_TIME_ACCOUNTING

/*
 * There are no locks covering percpu hardirq/softirq time.
17
 * They are only modified in vtime_account, on corresponding CPU
18 19 20
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
21
 * race with irq/vtime_account on this CPU. We would either get old
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
 */
DEFINE_PER_CPU(u64, cpu_hardirq_time);
DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

#ifndef CONFIG_64BIT
DEFINE_PER_CPU(seqcount_t, irq_time_seq);
#endif /* CONFIG_64BIT */

/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
50
void irqtime_account_irq(struct task_struct *curr)
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
{
	s64 delta;
	int cpu;

	if (!sched_clock_irqtime)
		return;

	cpu = smp_processor_id();
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

	irq_time_write_begin();
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
		__this_cpu_add(cpu_hardirq_time, delta);
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
		__this_cpu_add(cpu_softirq_time, delta);

	irq_time_write_end();
}
76
EXPORT_SYMBOL_GPL(irqtime_account_irq);
77

78
static cputime_t irqtime_account_hi_update(cputime_t maxtime)
79 80
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;
81
	cputime_t irq_cputime;
82

83
	irq_cputime = nsecs_to_cputime64(__this_cpu_read(cpu_hardirq_time)) -
84 85 86
		      cpustat[CPUTIME_IRQ];
	irq_cputime = min(irq_cputime, maxtime);
	cpustat[CPUTIME_IRQ] += irq_cputime;
87

88
	return irq_cputime;
89 90
}

91
static cputime_t irqtime_account_si_update(cputime_t maxtime)
92 93
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;
94
	cputime_t softirq_cputime;
95

96
	softirq_cputime = nsecs_to_cputime64(__this_cpu_read(cpu_softirq_time)) -
97 98 99
			  cpustat[CPUTIME_SOFTIRQ];
	softirq_cputime = min(softirq_cputime, maxtime);
	cpustat[CPUTIME_SOFTIRQ] += softirq_cputime;
100

101
	return softirq_cputime;
102 103 104 105 106 107
}

#else /* CONFIG_IRQ_TIME_ACCOUNTING */

#define sched_clock_irqtime	(0)

108 109 110 111 112 113 114 115 116 117
static cputime_t irqtime_account_hi_update(cputime_t dummy)
{
	return 0;
}

static cputime_t irqtime_account_si_update(cputime_t dummy)
{
	return 0;
}

118 119 120 121 122 123 124 125 126 127 128
#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */

static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
{
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
129
	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
130

131
	cpuacct_account_field(p, index, tmp);
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 */
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
{
	int index;

	/* Add user time to process. */
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
	account_group_user_time(p, cputime);

150
	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
151 152 153 154 155

	/* Add user time to cpustat. */
	task_group_account_field(p, index, (__force u64) cputime);

	/* Account for user time used */
156
	acct_account_cputime(p);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
}

/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 */
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;

	/* Add guest time to process. */
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
	account_group_user_time(p, cputime);
	p->gtime += cputime;

	/* Add guest time to cpustat. */
177
	if (task_nice(p) > 0) {
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
		cpustat[CPUTIME_NICE] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
	} else {
		cpustat[CPUTIME_USER] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
	}
}

/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
			cputime_t cputime_scaled, int index)
{
	/* Add system time to process. */
	p->stime += cputime;
	p->stimescaled += cputime_scaled;
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
	task_group_account_field(p, index, (__force u64) cputime);

	/* Account for system time used */
206
	acct_account_cputime(p);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime, cputime_t cputime_scaled)
{
	int index;

	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime, cputime_scaled);
		return;
	}

	if (hardirq_count() - hardirq_offset)
		index = CPUTIME_IRQ;
	else if (in_serving_softirq())
		index = CPUTIME_SOFTIRQ;
	else
		index = CPUTIME_SYSTEM;

	__account_system_time(p, cputime, cputime_scaled, index);
}

/*
 * Account for involuntary wait time.
 * @cputime: the cpu time spent in involuntary wait
 */
void account_steal_time(cputime_t cputime)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;

	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
}

/*
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
 */
void account_idle_time(cputime_t cputime)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;
	struct rq *rq = this_rq();

	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
	else
		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
}

262 263 264 265 266
/*
 * When a guest is interrupted for a longer amount of time, missed clock
 * ticks are not redelivered later. Due to that, this function may on
 * occasion account more time than the calling functions think elapsed.
 */
267
static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
268 269 270
{
#ifdef CONFIG_PARAVIRT
	if (static_key_false(&paravirt_steal_enabled)) {
271
		cputime_t steal_cputime;
272
		u64 steal;
273 274 275 276

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

277 278 279
		steal_cputime = min(nsecs_to_cputime(steal), maxtime);
		account_steal_time(steal_cputime);
		this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime);
280

281
		return steal_cputime;
282 283
	}
#endif
284
	return 0;
285 286
}

287 288 289 290 291 292 293
/*
 * Account how much elapsed time was spent in steal, irq, or softirq time.
 */
static inline cputime_t account_other_time(cputime_t max)
{
	cputime_t accounted;

294 295 296
	/* Shall be converted to a lockdep-enabled lightweight check */
	WARN_ON_ONCE(!irqs_disabled());

297 298 299 300 301 302 303 304 305 306 307
	accounted = steal_account_process_time(max);

	if (accounted < max)
		accounted += irqtime_account_hi_update(max - accounted);

	if (accounted < max)
		accounted += irqtime_account_si_update(max - accounted);

	return accounted;
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
#ifdef CONFIG_64BIT
static inline u64 read_sum_exec_runtime(struct task_struct *t)
{
	return t->se.sum_exec_runtime;
}
#else
static u64 read_sum_exec_runtime(struct task_struct *t)
{
	u64 ns;
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(t, &rf);
	ns = t->se.sum_exec_runtime;
	task_rq_unlock(rq, t, &rf);

	return ns;
}
#endif

328 329 330 331 332 333 334
/*
 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 * tasks (sum on group iteration) belonging to @tsk's group.
 */
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
{
	struct signal_struct *sig = tsk->signal;
335
	cputime_t utime, stime;
336
	struct task_struct *t;
337
	unsigned int seq, nextseq;
338
	unsigned long flags;
339

340 341 342 343 344 345 346 347 348 349 350
	/*
	 * Update current task runtime to account pending time since last
	 * scheduler action or thread_group_cputime() call. This thread group
	 * might have other running tasks on different CPUs, but updating
	 * their runtime can affect syscall performance, so we skip account
	 * those pending times and rely only on values updated on tick or
	 * other scheduler action.
	 */
	if (same_thread_group(current, tsk))
		(void) task_sched_runtime(current);

351
	rcu_read_lock();
352 353 354 355
	/* Attempt a lockless read on the first round. */
	nextseq = 0;
	do {
		seq = nextseq;
356
		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
357 358 359 360 361 362 363 364
		times->utime = sig->utime;
		times->stime = sig->stime;
		times->sum_exec_runtime = sig->sum_sched_runtime;

		for_each_thread(tsk, t) {
			task_cputime(t, &utime, &stime);
			times->utime += utime;
			times->stime += stime;
365
			times->sum_exec_runtime += read_sum_exec_runtime(t);
366 367 368 369
		}
		/* If lockless access failed, take the lock. */
		nextseq = 1;
	} while (need_seqretry(&sig->stats_lock, seq));
370
	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
371 372 373
	rcu_read_unlock();
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
397
					 struct rq *rq, int ticks)
398
{
399 400
	u64 cputime = (__force u64) cputime_one_jiffy * ticks;
	cputime_t scaled, other;
401

402 403 404 405 406 407 408
	/*
	 * When returning from idle, many ticks can get accounted at
	 * once, including some ticks of steal, irq, and softirq time.
	 * Subtract those ticks from the amount of time accounted to
	 * idle, or potentially user or system time. Due to rounding,
	 * other time can exceed ticks occasionally.
	 */
409
	other = account_other_time(ULONG_MAX);
410
	if (other >= cputime)
411
		return;
412 413
	cputime -= other;
	scaled = cputime_to_scaled(cputime);
414

415
	if (this_cpu_ksoftirqd() == p) {
416 417 418 419 420
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
421
		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
422
	} else if (user_tick) {
423
		account_user_time(p, cputime, scaled);
424
	} else if (p == rq->idle) {
425
		account_idle_time(cputime);
426
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
427
		account_guest_time(p, cputime, scaled);
428
	} else {
429
		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
430 431 432 433 434 435 436
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	struct rq *rq = this_rq();

437
	irqtime_account_process_tick(current, 0, rq, ticks);
438 439
}
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
440 441
static inline void irqtime_account_idle_ticks(int ticks) {}
static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
442
						struct rq *rq, int nr_ticks) {}
443 444 445 446 447 448
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
449

450
#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
451
void vtime_common_task_switch(struct task_struct *prev)
452 453 454 455 456 457
{
	if (is_idle_task(prev))
		vtime_account_idle(prev);
	else
		vtime_account_system(prev);

458
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
459
	vtime_account_user(prev);
460
#endif
461 462 463
	arch_vtime_task_switch(prev);
}
#endif
464

465 466 467 468
#endif /* CONFIG_VIRT_CPU_ACCOUNTING */


#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
469 470 471
/*
 * Archs that account the whole time spent in the idle task
 * (outside irq) as idle time can rely on this and just implement
472
 * vtime_account_system() and vtime_account_idle(). Archs that
473 474 475 476 477
 * have other meaning of the idle time (s390 only includes the
 * time spent by the CPU when it's in low power mode) must override
 * vtime_account().
 */
#ifndef __ARCH_HAS_VTIME_ACCOUNT
478
void vtime_account_irq_enter(struct task_struct *tsk)
479
{
480 481 482 483
	if (!in_interrupt() && is_idle_task(tsk))
		vtime_account_idle(tsk);
	else
		vtime_account_system(tsk);
484
}
485
EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
486
#endif /* __ARCH_HAS_VTIME_ACCOUNT */
487 488 489 490 491 492

void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
	*ut = p->utime;
	*st = p->stime;
}
493
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
494

495 496 497
void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
	struct task_cputime cputime;
498

499 500 501 502 503 504 505 506 507 508 509 510
	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
}
#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
511
{
512
	cputime_t cputime, scaled, steal;
513
	struct rq *rq = this_rq();
514

515
	if (vtime_accounting_cpu_enabled())
516 517 518
		return;

	if (sched_clock_irqtime) {
519
		irqtime_account_process_tick(p, user_tick, rq, 1);
520 521 522
		return;
	}

523
	cputime = cputime_one_jiffy;
524
	steal = steal_account_process_time(ULONG_MAX);
525 526

	if (steal >= cputime)
527
		return;
528

529 530 531
	cputime -= steal;
	scaled = cputime_to_scaled(cputime);

532
	if (user_tick)
533
		account_user_time(p, cputime, scaled);
534
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
535
		account_system_time(p, HARDIRQ_OFFSET, cputime, scaled);
536
	else
537
		account_idle_time(cputime);
538
}
539

540 541 542 543 544 545
/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
546
	cputime_t cputime, steal;
547

548 549 550 551 552
	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

553
	cputime = jiffies_to_cputime(ticks);
554
	steal = steal_account_process_time(ULONG_MAX);
555 556 557 558 559 560

	if (steal >= cputime)
		return;

	cputime -= steal;
	account_idle_time(cputime);
561
}
562

563
/*
564 565
 * Perform (stime * rtime) / total, but avoid multiplication overflow by
 * loosing precision when the numbers are big.
566 567
 */
static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
568
{
569
	u64 scaled;
570

571 572
	for (;;) {
		/* Make sure "rtime" is the bigger of stime/rtime */
573 574
		if (stime > rtime)
			swap(rtime, stime);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

		/* Make sure 'total' fits in 32 bits */
		if (total >> 32)
			goto drop_precision;

		/* Does rtime (and thus stime) fit in 32 bits? */
		if (!(rtime >> 32))
			break;

		/* Can we just balance rtime/stime rather than dropping bits? */
		if (stime >> 31)
			goto drop_precision;

		/* We can grow stime and shrink rtime and try to make them both fit */
		stime <<= 1;
		rtime >>= 1;
		continue;

drop_precision:
		/* We drop from rtime, it has more bits than stime */
		rtime >>= 1;
		total >>= 1;
597
	}
598

599 600 601 602 603
	/*
	 * Make sure gcc understands that this is a 32x32->64 multiply,
	 * followed by a 64/32->64 divide.
	 */
	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
604
	return (__force cputime_t) scaled;
605 606
}

607
/*
608 609
 * Adjust tick based cputime random precision against scheduler runtime
 * accounting.
610
 *
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
 * Tick based cputime accounting depend on random scheduling timeslices of a
 * task to be interrupted or not by the timer.  Depending on these
 * circumstances, the number of these interrupts may be over or
 * under-optimistic, matching the real user and system cputime with a variable
 * precision.
 *
 * Fix this by scaling these tick based values against the total runtime
 * accounted by the CFS scheduler.
 *
 * This code provides the following guarantees:
 *
 *   stime + utime == rtime
 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 *
 * Assuming that rtime_i+1 >= rtime_i.
626
 */
627
static void cputime_adjust(struct task_cputime *curr,
628
			   struct prev_cputime *prev,
629
			   cputime_t *ut, cputime_t *st)
630
{
631
	cputime_t rtime, stime, utime;
632
	unsigned long flags;
633

634 635
	/* Serialize concurrent callers such that we can honour our guarantees */
	raw_spin_lock_irqsave(&prev->lock, flags);
636
	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
637

638
	/*
639 640 641 642 643 644
	 * This is possible under two circumstances:
	 *  - rtime isn't monotonic after all (a bug);
	 *  - we got reordered by the lock.
	 *
	 * In both cases this acts as a filter such that the rest of the code
	 * can assume it is monotonic regardless of anything else.
645 646 647 648
	 */
	if (prev->stime + prev->utime >= rtime)
		goto out;

649 650 651
	stime = curr->stime;
	utime = curr->utime;

652 653 654 655 656 657 658
	/*
	 * If either stime or both stime and utime are 0, assume all runtime is
	 * userspace. Once a task gets some ticks, the monotonicy code at
	 * 'update' will ensure things converge to the observed ratio.
	 */
	if (stime == 0) {
		utime = rtime;
659 660
		goto update;
	}
661

662 663
	if (utime == 0) {
		stime = rtime;
664
		goto update;
665
	}
666

667 668 669
	stime = scale_stime((__force u64)stime, (__force u64)rtime,
			    (__force u64)(stime + utime));

670
update:
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	/*
	 * Make sure stime doesn't go backwards; this preserves monotonicity
	 * for utime because rtime is monotonic.
	 *
	 *  utime_i+1 = rtime_i+1 - stime_i
	 *            = rtime_i+1 - (rtime_i - utime_i)
	 *            = (rtime_i+1 - rtime_i) + utime_i
	 *            >= utime_i
	 */
	if (stime < prev->stime)
		stime = prev->stime;
	utime = rtime - stime;

	/*
	 * Make sure utime doesn't go backwards; this still preserves
	 * monotonicity for stime, analogous argument to above.
	 */
	if (utime < prev->utime) {
		utime = prev->utime;
		stime = rtime - utime;
	}
692

693 694
	prev->stime = stime;
	prev->utime = utime;
695
out:
696 697
	*ut = prev->utime;
	*st = prev->stime;
698
	raw_spin_unlock_irqrestore(&prev->lock, flags);
699
}
700

701 702 703 704 705 706
void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
	struct task_cputime cputime = {
		.sum_exec_runtime = p->se.sum_exec_runtime,
	};

707
	task_cputime(p, &cputime.utime, &cputime.stime);
708
	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
709
}
710
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
711

712
void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
713 714 715 716
{
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);
717
	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
718
}
719
#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
720 721

#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
722
static cputime_t vtime_delta(struct task_struct *tsk)
723
{
724
	unsigned long now = READ_ONCE(jiffies);
725

726
	if (time_before(now, (unsigned long)tsk->vtime_snap))
727
		return 0;
728

729
	return jiffies_to_cputime(now - tsk->vtime_snap);
730 731 732
}

static cputime_t get_vtime_delta(struct task_struct *tsk)
733
{
734
	unsigned long now = READ_ONCE(jiffies);
735
	cputime_t delta, other;
736

737 738 739 740 741 742 743
	/*
	 * Unlike tick based timing, vtime based timing never has lost
	 * ticks, and no need for steal time accounting to make up for
	 * lost ticks. Vtime accounts a rounded version of actual
	 * elapsed time. Limit account_other_time to prevent rounding
	 * errors from causing elapsed vtime to go negative.
	 */
744
	delta = jiffies_to_cputime(now - tsk->vtime_snap);
745
	other = account_other_time(delta);
746
	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
747
	tsk->vtime_snap = now;
748

749
	return delta - other;
750 751
}

752 753 754 755 756 757 758
static void __vtime_account_system(struct task_struct *tsk)
{
	cputime_t delta_cpu = get_vtime_delta(tsk);

	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
}

759 760
void vtime_account_system(struct task_struct *tsk)
{
761 762 763
	if (!vtime_delta(tsk))
		return;

764
	write_seqcount_begin(&tsk->vtime_seqcount);
765
	__vtime_account_system(tsk);
766
	write_seqcount_end(&tsk->vtime_seqcount);
767
}
768

769 770
void vtime_account_user(struct task_struct *tsk)
{
771 772
	cputime_t delta_cpu;

773
	write_seqcount_begin(&tsk->vtime_seqcount);
774
	tsk->vtime_snap_whence = VTIME_SYS;
775 776 777 778
	if (vtime_delta(tsk)) {
		delta_cpu = get_vtime_delta(tsk);
		account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
	}
779
	write_seqcount_end(&tsk->vtime_seqcount);
780 781 782 783
}

void vtime_user_enter(struct task_struct *tsk)
{
784
	write_seqcount_begin(&tsk->vtime_seqcount);
785 786
	if (vtime_delta(tsk))
		__vtime_account_system(tsk);
787
	tsk->vtime_snap_whence = VTIME_USER;
788
	write_seqcount_end(&tsk->vtime_seqcount);
789 790 791 792
}

void vtime_guest_enter(struct task_struct *tsk)
{
793 794 795 796 797 798 799
	/*
	 * The flags must be updated under the lock with
	 * the vtime_snap flush and update.
	 * That enforces a right ordering and update sequence
	 * synchronization against the reader (task_gtime())
	 * that can thus safely catch up with a tickless delta.
	 */
800
	write_seqcount_begin(&tsk->vtime_seqcount);
801 802
	if (vtime_delta(tsk))
		__vtime_account_system(tsk);
803
	current->flags |= PF_VCPU;
804
	write_seqcount_end(&tsk->vtime_seqcount);
805
}
806
EXPORT_SYMBOL_GPL(vtime_guest_enter);
807 808 809

void vtime_guest_exit(struct task_struct *tsk)
{
810
	write_seqcount_begin(&tsk->vtime_seqcount);
811 812
	__vtime_account_system(tsk);
	current->flags &= ~PF_VCPU;
813
	write_seqcount_end(&tsk->vtime_seqcount);
814
}
815
EXPORT_SYMBOL_GPL(vtime_guest_exit);
816 817 818

void vtime_account_idle(struct task_struct *tsk)
{
819
	cputime_t delta_cpu = get_vtime_delta(tsk);
820 821 822

	account_idle_time(delta_cpu);
}
823

824 825
void arch_vtime_task_switch(struct task_struct *prev)
{
826
	write_seqcount_begin(&prev->vtime_seqcount);
827
	prev->vtime_snap_whence = VTIME_INACTIVE;
828
	write_seqcount_end(&prev->vtime_seqcount);
829

830
	write_seqcount_begin(&current->vtime_seqcount);
831
	current->vtime_snap_whence = VTIME_SYS;
832
	current->vtime_snap = jiffies;
833
	write_seqcount_end(&current->vtime_seqcount);
834 835
}

836
void vtime_init_idle(struct task_struct *t, int cpu)
837 838 839
{
	unsigned long flags;

840 841
	local_irq_save(flags);
	write_seqcount_begin(&t->vtime_seqcount);
842
	t->vtime_snap_whence = VTIME_SYS;
843
	t->vtime_snap = jiffies;
844 845
	write_seqcount_end(&t->vtime_seqcount);
	local_irq_restore(flags);
846 847 848 849 850 851 852
}

cputime_t task_gtime(struct task_struct *t)
{
	unsigned int seq;
	cputime_t gtime;

853
	if (!vtime_accounting_enabled())
854 855
		return t->gtime;

856
	do {
857
		seq = read_seqcount_begin(&t->vtime_seqcount);
858 859

		gtime = t->gtime;
860
		if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
861 862
			gtime += vtime_delta(t);

863
	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885

	return gtime;
}

/*
 * Fetch cputime raw values from fields of task_struct and
 * add up the pending nohz execution time since the last
 * cputime snapshot.
 */
static void
fetch_task_cputime(struct task_struct *t,
		   cputime_t *u_dst, cputime_t *s_dst,
		   cputime_t *u_src, cputime_t *s_src,
		   cputime_t *udelta, cputime_t *sdelta)
{
	unsigned int seq;
	unsigned long long delta;

	do {
		*udelta = 0;
		*sdelta = 0;

886
		seq = read_seqcount_begin(&t->vtime_seqcount);
887 888 889 890 891 892 893

		if (u_dst)
			*u_dst = *u_src;
		if (s_dst)
			*s_dst = *s_src;

		/* Task is sleeping, nothing to add */
894
		if (t->vtime_snap_whence == VTIME_INACTIVE ||
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
		    is_idle_task(t))
			continue;

		delta = vtime_delta(t);

		/*
		 * Task runs either in user or kernel space, add pending nohz time to
		 * the right place.
		 */
		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
			*udelta = delta;
		} else {
			if (t->vtime_snap_whence == VTIME_SYS)
				*sdelta = delta;
		}
910
	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
911 912 913 914 915 916 917
}


void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
{
	cputime_t udelta, sdelta;

918
	if (!vtime_accounting_enabled()) {
919 920 921 922 923 924 925
		if (utime)
			*utime = t->utime;
		if (stime)
			*stime = t->stime;
		return;
	}

926 927 928 929 930 931 932 933 934 935 936 937 938
	fetch_task_cputime(t, utime, stime, &t->utime,
			   &t->stime, &udelta, &sdelta);
	if (utime)
		*utime += udelta;
	if (stime)
		*stime += sdelta;
}

void task_cputime_scaled(struct task_struct *t,
			 cputime_t *utimescaled, cputime_t *stimescaled)
{
	cputime_t udelta, sdelta;

939
	if (!vtime_accounting_enabled()) {
940 941 942 943 944 945 946
		if (utimescaled)
			*utimescaled = t->utimescaled;
		if (stimescaled)
			*stimescaled = t->stimescaled;
		return;
	}

947 948 949 950 951 952 953
	fetch_task_cputime(t, utimescaled, stimescaled,
			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
	if (utimescaled)
		*utimescaled += cputime_to_scaled(udelta);
	if (stimescaled)
		*stimescaled += cputime_to_scaled(sdelta);
}
954
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */