cputime.c 23.0 KB
Newer Older
1 2 3 4 5
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/tsacct_kern.h>
#include <linux/kernel_stat.h>
#include <linux/static_key.h>
6
#include <linux/context_tracking.h>
7
#include "sched.h"
8 9 10
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
11 12 13 14 15 16


#ifdef CONFIG_IRQ_TIME_ACCOUNTING

/*
 * There are no locks covering percpu hardirq/softirq time.
17
 * They are only modified in vtime_account, on corresponding CPU
18 19 20
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
21
 * race with irq/vtime_account on this CPU. We would either get old
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
 */
DEFINE_PER_CPU(u64, cpu_hardirq_time);
DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

#ifndef CONFIG_64BIT
DEFINE_PER_CPU(seqcount_t, irq_time_seq);
#endif /* CONFIG_64BIT */

/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
50
void irqtime_account_irq(struct task_struct *curr)
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
{
	unsigned long flags;
	s64 delta;
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

	irq_time_write_begin();
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
		__this_cpu_add(cpu_hardirq_time, delta);
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
		__this_cpu_add(cpu_softirq_time, delta);

	irq_time_write_end();
	local_irq_restore(flags);
}
80
EXPORT_SYMBOL_GPL(irqtime_account_irq);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

static int irqtime_account_hi_update(void)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

#else /* CONFIG_IRQ_TIME_ACCOUNTING */

#define sched_clock_irqtime	(0)

#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */

static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
{
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
127
	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
128

129
	cpuacct_account_field(p, index, tmp);
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 */
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
{
	int index;

	/* Add user time to process. */
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
	account_group_user_time(p, cputime);

148
	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
149 150 151 152 153

	/* Add user time to cpustat. */
	task_group_account_field(p, index, (__force u64) cputime);

	/* Account for user time used */
154
	acct_account_cputime(p);
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
}

/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 */
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;

	/* Add guest time to process. */
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
	account_group_user_time(p, cputime);
	p->gtime += cputime;

	/* Add guest time to cpustat. */
175
	if (task_nice(p) > 0) {
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
		cpustat[CPUTIME_NICE] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
	} else {
		cpustat[CPUTIME_USER] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
	}
}

/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
			cputime_t cputime_scaled, int index)
{
	/* Add system time to process. */
	p->stime += cputime;
	p->stimescaled += cputime_scaled;
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
	task_group_account_field(p, index, (__force u64) cputime);

	/* Account for system time used */
204
	acct_account_cputime(p);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime, cputime_t cputime_scaled)
{
	int index;

	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime, cputime_scaled);
		return;
	}

	if (hardirq_count() - hardirq_offset)
		index = CPUTIME_IRQ;
	else if (in_serving_softirq())
		index = CPUTIME_SOFTIRQ;
	else
		index = CPUTIME_SYSTEM;

	__account_system_time(p, cputime, cputime_scaled, index);
}

/*
 * Account for involuntary wait time.
 * @cputime: the cpu time spent in involuntary wait
 */
void account_steal_time(cputime_t cputime)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;

	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
}

/*
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
 */
void account_idle_time(cputime_t cputime)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;
	struct rq *rq = this_rq();

	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
	else
		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
}

static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
	if (static_key_false(&paravirt_steal_enabled)) {
264 265
		u64 steal;
		cputime_t steal_ct;
266 267 268 269

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

270 271 272 273 274 275 276
		/*
		 * cputime_t may be less precise than nsecs (eg: if it's
		 * based on jiffies). Lets cast the result to cputime
		 * granularity and account the rest on the next rounds.
		 */
		steal_ct = nsecs_to_cputime(steal);
		this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
277

278 279
		account_steal_time(steal_ct);
		return steal_ct;
280 281 282 283 284
	}
#endif
	return false;
}

285 286 287 288 289 290 291
/*
 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 * tasks (sum on group iteration) belonging to @tsk's group.
 */
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
{
	struct signal_struct *sig = tsk->signal;
292
	cputime_t utime, stime;
293
	struct task_struct *t;
294
	unsigned int seq, nextseq;
295
	unsigned long flags;
296 297

	rcu_read_lock();
298 299 300 301
	/* Attempt a lockless read on the first round. */
	nextseq = 0;
	do {
		seq = nextseq;
302
		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
303 304 305 306 307 308 309 310 311 312 313 314 315
		times->utime = sig->utime;
		times->stime = sig->stime;
		times->sum_exec_runtime = sig->sum_sched_runtime;

		for_each_thread(tsk, t) {
			task_cputime(t, &utime, &stime);
			times->utime += utime;
			times->stime += stime;
			times->sum_exec_runtime += task_sched_runtime(t);
		}
		/* If lockless access failed, take the lock. */
		nextseq = 1;
	} while (need_seqretry(&sig->stats_lock, seq));
316
	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
317 318 319
	rcu_read_unlock();
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
343
					 struct rq *rq, int ticks)
344
{
345 346
	cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
	u64 cputime = (__force u64) cputime_one_jiffy;
347 348 349 350 351
	u64 *cpustat = kcpustat_this_cpu->cpustat;

	if (steal_account_process_tick())
		return;

352 353 354
	cputime *= ticks;
	scaled *= ticks;

355
	if (irqtime_account_hi_update()) {
356
		cpustat[CPUTIME_IRQ] += cputime;
357
	} else if (irqtime_account_si_update()) {
358
		cpustat[CPUTIME_SOFTIRQ] += cputime;
359 360 361 362 363 364
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
365
		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
366
	} else if (user_tick) {
367
		account_user_time(p, cputime, scaled);
368
	} else if (p == rq->idle) {
369
		account_idle_time(cputime);
370
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
371
		account_guest_time(p, cputime, scaled);
372
	} else {
373
		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
374 375 376 377 378 379 380
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	struct rq *rq = this_rq();

381
	irqtime_account_process_tick(current, 0, rq, ticks);
382 383
}
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
384 385
static inline void irqtime_account_idle_ticks(int ticks) {}
static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
386
						struct rq *rq, int nr_ticks) {}
387 388 389 390 391 392
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
393

394
#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
395
void vtime_common_task_switch(struct task_struct *prev)
396 397 398 399 400 401
{
	if (is_idle_task(prev))
		vtime_account_idle(prev);
	else
		vtime_account_system(prev);

402
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
403
	vtime_account_user(prev);
404
#endif
405 406 407
	arch_vtime_task_switch(prev);
}
#endif
408

409 410 411
/*
 * Archs that account the whole time spent in the idle task
 * (outside irq) as idle time can rely on this and just implement
412
 * vtime_account_system() and vtime_account_idle(). Archs that
413 414 415 416 417
 * have other meaning of the idle time (s390 only includes the
 * time spent by the CPU when it's in low power mode) must override
 * vtime_account().
 */
#ifndef __ARCH_HAS_VTIME_ACCOUNT
418
void vtime_common_account_irq_enter(struct task_struct *tsk)
419
{
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	if (!in_interrupt()) {
		/*
		 * If we interrupted user, context_tracking_in_user()
		 * is 1 because the context tracking don't hook
		 * on irq entry/exit. This way we know if
		 * we need to flush user time on kernel entry.
		 */
		if (context_tracking_in_user()) {
			vtime_account_user(tsk);
			return;
		}

		if (is_idle_task(tsk)) {
			vtime_account_idle(tsk);
			return;
		}
	}
	vtime_account_system(tsk);
438
}
439
EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
440
#endif /* __ARCH_HAS_VTIME_ACCOUNT */
441 442 443 444 445 446 447 448 449
#endif /* CONFIG_VIRT_CPU_ACCOUNTING */


#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
	*ut = p->utime;
	*st = p->stime;
}
450
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
451

452 453 454
void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
	struct task_cputime cputime;
455

456 457 458 459 460 461 462 463 464 465 466 467
	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
}
#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
468
{
469 470
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
	struct rq *rq = this_rq();
471

472
	if (vtime_accounting_cpu_enabled())
473 474 475
		return;

	if (sched_clock_irqtime) {
476
		irqtime_account_process_tick(p, user_tick, rq, 1);
477 478 479 480 481
		return;
	}

	if (steal_account_process_tick())
		return;
482

483 484 485 486 487
	if (user_tick)
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
				    one_jiffy_scaled);
488
	else
489 490
		account_idle_time(cputime_one_jiffy);
}
491

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

	account_idle_time(jiffies_to_cputime(ticks));
}
516

517
/*
518 519
 * Perform (stime * rtime) / total, but avoid multiplication overflow by
 * loosing precision when the numbers are big.
520 521
 */
static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
522
{
523
	u64 scaled;
524

525 526
	for (;;) {
		/* Make sure "rtime" is the bigger of stime/rtime */
527 528
		if (stime > rtime)
			swap(rtime, stime);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550

		/* Make sure 'total' fits in 32 bits */
		if (total >> 32)
			goto drop_precision;

		/* Does rtime (and thus stime) fit in 32 bits? */
		if (!(rtime >> 32))
			break;

		/* Can we just balance rtime/stime rather than dropping bits? */
		if (stime >> 31)
			goto drop_precision;

		/* We can grow stime and shrink rtime and try to make them both fit */
		stime <<= 1;
		rtime >>= 1;
		continue;

drop_precision:
		/* We drop from rtime, it has more bits than stime */
		rtime >>= 1;
		total >>= 1;
551
	}
552

553 554 555 556 557
	/*
	 * Make sure gcc understands that this is a 32x32->64 multiply,
	 * followed by a 64/32->64 divide.
	 */
	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
558
	return (__force cputime_t) scaled;
559 560
}

561
/*
562 563
 * Adjust tick based cputime random precision against scheduler runtime
 * accounting.
564
 *
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
 * Tick based cputime accounting depend on random scheduling timeslices of a
 * task to be interrupted or not by the timer.  Depending on these
 * circumstances, the number of these interrupts may be over or
 * under-optimistic, matching the real user and system cputime with a variable
 * precision.
 *
 * Fix this by scaling these tick based values against the total runtime
 * accounted by the CFS scheduler.
 *
 * This code provides the following guarantees:
 *
 *   stime + utime == rtime
 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 *
 * Assuming that rtime_i+1 >= rtime_i.
580
 */
581
static void cputime_adjust(struct task_cputime *curr,
582
			   struct prev_cputime *prev,
583
			   cputime_t *ut, cputime_t *st)
584
{
585
	cputime_t rtime, stime, utime;
586
	unsigned long flags;
587

588 589
	/* Serialize concurrent callers such that we can honour our guarantees */
	raw_spin_lock_irqsave(&prev->lock, flags);
590
	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
591

592
	/*
593 594 595 596 597 598
	 * This is possible under two circumstances:
	 *  - rtime isn't monotonic after all (a bug);
	 *  - we got reordered by the lock.
	 *
	 * In both cases this acts as a filter such that the rest of the code
	 * can assume it is monotonic regardless of anything else.
599 600 601 602
	 */
	if (prev->stime + prev->utime >= rtime)
		goto out;

603 604 605 606 607
	stime = curr->stime;
	utime = curr->utime;

	if (utime == 0) {
		stime = rtime;
608 609
		goto update;
	}
610

611 612 613
	if (stime == 0) {
		utime = rtime;
		goto update;
614
	}
615

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	stime = scale_stime((__force u64)stime, (__force u64)rtime,
			    (__force u64)(stime + utime));

	/*
	 * Make sure stime doesn't go backwards; this preserves monotonicity
	 * for utime because rtime is monotonic.
	 *
	 *  utime_i+1 = rtime_i+1 - stime_i
	 *            = rtime_i+1 - (rtime_i - utime_i)
	 *            = (rtime_i+1 - rtime_i) + utime_i
	 *            >= utime_i
	 */
	if (stime < prev->stime)
		stime = prev->stime;
	utime = rtime - stime;

	/*
	 * Make sure utime doesn't go backwards; this still preserves
	 * monotonicity for stime, analogous argument to above.
	 */
	if (utime < prev->utime) {
		utime = prev->utime;
		stime = rtime - utime;
	}
640

641 642 643
update:
	prev->stime = stime;
	prev->utime = utime;
644
out:
645 646
	*ut = prev->utime;
	*st = prev->stime;
647
	raw_spin_unlock_irqrestore(&prev->lock, flags);
648
}
649

650 651 652 653 654 655
void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
	struct task_cputime cputime = {
		.sum_exec_runtime = p->se.sum_exec_runtime,
	};

656
	task_cputime(p, &cputime.utime, &cputime.stime);
657
	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
658
}
659
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
660

661
void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
662 663 664 665
{
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);
666
	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
667
}
668
#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
669 670

#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
671 672 673 674
static unsigned long long vtime_delta(struct task_struct *tsk)
{
	unsigned long long clock;

675
	clock = local_clock();
676 677
	if (clock < tsk->vtime_snap)
		return 0;
678

679 680 681 682
	return clock - tsk->vtime_snap;
}

static cputime_t get_vtime_delta(struct task_struct *tsk)
683
{
684
	unsigned long long delta = vtime_delta(tsk);
685

686
	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
687
	tsk->vtime_snap += delta;
688 689 690 691 692

	/* CHECKME: always safe to convert nsecs to cputime? */
	return nsecs_to_cputime(delta);
}

693 694 695 696 697 698 699
static void __vtime_account_system(struct task_struct *tsk)
{
	cputime_t delta_cpu = get_vtime_delta(tsk);

	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
}

700 701
void vtime_account_system(struct task_struct *tsk)
{
702
	write_seqcount_begin(&tsk->vtime_seqcount);
703
	__vtime_account_system(tsk);
704
	write_seqcount_end(&tsk->vtime_seqcount);
705
}
706

707
void vtime_gen_account_irq_exit(struct task_struct *tsk)
708
{
709
	write_seqcount_begin(&tsk->vtime_seqcount);
710
	__vtime_account_system(tsk);
711 712
	if (context_tracking_in_user())
		tsk->vtime_snap_whence = VTIME_USER;
713
	write_seqcount_end(&tsk->vtime_seqcount);
714 715 716 717
}

void vtime_account_user(struct task_struct *tsk)
{
718 719
	cputime_t delta_cpu;

720
	write_seqcount_begin(&tsk->vtime_seqcount);
721
	delta_cpu = get_vtime_delta(tsk);
722
	tsk->vtime_snap_whence = VTIME_SYS;
723
	account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
724
	write_seqcount_end(&tsk->vtime_seqcount);
725 726 727 728
}

void vtime_user_enter(struct task_struct *tsk)
{
729
	write_seqcount_begin(&tsk->vtime_seqcount);
730
	__vtime_account_system(tsk);
731
	tsk->vtime_snap_whence = VTIME_USER;
732
	write_seqcount_end(&tsk->vtime_seqcount);
733 734 735 736
}

void vtime_guest_enter(struct task_struct *tsk)
{
737 738 739 740 741 742 743
	/*
	 * The flags must be updated under the lock with
	 * the vtime_snap flush and update.
	 * That enforces a right ordering and update sequence
	 * synchronization against the reader (task_gtime())
	 * that can thus safely catch up with a tickless delta.
	 */
744
	write_seqcount_begin(&tsk->vtime_seqcount);
745 746
	__vtime_account_system(tsk);
	current->flags |= PF_VCPU;
747
	write_seqcount_end(&tsk->vtime_seqcount);
748
}
749
EXPORT_SYMBOL_GPL(vtime_guest_enter);
750 751 752

void vtime_guest_exit(struct task_struct *tsk)
{
753
	write_seqcount_begin(&tsk->vtime_seqcount);
754 755
	__vtime_account_system(tsk);
	current->flags &= ~PF_VCPU;
756
	write_seqcount_end(&tsk->vtime_seqcount);
757
}
758
EXPORT_SYMBOL_GPL(vtime_guest_exit);
759 760 761

void vtime_account_idle(struct task_struct *tsk)
{
762
	cputime_t delta_cpu = get_vtime_delta(tsk);
763 764 765

	account_idle_time(delta_cpu);
}
766

767 768
void arch_vtime_task_switch(struct task_struct *prev)
{
769
	write_seqcount_begin(&prev->vtime_seqcount);
770
	prev->vtime_snap_whence = VTIME_INACTIVE;
771
	write_seqcount_end(&prev->vtime_seqcount);
772

773
	write_seqcount_begin(&current->vtime_seqcount);
774
	current->vtime_snap_whence = VTIME_SYS;
775
	current->vtime_snap = sched_clock_cpu(smp_processor_id());
776
	write_seqcount_end(&current->vtime_seqcount);
777 778
}

779
void vtime_init_idle(struct task_struct *t, int cpu)
780 781 782
{
	unsigned long flags;

783 784
	local_irq_save(flags);
	write_seqcount_begin(&t->vtime_seqcount);
785
	t->vtime_snap_whence = VTIME_SYS;
786
	t->vtime_snap = sched_clock_cpu(cpu);
787 788
	write_seqcount_end(&t->vtime_seqcount);
	local_irq_restore(flags);
789 790 791 792 793 794 795
}

cputime_t task_gtime(struct task_struct *t)
{
	unsigned int seq;
	cputime_t gtime;

796
	if (!vtime_accounting_enabled())
797 798
		return t->gtime;

799
	do {
800
		seq = read_seqcount_begin(&t->vtime_seqcount);
801 802

		gtime = t->gtime;
803
		if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
804 805
			gtime += vtime_delta(t);

806
	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828

	return gtime;
}

/*
 * Fetch cputime raw values from fields of task_struct and
 * add up the pending nohz execution time since the last
 * cputime snapshot.
 */
static void
fetch_task_cputime(struct task_struct *t,
		   cputime_t *u_dst, cputime_t *s_dst,
		   cputime_t *u_src, cputime_t *s_src,
		   cputime_t *udelta, cputime_t *sdelta)
{
	unsigned int seq;
	unsigned long long delta;

	do {
		*udelta = 0;
		*sdelta = 0;

829
		seq = read_seqcount_begin(&t->vtime_seqcount);
830 831 832 833 834 835 836

		if (u_dst)
			*u_dst = *u_src;
		if (s_dst)
			*s_dst = *s_src;

		/* Task is sleeping, nothing to add */
837
		if (t->vtime_snap_whence == VTIME_INACTIVE ||
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
		    is_idle_task(t))
			continue;

		delta = vtime_delta(t);

		/*
		 * Task runs either in user or kernel space, add pending nohz time to
		 * the right place.
		 */
		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
			*udelta = delta;
		} else {
			if (t->vtime_snap_whence == VTIME_SYS)
				*sdelta = delta;
		}
853
	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
854 855 856 857 858 859 860
}


void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
{
	cputime_t udelta, sdelta;

861
	if (!vtime_accounting_enabled()) {
862 863 864 865 866 867 868
		if (utime)
			*utime = t->utime;
		if (stime)
			*stime = t->stime;
		return;
	}

869 870 871 872 873 874 875 876 877 878 879 880 881
	fetch_task_cputime(t, utime, stime, &t->utime,
			   &t->stime, &udelta, &sdelta);
	if (utime)
		*utime += udelta;
	if (stime)
		*stime += sdelta;
}

void task_cputime_scaled(struct task_struct *t,
			 cputime_t *utimescaled, cputime_t *stimescaled)
{
	cputime_t udelta, sdelta;

882
	if (!vtime_accounting_enabled()) {
883 884 885 886 887 888 889
		if (utimescaled)
			*utimescaled = t->utimescaled;
		if (stimescaled)
			*stimescaled = t->stimescaled;
		return;
	}

890 891 892 893 894 895 896
	fetch_task_cputime(t, utimescaled, stimescaled,
			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
	if (utimescaled)
		*utimescaled += cputime_to_scaled(udelta);
	if (stimescaled)
		*stimescaled += cputime_to_scaled(sdelta);
}
897
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */