cputime.c 23.0 KB
Newer Older
1 2 3 4 5
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/tsacct_kern.h>
#include <linux/kernel_stat.h>
#include <linux/static_key.h>
6
#include <linux/context_tracking.h>
7
#include "sched.h"
8 9 10
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
11 12 13 14 15 16


#ifdef CONFIG_IRQ_TIME_ACCOUNTING

/*
 * There are no locks covering percpu hardirq/softirq time.
17
 * They are only modified in vtime_account, on corresponding CPU
18 19 20
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
21
 * race with irq/vtime_account on this CPU. We would either get old
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
 */
DEFINE_PER_CPU(u64, cpu_hardirq_time);
DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

#ifndef CONFIG_64BIT
DEFINE_PER_CPU(seqcount_t, irq_time_seq);
#endif /* CONFIG_64BIT */

/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
50
void irqtime_account_irq(struct task_struct *curr)
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
{
	s64 delta;
	int cpu;

	if (!sched_clock_irqtime)
		return;

	cpu = smp_processor_id();
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

	irq_time_write_begin();
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
		__this_cpu_add(cpu_hardirq_time, delta);
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
		__this_cpu_add(cpu_softirq_time, delta);

	irq_time_write_end();
}
76
EXPORT_SYMBOL_GPL(irqtime_account_irq);
77

78
static cputime_t irqtime_account_hi_update(cputime_t maxtime)
79 80 81
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;
	unsigned long flags;
82
	cputime_t irq_cputime;
83 84

	local_irq_save(flags);
85 86 87 88
	irq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_hardirq_time)) -
		      cpustat[CPUTIME_IRQ];
	irq_cputime = min(irq_cputime, maxtime);
	cpustat[CPUTIME_IRQ] += irq_cputime;
89
	local_irq_restore(flags);
90
	return irq_cputime;
91 92
}

93
static cputime_t irqtime_account_si_update(cputime_t maxtime)
94 95 96
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;
	unsigned long flags;
97
	cputime_t softirq_cputime;
98 99

	local_irq_save(flags);
100 101 102 103
	softirq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_softirq_time)) -
			  cpustat[CPUTIME_SOFTIRQ];
	softirq_cputime = min(softirq_cputime, maxtime);
	cpustat[CPUTIME_SOFTIRQ] += softirq_cputime;
104
	local_irq_restore(flags);
105
	return softirq_cputime;
106 107 108 109 110 111
}

#else /* CONFIG_IRQ_TIME_ACCOUNTING */

#define sched_clock_irqtime	(0)

112 113 114 115 116 117 118 119 120 121
static cputime_t irqtime_account_hi_update(cputime_t dummy)
{
	return 0;
}

static cputime_t irqtime_account_si_update(cputime_t dummy)
{
	return 0;
}

122 123 124 125 126 127 128 129 130 131 132
#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */

static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
{
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
133
	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
134

135
	cpuacct_account_field(p, index, tmp);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 */
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
{
	int index;

	/* Add user time to process. */
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
	account_group_user_time(p, cputime);

154
	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
155 156 157 158 159

	/* Add user time to cpustat. */
	task_group_account_field(p, index, (__force u64) cputime);

	/* Account for user time used */
160
	acct_account_cputime(p);
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
}

/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 */
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;

	/* Add guest time to process. */
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
	account_group_user_time(p, cputime);
	p->gtime += cputime;

	/* Add guest time to cpustat. */
181
	if (task_nice(p) > 0) {
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
		cpustat[CPUTIME_NICE] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
	} else {
		cpustat[CPUTIME_USER] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
	}
}

/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
			cputime_t cputime_scaled, int index)
{
	/* Add system time to process. */
	p->stime += cputime;
	p->stimescaled += cputime_scaled;
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
	task_group_account_field(p, index, (__force u64) cputime);

	/* Account for system time used */
210
	acct_account_cputime(p);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime, cputime_t cputime_scaled)
{
	int index;

	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime, cputime_scaled);
		return;
	}

	if (hardirq_count() - hardirq_offset)
		index = CPUTIME_IRQ;
	else if (in_serving_softirq())
		index = CPUTIME_SOFTIRQ;
	else
		index = CPUTIME_SYSTEM;

	__account_system_time(p, cputime, cputime_scaled, index);
}

/*
 * Account for involuntary wait time.
 * @cputime: the cpu time spent in involuntary wait
 */
void account_steal_time(cputime_t cputime)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;

	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
}

/*
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
 */
void account_idle_time(cputime_t cputime)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;
	struct rq *rq = this_rq();

	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
	else
		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
}

266
static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
267 268 269
{
#ifdef CONFIG_PARAVIRT
	if (static_key_false(&paravirt_steal_enabled)) {
270
		cputime_t steal_cputime;
271
		u64 steal;
272 273 274 275

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

276 277 278
		steal_cputime = min(nsecs_to_cputime(steal), maxtime);
		account_steal_time(steal_cputime);
		this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime);
279

280
		return steal_cputime;
281 282
	}
#endif
283
	return 0;
284 285
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
/*
 * Account how much elapsed time was spent in steal, irq, or softirq time.
 */
static inline cputime_t account_other_time(cputime_t max)
{
	cputime_t accounted;

	accounted = steal_account_process_time(max);

	if (accounted < max)
		accounted += irqtime_account_hi_update(max - accounted);

	if (accounted < max)
		accounted += irqtime_account_si_update(max - accounted);

	return accounted;
}

304 305 306 307 308 309 310
/*
 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 * tasks (sum on group iteration) belonging to @tsk's group.
 */
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
{
	struct signal_struct *sig = tsk->signal;
311
	cputime_t utime, stime;
312
	struct task_struct *t;
313
	unsigned int seq, nextseq;
314
	unsigned long flags;
315 316

	rcu_read_lock();
317 318 319 320
	/* Attempt a lockless read on the first round. */
	nextseq = 0;
	do {
		seq = nextseq;
321
		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
322 323 324 325 326 327 328 329 330 331 332 333 334
		times->utime = sig->utime;
		times->stime = sig->stime;
		times->sum_exec_runtime = sig->sum_sched_runtime;

		for_each_thread(tsk, t) {
			task_cputime(t, &utime, &stime);
			times->utime += utime;
			times->stime += stime;
			times->sum_exec_runtime += task_sched_runtime(t);
		}
		/* If lockless access failed, take the lock. */
		nextseq = 1;
	} while (need_seqretry(&sig->stats_lock, seq));
335
	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
336 337 338
	rcu_read_unlock();
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
362
					 struct rq *rq, int ticks)
363
{
364 365
	u64 cputime = (__force u64) cputime_one_jiffy * ticks;
	cputime_t scaled, other;
366

367 368 369 370 371 372 373 374 375
	/*
	 * When returning from idle, many ticks can get accounted at
	 * once, including some ticks of steal, irq, and softirq time.
	 * Subtract those ticks from the amount of time accounted to
	 * idle, or potentially user or system time. Due to rounding,
	 * other time can exceed ticks occasionally.
	 */
	other = account_other_time(cputime);
	if (other >= cputime)
376
		return;
377 378
	cputime -= other;
	scaled = cputime_to_scaled(cputime);
379

380
	if (this_cpu_ksoftirqd() == p) {
381 382 383 384 385
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
386
		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
387
	} else if (user_tick) {
388
		account_user_time(p, cputime, scaled);
389
	} else if (p == rq->idle) {
390
		account_idle_time(cputime);
391
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
392
		account_guest_time(p, cputime, scaled);
393
	} else {
394
		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
395 396 397 398 399 400 401
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	struct rq *rq = this_rq();

402
	irqtime_account_process_tick(current, 0, rq, ticks);
403 404
}
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
405 406
static inline void irqtime_account_idle_ticks(int ticks) {}
static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
407
						struct rq *rq, int nr_ticks) {}
408 409 410 411 412 413
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
414

415
#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
416
void vtime_common_task_switch(struct task_struct *prev)
417 418 419 420 421 422
{
	if (is_idle_task(prev))
		vtime_account_idle(prev);
	else
		vtime_account_system(prev);

423
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
424
	vtime_account_user(prev);
425
#endif
426 427 428
	arch_vtime_task_switch(prev);
}
#endif
429

430 431 432 433
#endif /* CONFIG_VIRT_CPU_ACCOUNTING */


#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
434 435 436
/*
 * Archs that account the whole time spent in the idle task
 * (outside irq) as idle time can rely on this and just implement
437
 * vtime_account_system() and vtime_account_idle(). Archs that
438 439 440 441 442
 * have other meaning of the idle time (s390 only includes the
 * time spent by the CPU when it's in low power mode) must override
 * vtime_account().
 */
#ifndef __ARCH_HAS_VTIME_ACCOUNT
443
void vtime_account_irq_enter(struct task_struct *tsk)
444
{
445 446 447 448
	if (!in_interrupt() && is_idle_task(tsk))
		vtime_account_idle(tsk);
	else
		vtime_account_system(tsk);
449
}
450
EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
451
#endif /* __ARCH_HAS_VTIME_ACCOUNT */
452 453 454 455 456 457

void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
	*ut = p->utime;
	*st = p->stime;
}
458
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
459

460 461 462
void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
	struct task_cputime cputime;
463

464 465 466 467 468 469 470 471 472 473 474 475
	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
}
#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
476
{
477
	cputime_t cputime, scaled, steal;
478
	struct rq *rq = this_rq();
479

480
	if (vtime_accounting_cpu_enabled())
481 482 483
		return;

	if (sched_clock_irqtime) {
484
		irqtime_account_process_tick(p, user_tick, rq, 1);
485 486 487
		return;
	}

488 489 490 491
	cputime = cputime_one_jiffy;
	steal = steal_account_process_time(cputime);

	if (steal >= cputime)
492
		return;
493

494 495 496
	cputime -= steal;
	scaled = cputime_to_scaled(cputime);

497
	if (user_tick)
498
		account_user_time(p, cputime, scaled);
499
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
500
		account_system_time(p, HARDIRQ_OFFSET, cputime, scaled);
501
	else
502
		account_idle_time(cputime);
503
}
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518
/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

	account_idle_time(jiffies_to_cputime(ticks));
}
519

520
/*
521 522
 * Perform (stime * rtime) / total, but avoid multiplication overflow by
 * loosing precision when the numbers are big.
523 524
 */
static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
525
{
526
	u64 scaled;
527

528 529
	for (;;) {
		/* Make sure "rtime" is the bigger of stime/rtime */
530 531
		if (stime > rtime)
			swap(rtime, stime);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553

		/* Make sure 'total' fits in 32 bits */
		if (total >> 32)
			goto drop_precision;

		/* Does rtime (and thus stime) fit in 32 bits? */
		if (!(rtime >> 32))
			break;

		/* Can we just balance rtime/stime rather than dropping bits? */
		if (stime >> 31)
			goto drop_precision;

		/* We can grow stime and shrink rtime and try to make them both fit */
		stime <<= 1;
		rtime >>= 1;
		continue;

drop_precision:
		/* We drop from rtime, it has more bits than stime */
		rtime >>= 1;
		total >>= 1;
554
	}
555

556 557 558 559 560
	/*
	 * Make sure gcc understands that this is a 32x32->64 multiply,
	 * followed by a 64/32->64 divide.
	 */
	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
561
	return (__force cputime_t) scaled;
562 563
}

564
/*
565 566
 * Adjust tick based cputime random precision against scheduler runtime
 * accounting.
567
 *
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
 * Tick based cputime accounting depend on random scheduling timeslices of a
 * task to be interrupted or not by the timer.  Depending on these
 * circumstances, the number of these interrupts may be over or
 * under-optimistic, matching the real user and system cputime with a variable
 * precision.
 *
 * Fix this by scaling these tick based values against the total runtime
 * accounted by the CFS scheduler.
 *
 * This code provides the following guarantees:
 *
 *   stime + utime == rtime
 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 *
 * Assuming that rtime_i+1 >= rtime_i.
583
 */
584
static void cputime_adjust(struct task_cputime *curr,
585
			   struct prev_cputime *prev,
586
			   cputime_t *ut, cputime_t *st)
587
{
588
	cputime_t rtime, stime, utime;
589
	unsigned long flags;
590

591 592
	/* Serialize concurrent callers such that we can honour our guarantees */
	raw_spin_lock_irqsave(&prev->lock, flags);
593
	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
594

595
	/*
596 597 598 599 600 601
	 * This is possible under two circumstances:
	 *  - rtime isn't monotonic after all (a bug);
	 *  - we got reordered by the lock.
	 *
	 * In both cases this acts as a filter such that the rest of the code
	 * can assume it is monotonic regardless of anything else.
602 603 604 605
	 */
	if (prev->stime + prev->utime >= rtime)
		goto out;

606 607 608 609 610
	stime = curr->stime;
	utime = curr->utime;

	if (utime == 0) {
		stime = rtime;
611 612
		goto update;
	}
613

614 615 616
	if (stime == 0) {
		utime = rtime;
		goto update;
617
	}
618

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
	stime = scale_stime((__force u64)stime, (__force u64)rtime,
			    (__force u64)(stime + utime));

	/*
	 * Make sure stime doesn't go backwards; this preserves monotonicity
	 * for utime because rtime is monotonic.
	 *
	 *  utime_i+1 = rtime_i+1 - stime_i
	 *            = rtime_i+1 - (rtime_i - utime_i)
	 *            = (rtime_i+1 - rtime_i) + utime_i
	 *            >= utime_i
	 */
	if (stime < prev->stime)
		stime = prev->stime;
	utime = rtime - stime;

	/*
	 * Make sure utime doesn't go backwards; this still preserves
	 * monotonicity for stime, analogous argument to above.
	 */
	if (utime < prev->utime) {
		utime = prev->utime;
		stime = rtime - utime;
	}
643

644 645 646
update:
	prev->stime = stime;
	prev->utime = utime;
647
out:
648 649
	*ut = prev->utime;
	*st = prev->stime;
650
	raw_spin_unlock_irqrestore(&prev->lock, flags);
651
}
652

653 654 655 656 657 658
void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
	struct task_cputime cputime = {
		.sum_exec_runtime = p->se.sum_exec_runtime,
	};

659
	task_cputime(p, &cputime.utime, &cputime.stime);
660
	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
661
}
662
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
663

664
void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
665 666 667 668
{
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);
669
	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
670
}
671
#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
672 673

#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
674
static cputime_t vtime_delta(struct task_struct *tsk)
675
{
676
	unsigned long now = READ_ONCE(jiffies);
677

678
	if (time_before(now, (unsigned long)tsk->vtime_snap))
679
		return 0;
680

681
	return jiffies_to_cputime(now - tsk->vtime_snap);
682 683 684
}

static cputime_t get_vtime_delta(struct task_struct *tsk)
685
{
686
	unsigned long now = READ_ONCE(jiffies);
687
	cputime_t delta, other;
688

689
	delta = jiffies_to_cputime(now - tsk->vtime_snap);
690
	other = account_other_time(delta);
691
	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
692
	tsk->vtime_snap = now;
693

694
	return delta - other;
695 696
}

697 698 699 700 701 702 703
static void __vtime_account_system(struct task_struct *tsk)
{
	cputime_t delta_cpu = get_vtime_delta(tsk);

	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
}

704 705
void vtime_account_system(struct task_struct *tsk)
{
706 707 708
	if (!vtime_delta(tsk))
		return;

709
	write_seqcount_begin(&tsk->vtime_seqcount);
710
	__vtime_account_system(tsk);
711
	write_seqcount_end(&tsk->vtime_seqcount);
712
}
713

714 715
void vtime_account_user(struct task_struct *tsk)
{
716 717
	cputime_t delta_cpu;

718
	write_seqcount_begin(&tsk->vtime_seqcount);
719
	tsk->vtime_snap_whence = VTIME_SYS;
720 721 722 723
	if (vtime_delta(tsk)) {
		delta_cpu = get_vtime_delta(tsk);
		account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
	}
724
	write_seqcount_end(&tsk->vtime_seqcount);
725 726 727 728
}

void vtime_user_enter(struct task_struct *tsk)
{
729
	write_seqcount_begin(&tsk->vtime_seqcount);
730 731
	if (vtime_delta(tsk))
		__vtime_account_system(tsk);
732
	tsk->vtime_snap_whence = VTIME_USER;
733
	write_seqcount_end(&tsk->vtime_seqcount);
734 735 736 737
}

void vtime_guest_enter(struct task_struct *tsk)
{
738 739 740 741 742 743 744
	/*
	 * The flags must be updated under the lock with
	 * the vtime_snap flush and update.
	 * That enforces a right ordering and update sequence
	 * synchronization against the reader (task_gtime())
	 * that can thus safely catch up with a tickless delta.
	 */
745
	write_seqcount_begin(&tsk->vtime_seqcount);
746 747
	if (vtime_delta(tsk))
		__vtime_account_system(tsk);
748
	current->flags |= PF_VCPU;
749
	write_seqcount_end(&tsk->vtime_seqcount);
750
}
751
EXPORT_SYMBOL_GPL(vtime_guest_enter);
752 753 754

void vtime_guest_exit(struct task_struct *tsk)
{
755
	write_seqcount_begin(&tsk->vtime_seqcount);
756 757
	__vtime_account_system(tsk);
	current->flags &= ~PF_VCPU;
758
	write_seqcount_end(&tsk->vtime_seqcount);
759
}
760
EXPORT_SYMBOL_GPL(vtime_guest_exit);
761 762 763

void vtime_account_idle(struct task_struct *tsk)
{
764
	cputime_t delta_cpu = get_vtime_delta(tsk);
765 766 767

	account_idle_time(delta_cpu);
}
768

769 770
void arch_vtime_task_switch(struct task_struct *prev)
{
771
	write_seqcount_begin(&prev->vtime_seqcount);
772
	prev->vtime_snap_whence = VTIME_INACTIVE;
773
	write_seqcount_end(&prev->vtime_seqcount);
774

775
	write_seqcount_begin(&current->vtime_seqcount);
776
	current->vtime_snap_whence = VTIME_SYS;
777
	current->vtime_snap = jiffies;
778
	write_seqcount_end(&current->vtime_seqcount);
779 780
}

781
void vtime_init_idle(struct task_struct *t, int cpu)
782 783 784
{
	unsigned long flags;

785 786
	local_irq_save(flags);
	write_seqcount_begin(&t->vtime_seqcount);
787
	t->vtime_snap_whence = VTIME_SYS;
788
	t->vtime_snap = jiffies;
789 790
	write_seqcount_end(&t->vtime_seqcount);
	local_irq_restore(flags);
791 792 793 794 795 796 797
}

cputime_t task_gtime(struct task_struct *t)
{
	unsigned int seq;
	cputime_t gtime;

798
	if (!vtime_accounting_enabled())
799 800
		return t->gtime;

801
	do {
802
		seq = read_seqcount_begin(&t->vtime_seqcount);
803 804

		gtime = t->gtime;
805
		if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
806 807
			gtime += vtime_delta(t);

808
	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

	return gtime;
}

/*
 * Fetch cputime raw values from fields of task_struct and
 * add up the pending nohz execution time since the last
 * cputime snapshot.
 */
static void
fetch_task_cputime(struct task_struct *t,
		   cputime_t *u_dst, cputime_t *s_dst,
		   cputime_t *u_src, cputime_t *s_src,
		   cputime_t *udelta, cputime_t *sdelta)
{
	unsigned int seq;
	unsigned long long delta;

	do {
		*udelta = 0;
		*sdelta = 0;

831
		seq = read_seqcount_begin(&t->vtime_seqcount);
832 833 834 835 836 837 838

		if (u_dst)
			*u_dst = *u_src;
		if (s_dst)
			*s_dst = *s_src;

		/* Task is sleeping, nothing to add */
839
		if (t->vtime_snap_whence == VTIME_INACTIVE ||
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
		    is_idle_task(t))
			continue;

		delta = vtime_delta(t);

		/*
		 * Task runs either in user or kernel space, add pending nohz time to
		 * the right place.
		 */
		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
			*udelta = delta;
		} else {
			if (t->vtime_snap_whence == VTIME_SYS)
				*sdelta = delta;
		}
855
	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
856 857 858 859 860 861 862
}


void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
{
	cputime_t udelta, sdelta;

863
	if (!vtime_accounting_enabled()) {
864 865 866 867 868 869 870
		if (utime)
			*utime = t->utime;
		if (stime)
			*stime = t->stime;
		return;
	}

871 872 873 874 875 876 877 878 879 880 881 882 883
	fetch_task_cputime(t, utime, stime, &t->utime,
			   &t->stime, &udelta, &sdelta);
	if (utime)
		*utime += udelta;
	if (stime)
		*stime += sdelta;
}

void task_cputime_scaled(struct task_struct *t,
			 cputime_t *utimescaled, cputime_t *stimescaled)
{
	cputime_t udelta, sdelta;

884
	if (!vtime_accounting_enabled()) {
885 886 887 888 889 890 891
		if (utimescaled)
			*utimescaled = t->utimescaled;
		if (stimescaled)
			*stimescaled = t->stimescaled;
		return;
	}

892 893 894 895 896 897 898
	fetch_task_cputime(t, utimescaled, stimescaled,
			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
	if (utimescaled)
		*utimescaled += cputime_to_scaled(udelta);
	if (stimescaled)
		*stimescaled += cputime_to_scaled(sdelta);
}
899
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */