cputime.c 22.3 KB
Newer Older
1 2 3
/*
 * Simple CPU accounting cgroup controller
 */
4 5 6 7 8 9
#include "sched.h"

#ifdef CONFIG_IRQ_TIME_ACCOUNTING

/*
 * There are no locks covering percpu hardirq/softirq time.
10
 * They are only modified in vtime_account, on corresponding CPU
11 12 13
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
14
 * race with irq/vtime_account on this CPU. We would either get old
15 16 17 18
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
 */
19
DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
20 21 22 23 24 25 26 27 28 29 30 31 32

static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

33 34 35 36 37 38 39 40 41 42 43 44
static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
				  enum cpu_usage_stat idx)
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;

	u64_stats_update_begin(&irqtime->sync);
	cpustat[idx] += delta;
	irqtime->total += delta;
	irqtime->tick_delta += delta;
	u64_stats_update_end(&irqtime->sync);
}

45 46 47 48
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
49
void irqtime_account_irq(struct task_struct *curr)
50
{
51
	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
52 53 54 55 56 57 58
	s64 delta;
	int cpu;

	if (!sched_clock_irqtime)
		return;

	cpu = smp_processor_id();
59 60
	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
	irqtime->irq_start_time += delta;
61 62 63 64 65 66 67

	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
68 69 70 71
	if (hardirq_count())
		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
72
}
73
EXPORT_SYMBOL_GPL(irqtime_account_irq);
74

75
static u64 irqtime_tick_accounted(u64 maxtime)
76
{
77
	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
78
	u64 delta;
79

80 81
	delta = min(irqtime->tick_delta, maxtime);
	irqtime->tick_delta -= delta;
82

83
	return delta;
84 85 86 87 88 89
}

#else /* CONFIG_IRQ_TIME_ACCOUNTING */

#define sched_clock_irqtime	(0)

90
static u64 irqtime_tick_accounted(u64 dummy)
91 92 93 94
{
	return 0;
}

95 96 97 98 99 100 101 102 103 104 105
#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */

static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
{
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
106
	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
107

108
	cgroup_account_cputime_field(p, index, tmp);
109 110 111
}

/*
112 113 114
 * Account user CPU time to a process.
 * @p: the process that the CPU time gets accounted to
 * @cputime: the CPU time spent in user space since the last update
115
 */
116
void account_user_time(struct task_struct *p, u64 cputime)
117 118 119 120
{
	int index;

	/* Add user time to process. */
121 122
	p->utime += cputime;
	account_group_user_time(p, cputime);
123

124
	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
125 126

	/* Add user time to cpustat. */
127
	task_group_account_field(p, index, cputime);
128 129

	/* Account for user time used */
130
	acct_account_cputime(p);
131 132 133
}

/*
134 135 136
 * Account guest CPU time to a process.
 * @p: the process that the CPU time gets accounted to
 * @cputime: the CPU time spent in virtual machine since the last update
137
 */
138
void account_guest_time(struct task_struct *p, u64 cputime)
139 140 141 142
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;

	/* Add guest time to process. */
143 144 145
	p->utime += cputime;
	account_group_user_time(p, cputime);
	p->gtime += cputime;
146 147

	/* Add guest time to cpustat. */
148
	if (task_nice(p) > 0) {
149 150
		cpustat[CPUTIME_NICE] += cputime;
		cpustat[CPUTIME_GUEST_NICE] += cputime;
151
	} else {
152 153
		cpustat[CPUTIME_USER] += cputime;
		cpustat[CPUTIME_GUEST] += cputime;
154 155 156 157
	}
}

/*
158 159 160
 * Account system CPU time to a process and desired cpustat field
 * @p: the process that the CPU time gets accounted to
 * @cputime: the CPU time spent in kernel space since the last update
161
 * @index: pointer to cpustat field that has to be updated
162
 */
163
void account_system_index_time(struct task_struct *p,
164
			       u64 cputime, enum cpu_usage_stat index)
165 166
{
	/* Add system time to process. */
167 168
	p->stime += cputime;
	account_group_system_time(p, cputime);
169 170

	/* Add system time to cpustat. */
171
	task_group_account_field(p, index, cputime);
172 173

	/* Account for system time used */
174
	acct_account_cputime(p);
175 176 177
}

/*
178 179
 * Account system CPU time to a process.
 * @p: the process that the CPU time gets accounted to
180
 * @hardirq_offset: the offset to subtract from hardirq_count()
181
 * @cputime: the CPU time spent in kernel space since the last update
182
 */
183
void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
184 185 186 187
{
	int index;

	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
188
		account_guest_time(p, cputime);
189 190 191 192 193 194 195 196 197 198
		return;
	}

	if (hardirq_count() - hardirq_offset)
		index = CPUTIME_IRQ;
	else if (in_serving_softirq())
		index = CPUTIME_SOFTIRQ;
	else
		index = CPUTIME_SYSTEM;

199
	account_system_index_time(p, cputime, index);
200 201 202 203
}

/*
 * Account for involuntary wait time.
204
 * @cputime: the CPU time spent in involuntary wait
205
 */
206
void account_steal_time(u64 cputime)
207 208 209
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;

210
	cpustat[CPUTIME_STEAL] += cputime;
211 212 213 214
}

/*
 * Account for idle time.
215
 * @cputime: the CPU time spent in idle wait
216
 */
217
void account_idle_time(u64 cputime)
218 219 220 221 222
{
	u64 *cpustat = kcpustat_this_cpu->cpustat;
	struct rq *rq = this_rq();

	if (atomic_read(&rq->nr_iowait) > 0)
223
		cpustat[CPUTIME_IOWAIT] += cputime;
224
	else
225
		cpustat[CPUTIME_IDLE] += cputime;
226 227
}

228 229 230 231 232
/*
 * When a guest is interrupted for a longer amount of time, missed clock
 * ticks are not redelivered later. Due to that, this function may on
 * occasion account more time than the calling functions think elapsed.
 */
233
static __always_inline u64 steal_account_process_time(u64 maxtime)
234 235 236
{
#ifdef CONFIG_PARAVIRT
	if (static_key_false(&paravirt_steal_enabled)) {
237
		u64 steal;
238 239 240

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;
241 242 243
		steal = min(steal, maxtime);
		account_steal_time(steal);
		this_rq()->prev_steal_time += steal;
244

245
		return steal;
246 247
	}
#endif
248
	return 0;
249 250
}

251 252 253
/*
 * Account how much elapsed time was spent in steal, irq, or softirq time.
 */
254
static inline u64 account_other_time(u64 max)
255
{
256
	u64 accounted;
257

258
	lockdep_assert_irqs_disabled();
259

260 261 262
	accounted = steal_account_process_time(max);

	if (accounted < max)
263
		accounted += irqtime_tick_accounted(max - accounted);
264 265 266 267

	return accounted;
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
#ifdef CONFIG_64BIT
static inline u64 read_sum_exec_runtime(struct task_struct *t)
{
	return t->se.sum_exec_runtime;
}
#else
static u64 read_sum_exec_runtime(struct task_struct *t)
{
	u64 ns;
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(t, &rf);
	ns = t->se.sum_exec_runtime;
	task_rq_unlock(rq, t, &rf);

	return ns;
}
#endif

288 289 290 291 292 293 294
/*
 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 * tasks (sum on group iteration) belonging to @tsk's group.
 */
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
{
	struct signal_struct *sig = tsk->signal;
295
	u64 utime, stime;
296
	struct task_struct *t;
297
	unsigned int seq, nextseq;
298
	unsigned long flags;
299

300 301 302 303 304 305 306 307 308 309 310
	/*
	 * Update current task runtime to account pending time since last
	 * scheduler action or thread_group_cputime() call. This thread group
	 * might have other running tasks on different CPUs, but updating
	 * their runtime can affect syscall performance, so we skip account
	 * those pending times and rely only on values updated on tick or
	 * other scheduler action.
	 */
	if (same_thread_group(current, tsk))
		(void) task_sched_runtime(current);

311
	rcu_read_lock();
312 313 314 315
	/* Attempt a lockless read on the first round. */
	nextseq = 0;
	do {
		seq = nextseq;
316
		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
317 318 319 320 321 322 323 324
		times->utime = sig->utime;
		times->stime = sig->stime;
		times->sum_exec_runtime = sig->sum_sched_runtime;

		for_each_thread(tsk, t) {
			task_cputime(t, &utime, &stime);
			times->utime += utime;
			times->stime += stime;
325
			times->sum_exec_runtime += read_sum_exec_runtime(t);
326 327 328 329
		}
		/* If lockless access failed, take the lock. */
		nextseq = 1;
	} while (need_seqretry(&sig->stats_lock, seq));
330
	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
331 332 333
	rcu_read_unlock();
}

334 335 336
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
337
 * @p: the process that the CPU time gets accounted to
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
357
					 struct rq *rq, int ticks)
358
{
359
	u64 other, cputime = TICK_NSEC * ticks;
360

361 362 363 364 365 366 367
	/*
	 * When returning from idle, many ticks can get accounted at
	 * once, including some ticks of steal, irq, and softirq time.
	 * Subtract those ticks from the amount of time accounted to
	 * idle, or potentially user or system time. Due to rounding,
	 * other time can exceed ticks occasionally.
	 */
368
	other = account_other_time(ULONG_MAX);
369
	if (other >= cputime)
370
		return;
371

372
	cputime -= other;
373

374
	if (this_cpu_ksoftirqd() == p) {
375 376 377 378 379
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
380
		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
381
	} else if (user_tick) {
382
		account_user_time(p, cputime);
383
	} else if (p == rq->idle) {
384
		account_idle_time(cputime);
385
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
386
		account_guest_time(p, cputime);
387
	} else {
388
		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
389 390 391 392 393 394 395
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	struct rq *rq = this_rq();

396
	irqtime_account_process_tick(current, 0, rq, ticks);
397 398
}
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
399
static inline void irqtime_account_idle_ticks(int ticks) { }
400
static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
401
						struct rq *rq, int nr_ticks) { }
402 403 404 405 406 407
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
408
# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
409
void vtime_common_task_switch(struct task_struct *prev)
410 411 412 413 414 415
{
	if (is_idle_task(prev))
		vtime_account_idle(prev);
	else
		vtime_account_system(prev);

416
	vtime_flush(prev);
417 418
	arch_vtime_task_switch(prev);
}
419
# endif
420 421 422 423
#endif /* CONFIG_VIRT_CPU_ACCOUNTING */


#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
424 425 426
/*
 * Archs that account the whole time spent in the idle task
 * (outside irq) as idle time can rely on this and just implement
427
 * vtime_account_system() and vtime_account_idle(). Archs that
428 429 430 431 432
 * have other meaning of the idle time (s390 only includes the
 * time spent by the CPU when it's in low power mode) must override
 * vtime_account().
 */
#ifndef __ARCH_HAS_VTIME_ACCOUNT
433
void vtime_account_irq_enter(struct task_struct *tsk)
434
{
435 436 437 438
	if (!in_interrupt() && is_idle_task(tsk))
		vtime_account_idle(tsk);
	else
		vtime_account_system(tsk);
439
}
440
EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
441
#endif /* __ARCH_HAS_VTIME_ACCOUNT */
442

443 444 445 446 447 448 449
void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
		    u64 *ut, u64 *st)
{
	*ut = curr->utime;
	*st = curr->stime;
}

450
void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
451 452 453 454
{
	*ut = p->utime;
	*st = p->stime;
}
455
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
456

457
void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
458 459
{
	struct task_cputime cputime;
460

461 462 463 464 465
	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
}
466 467 468

#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */

469
/*
470 471
 * Account a single tick of CPU time.
 * @p: the process that the CPU time gets accounted to
472 473 474
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
475
{
476
	u64 cputime, steal;
477
	struct rq *rq = this_rq();
478

479
	if (vtime_accounting_cpu_enabled())
480 481 482
		return;

	if (sched_clock_irqtime) {
483
		irqtime_account_process_tick(p, user_tick, rq, 1);
484 485 486
		return;
	}

487
	cputime = TICK_NSEC;
488
	steal = steal_account_process_time(ULONG_MAX);
489

490
	if (steal >= cputime)
491
		return;
492

493
	cputime -= steal;
494

495
	if (user_tick)
496
		account_user_time(p, cputime);
497
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
498
		account_system_time(p, HARDIRQ_OFFSET, cputime);
499
	else
500
		account_idle_time(cputime);
501
}
502

503 504 505 506 507 508
/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
509
	u64 cputime, steal;
510

511 512 513 514 515
	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

516
	cputime = ticks * TICK_NSEC;
517
	steal = steal_account_process_time(ULONG_MAX);
518 519 520 521 522 523

	if (steal >= cputime)
		return;

	cputime -= steal;
	account_idle_time(cputime);
524
}
525

526
/*
527 528
 * Perform (stime * rtime) / total, but avoid multiplication overflow by
 * loosing precision when the numbers are big.
529
 */
530
static u64 scale_stime(u64 stime, u64 rtime, u64 total)
531
{
532
	u64 scaled;
533

534 535
	for (;;) {
		/* Make sure "rtime" is the bigger of stime/rtime */
536 537
		if (stime > rtime)
			swap(rtime, stime);
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

		/* Make sure 'total' fits in 32 bits */
		if (total >> 32)
			goto drop_precision;

		/* Does rtime (and thus stime) fit in 32 bits? */
		if (!(rtime >> 32))
			break;

		/* Can we just balance rtime/stime rather than dropping bits? */
		if (stime >> 31)
			goto drop_precision;

		/* We can grow stime and shrink rtime and try to make them both fit */
		stime <<= 1;
		rtime >>= 1;
		continue;

drop_precision:
		/* We drop from rtime, it has more bits than stime */
		rtime >>= 1;
		total >>= 1;
560
	}
561

562 563 564 565 566
	/*
	 * Make sure gcc understands that this is a 32x32->64 multiply,
	 * followed by a 64/32->64 divide.
	 */
	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
567
	return scaled;
568 569
}

570
/*
571 572
 * Adjust tick based cputime random precision against scheduler runtime
 * accounting.
573
 *
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
 * Tick based cputime accounting depend on random scheduling timeslices of a
 * task to be interrupted or not by the timer.  Depending on these
 * circumstances, the number of these interrupts may be over or
 * under-optimistic, matching the real user and system cputime with a variable
 * precision.
 *
 * Fix this by scaling these tick based values against the total runtime
 * accounted by the CFS scheduler.
 *
 * This code provides the following guarantees:
 *
 *   stime + utime == rtime
 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 *
 * Assuming that rtime_i+1 >= rtime_i.
589
 */
590 591
void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
		    u64 *ut, u64 *st)
592
{
593
	u64 rtime, stime, utime;
594
	unsigned long flags;
595

596 597
	/* Serialize concurrent callers such that we can honour our guarantees */
	raw_spin_lock_irqsave(&prev->lock, flags);
598
	rtime = curr->sum_exec_runtime;
599

600
	/*
601 602 603 604 605 606
	 * This is possible under two circumstances:
	 *  - rtime isn't monotonic after all (a bug);
	 *  - we got reordered by the lock.
	 *
	 * In both cases this acts as a filter such that the rest of the code
	 * can assume it is monotonic regardless of anything else.
607 608 609 610
	 */
	if (prev->stime + prev->utime >= rtime)
		goto out;

611 612 613
	stime = curr->stime;
	utime = curr->utime;

614
	/*
615 616 617
	 * If either stime or utime are 0, assume all runtime is userspace.
	 * Once a task gets some ticks, the monotonicy code at 'update:'
	 * will ensure things converge to the observed ratio.
618
	 */
619 620 621
	if (stime == 0) {
		utime = rtime;
		goto update;
622
	}
623

624 625 626 627 628 629 630 631
	if (utime == 0) {
		stime = rtime;
		goto update;
	}

	stime = scale_stime(stime, rtime, stime + utime);

update:
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
	/*
	 * Make sure stime doesn't go backwards; this preserves monotonicity
	 * for utime because rtime is monotonic.
	 *
	 *  utime_i+1 = rtime_i+1 - stime_i
	 *            = rtime_i+1 - (rtime_i - utime_i)
	 *            = (rtime_i+1 - rtime_i) + utime_i
	 *            >= utime_i
	 */
	if (stime < prev->stime)
		stime = prev->stime;
	utime = rtime - stime;

	/*
	 * Make sure utime doesn't go backwards; this still preserves
	 * monotonicity for stime, analogous argument to above.
	 */
	if (utime < prev->utime) {
		utime = prev->utime;
		stime = rtime - utime;
	}
653

654 655
	prev->stime = stime;
	prev->utime = utime;
656
out:
657 658
	*ut = prev->utime;
	*st = prev->stime;
659
	raw_spin_unlock_irqrestore(&prev->lock, flags);
660
}
661

662
void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
663 664 665 666 667
{
	struct task_cputime cputime = {
		.sum_exec_runtime = p->se.sum_exec_runtime,
	};

668
	task_cputime(p, &cputime.utime, &cputime.stime);
669
	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
670
}
671
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
672

673
void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
674 675 676 677
{
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);
678
	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
679
}
680
#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
681 682

#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
683
static u64 vtime_delta(struct vtime *vtime)
684
{
685
	unsigned long long clock;
686

687
	clock = sched_clock();
688
	if (clock < vtime->starttime)
689
		return 0;
690

691
	return clock - vtime->starttime;
692 693
}

694
static u64 get_vtime_delta(struct vtime *vtime)
695
{
696 697
	u64 delta = vtime_delta(vtime);
	u64 other;
698

699 700 701 702 703 704 705
	/*
	 * Unlike tick based timing, vtime based timing never has lost
	 * ticks, and no need for steal time accounting to make up for
	 * lost ticks. Vtime accounts a rounded version of actual
	 * elapsed time. Limit account_other_time to prevent rounding
	 * errors from causing elapsed vtime to go negative.
	 */
706
	other = account_other_time(delta);
707
	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
708
	vtime->starttime += delta;
709

710
	return delta - other;
711 712
}

713 714
static void __vtime_account_system(struct task_struct *tsk,
				   struct vtime *vtime)
715
{
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	vtime->stime += get_vtime_delta(vtime);
	if (vtime->stime >= TICK_NSEC) {
		account_system_time(tsk, irq_count(), vtime->stime);
		vtime->stime = 0;
	}
}

static void vtime_account_guest(struct task_struct *tsk,
				struct vtime *vtime)
{
	vtime->gtime += get_vtime_delta(vtime);
	if (vtime->gtime >= TICK_NSEC) {
		account_guest_time(tsk, vtime->gtime);
		vtime->gtime = 0;
	}
731 732
}

733 734
void vtime_account_system(struct task_struct *tsk)
{
735 736 737
	struct vtime *vtime = &tsk->vtime;

	if (!vtime_delta(vtime))
738 739
		return;

740
	write_seqcount_begin(&vtime->seqcount);
741 742 743 744 745
	/* We might have scheduled out from guest path */
	if (current->flags & PF_VCPU)
		vtime_account_guest(tsk, vtime);
	else
		__vtime_account_system(tsk, vtime);
746
	write_seqcount_end(&vtime->seqcount);
747
}
748

749
void vtime_user_enter(struct task_struct *tsk)
750
{
751 752 753
	struct vtime *vtime = &tsk->vtime;

	write_seqcount_begin(&vtime->seqcount);
754
	__vtime_account_system(tsk, vtime);
755 756
	vtime->state = VTIME_USER;
	write_seqcount_end(&vtime->seqcount);
757 758
}

759
void vtime_user_exit(struct task_struct *tsk)
760
{
761 762 763
	struct vtime *vtime = &tsk->vtime;

	write_seqcount_begin(&vtime->seqcount);
764 765 766 767 768
	vtime->utime += get_vtime_delta(vtime);
	if (vtime->utime >= TICK_NSEC) {
		account_user_time(tsk, vtime->utime);
		vtime->utime = 0;
	}
769 770
	vtime->state = VTIME_SYS;
	write_seqcount_end(&vtime->seqcount);
771 772 773 774
}

void vtime_guest_enter(struct task_struct *tsk)
{
775
	struct vtime *vtime = &tsk->vtime;
776 777
	/*
	 * The flags must be updated under the lock with
778
	 * the vtime_starttime flush and update.
779 780 781 782
	 * That enforces a right ordering and update sequence
	 * synchronization against the reader (task_gtime())
	 * that can thus safely catch up with a tickless delta.
	 */
783
	write_seqcount_begin(&vtime->seqcount);
784
	__vtime_account_system(tsk, vtime);
785
	current->flags |= PF_VCPU;
786
	write_seqcount_end(&vtime->seqcount);
787
}
788
EXPORT_SYMBOL_GPL(vtime_guest_enter);
789 790 791

void vtime_guest_exit(struct task_struct *tsk)
{
792 793 794
	struct vtime *vtime = &tsk->vtime;

	write_seqcount_begin(&vtime->seqcount);
795
	vtime_account_guest(tsk, vtime);
796
	current->flags &= ~PF_VCPU;
797
	write_seqcount_end(&vtime->seqcount);
798
}
799
EXPORT_SYMBOL_GPL(vtime_guest_exit);
800 801 802

void vtime_account_idle(struct task_struct *tsk)
{
803
	account_idle_time(get_vtime_delta(&tsk->vtime));
804
}
805

806 807
void arch_vtime_task_switch(struct task_struct *prev)
{
808
	struct vtime *vtime = &prev->vtime;
809

810 811 812 813 814 815 816 817
	write_seqcount_begin(&vtime->seqcount);
	vtime->state = VTIME_INACTIVE;
	write_seqcount_end(&vtime->seqcount);

	vtime = &current->vtime;

	write_seqcount_begin(&vtime->seqcount);
	vtime->state = VTIME_SYS;
818
	vtime->starttime = sched_clock();
819
	write_seqcount_end(&vtime->seqcount);
820 821
}

822
void vtime_init_idle(struct task_struct *t, int cpu)
823
{
824
	struct vtime *vtime = &t->vtime;
825 826
	unsigned long flags;

827
	local_irq_save(flags);
828 829
	write_seqcount_begin(&vtime->seqcount);
	vtime->state = VTIME_SYS;
830
	vtime->starttime = sched_clock();
831
	write_seqcount_end(&vtime->seqcount);
832
	local_irq_restore(flags);
833 834
}

835
u64 task_gtime(struct task_struct *t)
836
{
837
	struct vtime *vtime = &t->vtime;
838
	unsigned int seq;
839
	u64 gtime;
840

841
	if (!vtime_accounting_enabled())
842 843
		return t->gtime;

844
	do {
845
		seq = read_seqcount_begin(&vtime->seqcount);
846 847

		gtime = t->gtime;
848
		if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
849
			gtime += vtime->gtime + vtime_delta(vtime);
850

851
	} while (read_seqcount_retry(&vtime->seqcount, seq));
852 853 854 855 856 857 858 859 860

	return gtime;
}

/*
 * Fetch cputime raw values from fields of task_struct and
 * add up the pending nohz execution time since the last
 * cputime snapshot.
 */
861
void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
862
{
863
	struct vtime *vtime = &t->vtime;
864
	unsigned int seq;
865
	u64 delta;
866

867 868 869 870 871
	if (!vtime_accounting_enabled()) {
		*utime = t->utime;
		*stime = t->stime;
		return;
	}
872

873
	do {
874
		seq = read_seqcount_begin(&vtime->seqcount);
875

876 877
		*utime = t->utime;
		*stime = t->stime;
878 879

		/* Task is sleeping, nothing to add */
880
		if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
881 882
			continue;

883
		delta = vtime_delta(vtime);
884 885 886 887 888

		/*
		 * Task runs either in user or kernel space, add pending nohz time to
		 * the right place.
		 */
889
		if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
890
			*utime += vtime->utime + delta;
891
		else if (vtime->state == VTIME_SYS)
892
			*stime += vtime->stime + delta;
893
	} while (read_seqcount_retry(&vtime->seqcount, seq));
894
}
895
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */