sched.c 161.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
25
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
26 27 28 29
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
30
#include <linux/capability.h>
L
Linus Torvalds 已提交
31 32
#include <linux/completion.h>
#include <linux/kernel_stat.h>
33
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
37
#include <linux/freezer.h>
38
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/times.h>
52
#include <linux/tsacct_kern.h>
53
#include <linux/kprobes.h>
54
#include <linux/delayacct.h>
55
#include <linux/reciprocal_div.h>
56
#include <linux/unistd.h>
L
Linus Torvalds 已提交
57

58
#include <asm/tlb.h>
L
Linus Torvalds 已提交
59

60 61 62 63 64 65 66 67 68 69
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
94 95 96
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
#define ON_RUNQUEUE_WEIGHT	 30
#define CHILD_PENALTY		 95
#define PARENT_PENALTY		100
#define EXIT_WEIGHT		  3
#define PRIO_BONUS_RATIO	 25
#define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
#define INTERACTIVE_DELTA	  2
#define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS)
#define STARVATION_LIMIT	(MAX_SLEEP_AVG)
#define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG))

/*
 * If a task is 'interactive' then we reinsert it in the active
 * array after it has expired its current timeslice. (it will not
 * continue to run immediately, it will still roundrobin with
 * other interactive tasks.)
 *
 * This part scales the interactivity limit depending on niceness.
 *
 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
 * Here are a few examples of different nice levels:
 *
 *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
 *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
 *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
 *
 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
 *  priority range a task can explore, a value of '1' means the
 *  task is rated interactive.)
 *
 * Ie. nice +19 tasks can never get 'interactive' enough to be
 * reinserted into the active array. And only heavily CPU-hog nice -20
 * tasks will be expired. Default nice 0 tasks are somewhere between,
 * it takes some effort for them to get interactive, but it's not
 * too hard.
 */

#define CURRENT_BONUS(p) \
	(NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
		MAX_SLEEP_AVG)

#define GRANULARITY	(10 * HZ / 1000 ? : 1)

#ifdef CONFIG_SMP
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
			num_online_cpus())
#else
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
#endif

#define SCALE(v1,v1_max,v2_max) \
	(v1) * (v2_max) / (v1_max)

#define DELTA(p) \
164 165
	(SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
		INTERACTIVE_DELTA)
L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174

#define TASK_INTERACTIVE(p) \
	((p)->prio <= (p)->static_prio - DELTA(p))

#define INTERACTIVE_SLEEP(p) \
	(JIFFIES_TO_NS(MAX_SLEEP_AVG * \
		(MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))

#define TASK_PREEMPTS_CURR(p, rq) \
175
	((p)->prio < (rq)->curr->prio)
L
Linus Torvalds 已提交
176 177

#define SCALE_PRIO(x, prio) \
178
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
L
Linus Torvalds 已提交
179

180
static unsigned int static_prio_timeslice(int static_prio)
L
Linus Torvalds 已提交
181
{
182 183
	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
L
Linus Torvalds 已提交
184
	else
185
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
L
Linus Torvalds 已提交
186
}
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

209 210 211 212 213 214 215 216 217
/*
 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
 * to time slice values: [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */

218
static inline unsigned int task_timeslice(struct task_struct *p)
219 220 221 222
{
	return static_prio_timeslice(p->static_prio);
}

223 224 225 226 227 228 229 230 231 232 233 234
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
235
/*
I
Ingo Molnar 已提交
236
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
237
 */
I
Ingo Molnar 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
280

I
Ingo Molnar 已提交
281 282 283 284 285 286 287 288 289 290
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

/*
 * The prio-array type of the old scheduler:
 */
L
Linus Torvalds 已提交
291 292
struct prio_array {
	unsigned int nr_active;
293
	DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
L
Linus Torvalds 已提交
294 295 296 297 298 299 300 301 302 303
	struct list_head queue[MAX_PRIO];
};

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
304
struct rq {
I
Ingo Molnar 已提交
305
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
306 307 308 309 310 311

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
312
	unsigned long raw_weighted_load;
I
Ingo Molnar 已提交
313 314
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
315
	unsigned char idle_at_tick;
316 317 318
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
319 320 321 322 323 324 325
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
326
#endif
I
Ingo Molnar 已提交
327
	struct rt_rq  rt;
L
Linus Torvalds 已提交
328 329 330 331 332 333 334 335 336 337

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

	unsigned long expired_timestamp;
338
	unsigned long long most_recent_timestamp;
I
Ingo Molnar 已提交
339

340
	struct task_struct *curr, *idle;
341
	unsigned long next_balance;
L
Linus Torvalds 已提交
342
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
343

344
	struct prio_array *active, *expired, arrays[2];
L
Linus Torvalds 已提交
345
	int best_expired_prio;
I
Ingo Molnar 已提交
346 347 348 349 350 351 352 353 354

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
	unsigned int clock_unstable_events;

	struct sched_class *load_balance_class;

L
Linus Torvalds 已提交
355 356 357 358 359 360 361 362
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
363
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
364

365
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
388
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
389 390
};

391
static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
392
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
393

I
Ingo Molnar 已提交
394 395 396 397 398
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

399 400 401 402 403 404 405 406 407
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
/*
 * Per-runqueue clock, as finegrained as the platform can give us:
 */
static unsigned long long __rq_clock(struct rq *rq)
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
		if (unlikely(delta > 2*TICK_NSEC)) {
			clock++;
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;

	return clock;
}

static inline unsigned long long rq_clock(struct rq *rq)
{
	int this_cpu = smp_processor_id();

	if (this_cpu == cpu_of(rq))
		return __rq_clock(rq);

	return rq->clock;
}

N
Nick Piggin 已提交
454 455
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
456
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
457 458 459 460
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
461 462
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
463 464 465 466 467 468

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
469 470 471 472 473 474 475 476 477 478 479 480
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
481
#ifndef prepare_arch_switch
482 483 484 485 486 487 488
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
489
static inline int task_running(struct rq *rq, struct task_struct *p)
490 491 492 493
{
	return rq->curr == p;
}

494
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
495 496 497
{
}

498
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
499
{
500 501 502 503
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
504 505 506 507 508 509 510
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

511 512 513 514
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
515
static inline int task_running(struct rq *rq, struct task_struct *p)
516 517 518 519 520 521 522 523
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

524
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

541
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
542 543 544 545 546 547 548 549 550 551 552 553
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
554
#endif
555 556
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
557

558 559 560 561
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
562
static inline struct rq *__task_rq_lock(struct task_struct *p)
563 564
	__acquires(rq->lock)
{
565
	struct rq *rq;
566 567 568 569 570 571 572 573 574 575 576

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
577 578 579 580 581
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
582
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
583 584
	__acquires(rq->lock)
{
585
	struct rq *rq;
L
Linus Torvalds 已提交
586 587 588 589 590 591 592 593 594 595 596 597

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

598
static inline void __task_rq_unlock(struct rq *rq)
599 600 601 602 603
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

604
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
605 606 607 608 609 610
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
611
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
612
 */
613
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
614 615
	__acquires(rq->lock)
{
616
	struct rq *rq;
L
Linus Torvalds 已提交
617 618 619 620 621 622 623 624

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

625 626 627 628 629 630 631 632 633 634 635 636 637 638
/*
 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
 */
void sched_clock_unstable_event(void)
{
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(current, &flags);
	rq->prev_clock_raw = sched_clock();
	rq->clock_unstable_events++;
	task_rq_unlock(rq, &flags);
}

I
Ingo Molnar 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

static inline unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
		lw->inv_weight = WMULT_CONST / lw->weight;

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST)) {
		tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
				>> (WMULT_SHIFT/2);
	} else {
		tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
	}

	return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

static void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static void __update_curr_load(struct rq *rq, struct load_stat *ls)
{
	if (rq->curr != rq->idle && ls->load.weight) {
		ls->delta_exec += ls->delta_stat;
		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
		ls->delta_stat = 0;
	}
}

/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
static void update_curr_load(struct rq *rq, u64 now)
{
	struct load_stat *ls = &rq->ls;
	u64 start;

	start = ls->load_update_start;
	ls->load_update_start = now;
	ls->delta_stat += now - start;
	/*
	 * Stagger updates to ls->delta_fair. Very frequent updates
	 * can be expensive.
	 */
	if (ls->delta_stat >= sysctl_sched_stat_granularity)
		__update_curr_load(rq, ls);
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

/*
 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
 * If static_prio_timeslice() is ever changed to break this assumption then
 * this code will need modification
 */
#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
I
Ingo Molnar 已提交
808
#define load_weight(lp) \
809 810
	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
#define PRIO_TO_LOAD_WEIGHT(prio) \
I
Ingo Molnar 已提交
811
	load_weight(static_prio_timeslice(prio))
812
#define RTPRIO_TO_LOAD_WEIGHT(rp) \
I
Ingo Molnar 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))

#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage.
 */
static const int prio_to_weight[40] = {
/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
/* -10 */  9537,  7629,  6103,  4883,  3906,  3125,  2500,  2000,  1600,  1280,
/*   0 */  NICE_0_LOAD /* 1024 */,
/*   1 */          819,   655,   524,   419,   336,   268,   215,   172,   137,
/*  10 */   110,    87,    70,    56,    45,    36,    29,    23,    18,    15,
};

static const u32 prio_to_wmult[40] = {
	48356,   60446,   75558,   94446,  118058,  147573,
	184467,  230589,  288233,  360285,  450347,
	562979,  703746,  879575, 1099582, 1374389,
	717986, 2147483, 2684354, 3355443, 4194304,
	244160, 6557201, 8196502, 10250518, 12782640,
	16025997, 19976592, 24970740, 31350126, 39045157,
	49367440, 61356675, 76695844, 95443717, 119304647,
	148102320, 186737708, 238609294, 286331153,
};
846

847
static inline void
I
Ingo Molnar 已提交
848
inc_load(struct rq *rq, const struct task_struct *p, u64 now)
849
{
I
Ingo Molnar 已提交
850 851
	update_curr_load(rq, now);
	update_load_add(&rq->ls.load, p->se.load.weight);
852 853
}

854
static inline void
I
Ingo Molnar 已提交
855
dec_load(struct rq *rq, const struct task_struct *p, u64 now)
856
{
I
Ingo Molnar 已提交
857 858
	update_curr_load(rq, now);
	update_load_sub(&rq->ls.load, p->se.load.weight);
859 860
}

I
Ingo Molnar 已提交
861
static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
862 863
{
	rq->nr_running++;
I
Ingo Molnar 已提交
864
	inc_load(rq, p, now);
865 866
}

I
Ingo Molnar 已提交
867
static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
868 869
{
	rq->nr_running--;
I
Ingo Molnar 已提交
870
	dec_load(rq, p, now);
871 872
}

I
Ingo Molnar 已提交
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator);

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

903 904
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
905 906 907
	task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
	p->se.wait_runtime = 0;

908
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
909 910 911 912
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
913

I
Ingo Molnar 已提交
914 915 916 917 918 919 920 921
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
922

I
Ingo Molnar 已提交
923 924
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
925 926
}

I
Ingo Molnar 已提交
927 928
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
929
{
I
Ingo Molnar 已提交
930 931 932
	sched_info_queued(p);
	p->sched_class->enqueue_task(rq, p, wakeup, now);
	p->se.on_rq = 1;
933 934
}

I
Ingo Molnar 已提交
935 936
static void
dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
937
{
I
Ingo Molnar 已提交
938 939
	p->sched_class->dequeue_task(rq, p, sleep, now);
	p->se.on_rq = 0;
940 941
}

942
/*
I
Ingo Molnar 已提交
943
 * __normal_prio - return the priority that is based on the static prio
944 945 946
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
947
	return p->static_prio;
948 949
}

950 951 952 953 954 955 956
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
957
static inline int normal_prio(struct task_struct *p)
958 959 960
{
	int prio;

961
	if (task_has_rt_policy(p))
962 963 964 965 966 967 968 969 970 971 972 973 974
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
975
static int effective_prio(struct task_struct *p)
976 977 978 979 980 981 982 983 984 985 986 987
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
988
/*
I
Ingo Molnar 已提交
989
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
990
 */
I
Ingo Molnar 已提交
991
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
992
{
I
Ingo Molnar 已提交
993
	u64 now = rq_clock(rq);
994

I
Ingo Molnar 已提交
995 996
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
997

I
Ingo Molnar 已提交
998 999
	enqueue_task(rq, p, wakeup, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
1000 1001 1002
}

/*
I
Ingo Molnar 已提交
1003
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
1004
 */
I
Ingo Molnar 已提交
1005
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
1006
{
I
Ingo Molnar 已提交
1007
	u64 now = rq_clock(rq);
L
Linus Torvalds 已提交
1008

I
Ingo Molnar 已提交
1009 1010
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
1011

I
Ingo Molnar 已提交
1012 1013
	enqueue_task(rq, p, 0, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
1014 1015 1016 1017 1018
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
I
Ingo Molnar 已提交
1019
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1020
{
I
Ingo Molnar 已提交
1021 1022 1023 1024 1025 1026 1027
	u64 now = rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep, now);
	dec_nr_running(p, rq, now);
L
Linus Torvalds 已提交
1028 1029 1030 1031 1032 1033
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1034
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1035 1036 1037 1038
{
	return cpu_curr(task_cpu(p)) == p;
}

1039 1040 1041
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
1051 1052
}

L
Linus Torvalds 已提交
1053
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1054

I
Ingo Molnar 已提交
1055
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1056
{
I
Ingo Molnar 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
	fair_clock_offset = old_rq->cfs.fair_clock -
						 new_rq->cfs.fair_clock;
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1076 1077
}

1078
struct migration_req {
L
Linus Torvalds 已提交
1079 1080
	struct list_head list;

1081
	struct task_struct *task;
L
Linus Torvalds 已提交
1082 1083 1084
	int dest_cpu;

	struct completion done;
1085
};
L
Linus Torvalds 已提交
1086 1087 1088 1089 1090

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1091
static int
1092
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1093
{
1094
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1095 1096 1097 1098 1099

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1100
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1101 1102 1103 1104 1105 1106 1107 1108
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1109

L
Linus Torvalds 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1122
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1123 1124
{
	unsigned long flags;
I
Ingo Molnar 已提交
1125
	int running, on_rq;
1126
	struct rq *rq;
L
Linus Torvalds 已提交
1127 1128

repeat:
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1156
	rq = task_rq_lock(p, &flags);
1157
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1158
	on_rq = p->se.on_rq;
1159 1160 1161 1162 1163 1164 1165 1166 1167
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1168 1169 1170
		cpu_relax();
		goto repeat;
	}
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1181
	if (unlikely(on_rq)) {
1182 1183 1184 1185 1186 1187 1188 1189 1190
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1206
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1218 1219
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1220 1221 1222 1223
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1224
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1225
{
1226
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1227
	unsigned long total = weighted_cpuload(cpu);
1228

1229
	if (type == 0)
I
Ingo Molnar 已提交
1230
		return total;
1231

I
Ingo Molnar 已提交
1232
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1233 1234 1235
}

/*
1236 1237
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1238
 */
N
Nick Piggin 已提交
1239
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1240
{
1241
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1242
	unsigned long total = weighted_cpuload(cpu);
1243

N
Nick Piggin 已提交
1244
	if (type == 0)
I
Ingo Molnar 已提交
1245
		return total;
1246

I
Ingo Molnar 已提交
1247
	return max(rq->cpu_load[type-1], total);
1248 1249 1250 1251 1252 1253 1254
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1255
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1256
	unsigned long total = weighted_cpuload(cpu);
1257 1258
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1259
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1260 1261
}

N
Nick Piggin 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1279 1280 1281 1282
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1299 1300
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1301 1302 1303 1304 1305 1306 1307 1308

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1309
nextgroup:
N
Nick Piggin 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1319
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1320
 */
I
Ingo Molnar 已提交
1321 1322
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1323
{
1324
	cpumask_t tmp;
N
Nick Piggin 已提交
1325 1326 1327 1328
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1329 1330 1331 1332
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1333
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1359

1360
	for_each_domain(cpu, tmp) {
1361 1362 1363 1364 1365
 		/*
 	 	 * If power savings logic is enabled for a domain, stop there.
 	 	 */
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1366 1367
		if (tmp->flags & flag)
			sd = tmp;
1368
	}
N
Nick Piggin 已提交
1369 1370 1371 1372

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1373 1374 1375 1376 1377 1378
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1379 1380 1381

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1382 1383 1384 1385
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1386

1387
		new_cpu = find_idlest_cpu(group, t, cpu);
1388 1389 1390 1391 1392
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1393

1394
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1421
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1422 1423 1424 1425 1426
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1437 1438 1439 1440
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1441
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1442 1443 1444 1445 1446
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
		}
N
Nick Piggin 已提交
1447 1448
		else
			break;
L
Linus Torvalds 已提交
1449 1450 1451 1452
	}
	return cpu;
}
#else
1453
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1473
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1474 1475 1476 1477
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1478
	struct rq *rq;
L
Linus Torvalds 已提交
1479
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1480
	struct sched_domain *sd, *this_sd = NULL;
1481
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1482 1483 1484 1485 1486 1487 1488 1489
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1490
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1500 1501
	new_cpu = cpu;

L
Linus Torvalds 已提交
1502 1503 1504
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1505 1506 1507 1508 1509 1510 1511 1512
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1513 1514 1515
		}
	}

N
Nick Piggin 已提交
1516
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1517 1518 1519
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1520
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1521
	 */
N
Nick Piggin 已提交
1522 1523 1524
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1525

1526 1527
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1528 1529
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1530

N
Nick Piggin 已提交
1531 1532
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1533 1534
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1535 1536 1537
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1538

L
Linus Torvalds 已提交
1539
			/*
1540 1541 1542
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1543
			 */
1544
			if (sync)
I
Ingo Molnar 已提交
1545
				tl -= current->se.load.weight;
1546 1547

			if ((tl <= load &&
1548
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1549
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1583
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1584 1585 1586 1587 1588 1589 1590 1591
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1592
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1593 1594 1595 1596 1597 1598 1599 1600
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1601 1602
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1613
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1614 1615 1616 1617 1618 1619
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1620
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1621 1622 1623 1624 1625 1626 1627
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.wait_start		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
	p->se.delta_exec		= 0;
	p->se.delta_fair_run		= 0;
	p->se.delta_fair_sleep		= 0;
	p->se.wait_runtime		= 0;
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.sleep_start_fair		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
N
Nick Piggin 已提交
1652

I
Ingo Molnar 已提交
1653 1654
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1655

L
Linus Torvalds 已提交
1656 1657 1658 1659 1660 1661 1662
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1678 1679 1680 1681 1682 1683

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1684
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1685
	if (likely(sched_info_on()))
1686
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1687
#endif
1688
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1689 1690
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1691
#ifdef CONFIG_PREEMPT
1692
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1693
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1694
#endif
N
Nick Piggin 已提交
1695
	put_cpu();
L
Linus Torvalds 已提交
1696 1697
}

I
Ingo Molnar 已提交
1698 1699 1700 1701 1702 1703
/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
unsigned int __read_mostly sysctl_sched_child_runs_first = 1;

L
Linus Torvalds 已提交
1704 1705 1706 1707 1708 1709 1710
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1711
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1712 1713
{
	unsigned long flags;
I
Ingo Molnar 已提交
1714 1715
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1716 1717

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1718
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1719
	this_cpu = smp_processor_id(); /* parent's CPU */
L
Linus Torvalds 已提交
1720 1721 1722

	p->prio = effective_prio(p);

I
Ingo Molnar 已提交
1723 1724 1725
	if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
			task_cpu(p) != this_cpu || !current->se.on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1726 1727
	} else {
		/*
I
Ingo Molnar 已提交
1728 1729
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1730
		 */
I
Ingo Molnar 已提交
1731
		p->sched_class->task_new(rq, p);
L
Linus Torvalds 已提交
1732
	}
I
Ingo Molnar 已提交
1733 1734
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1735 1736
}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1749
static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1750 1751 1752 1753 1754
{
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1755 1756
/**
 * finish_task_switch - clean up after a task-switch
1757
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1758 1759
 * @prev: the thread we just switched away from.
 *
1760 1761 1762 1763
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1764 1765 1766 1767 1768 1769
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1770
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1771 1772 1773
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1774
	long prev_state;
L
Linus Torvalds 已提交
1775 1776 1777 1778 1779

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1780
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1781 1782
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1783
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1789
	prev_state = prev->state;
1790 1791
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
L
Linus Torvalds 已提交
1792 1793
	if (mm)
		mmdrop(mm);
1794
	if (unlikely(prev_state == TASK_DEAD)) {
1795 1796 1797 1798 1799
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
	 	 */
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1800
		put_task_struct(prev);
1801
	}
L
Linus Torvalds 已提交
1802 1803 1804 1805 1806 1807
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1808
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1809 1810
	__releases(rq->lock)
{
1811 1812
	struct rq *rq = this_rq();

1813 1814 1815 1816 1817
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1818 1819 1820 1821 1822 1823 1824 1825
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1826
static inline void
1827
context_switch(struct rq *rq, struct task_struct *prev,
1828
	       struct task_struct *next)
L
Linus Torvalds 已提交
1829
{
I
Ingo Molnar 已提交
1830
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1831

I
Ingo Molnar 已提交
1832 1833 1834
	prepare_task_switch(rq, next);
	mm = next->mm;
	oldmm = prev->active_mm;
1835 1836 1837 1838 1839 1840 1841
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1842
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1843 1844 1845 1846 1847 1848
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1849
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1850 1851 1852
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1853 1854 1855 1856 1857 1858 1859
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1860
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1861
#endif
L
Linus Torvalds 已提交
1862 1863 1864 1865

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1866 1867 1868 1869 1870 1871 1872
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1896
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1911 1912
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1913

1914
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1924
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1925 1926 1927 1928 1929
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1945
/*
I
Ingo Molnar 已提交
1946 1947
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1948
 */
I
Ingo Molnar 已提交
1949
static void update_cpu_load(struct rq *this_rq)
1950
{
I
Ingo Molnar 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
	unsigned long total_load = this_rq->ls.load.weight;
	unsigned long this_load =  total_load;
	struct load_stat *ls = &this_rq->ls;
	u64 now = __rq_clock(this_rq);
	int i, scale;

	this_rq->nr_load_updates++;
	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
		goto do_avg;

	/* Update delta_fair/delta_exec fields first */
	update_curr_load(this_rq, now);

	fair_delta64 = ls->delta_fair + 1;
	ls->delta_fair = 0;

	exec_delta64 = ls->delta_exec + 1;
	ls->delta_exec = 0;

	sample_interval64 = now - ls->load_update_last;
	ls->load_update_last = now;

	if ((s64)sample_interval64 < (s64)TICK_NSEC)
		sample_interval64 = TICK_NSEC;

	if (exec_delta64 > sample_interval64)
		exec_delta64 = sample_interval64;

	idle_delta64 = sample_interval64 - exec_delta64;

	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);

	this_load = (unsigned long)tmp64;

do_avg:

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;

		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2000 2001
}

I
Ingo Molnar 已提交
2002 2003
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2004 2005 2006 2007 2008 2009
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2010
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2011 2012 2013
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2014
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2015 2016 2017 2018
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2019
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2035
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2049
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2050 2051 2052 2053
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2054 2055 2056 2057 2058
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2059
	if (unlikely(!spin_trylock(&busiest->lock))) {
2060
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2075
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2076
{
2077
	struct migration_req req;
L
Linus Torvalds 已提交
2078
	unsigned long flags;
2079
	struct rq *rq;
L
Linus Torvalds 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2090

L
Linus Torvalds 已提交
2091 2092 2093 2094 2095
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2096

L
Linus Torvalds 已提交
2097 2098 2099 2100 2101 2102 2103
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2104 2105
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2106 2107 2108 2109
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2110
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2111
	put_cpu();
N
Nick Piggin 已提交
2112 2113
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2114 2115 2116 2117 2118 2119
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2120 2121
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2122
{
I
Ingo Molnar 已提交
2123
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2124
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2125
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2126 2127 2128 2129
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2130
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2131 2132 2133 2134 2135
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2136
static
2137
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2138
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2139
		     int *all_pinned)
L
Linus Torvalds 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2149 2150 2151 2152
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2153 2154

	/*
I
Ingo Molnar 已提交
2155
	 * Aggressive migration if too many balance attempts have failed:
L
Linus Torvalds 已提交
2156
	 */
I
Ingo Molnar 已提交
2157
	if (sd->nr_balance_failed > sd->cache_nice_tries)
L
Linus Torvalds 已提交
2158 2159 2160 2161 2162
		return 1;

	return 1;
}

I
Ingo Molnar 已提交
2163
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2164
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2165
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2166 2167 2168
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2169
{
I
Ingo Molnar 已提交
2170 2171 2172
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2173

2174
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2175 2176
		goto out;

2177 2178
	pinned = 1;

L
Linus Torvalds 已提交
2179
	/*
I
Ingo Molnar 已提交
2180
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2181
	 */
I
Ingo Molnar 已提交
2182 2183 2184
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2185
		goto out;
2186 2187 2188 2189 2190
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2191 2192 2193 2194
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
	if (skip_for_load && p->prio < this_best_prio)
		skip_for_load = !best_prio_seen && p->prio == best_prio;
2195
	if (skip_for_load ||
I
Ingo Molnar 已提交
2196
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2197

I
Ingo Molnar 已提交
2198 2199 2200
		best_prio_seen |= p->prio == best_prio;
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2201 2202
	}

I
Ingo Molnar 已提交
2203
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2204
	pulled++;
I
Ingo Molnar 已提交
2205
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2206

2207 2208 2209 2210 2211
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
I
Ingo Molnar 已提交
2212 2213 2214 2215
		if (p->prio < this_best_prio)
			this_best_prio = p->prio;
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2216 2217 2218 2219 2220 2221 2222 2223
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2224 2225 2226

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2227
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2228 2229 2230
	return pulled;
}

I
Ingo Molnar 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
/*
 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
 * load from busiest to this_rq, as part of a balancing operation within
 * "domain". Returns the number of tasks moved.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;

	do {
		nr_moved = class->load_balance(this_rq, this_cpu, busiest,
				max_nr_move, (unsigned long)rem_load_move,
				sd, idle, all_pinned, &load_moved);
		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;
		class = class->next;
	} while (class && max_nr_move && rem_load_move > 0);

	return total_nr_moved;
}

L
Linus Torvalds 已提交
2260 2261
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2262 2263
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2264 2265 2266
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2267 2268
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2269 2270 2271
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2272
	unsigned long max_pull;
2273 2274
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2275
	int load_idx;
2276 2277 2278 2279 2280 2281
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2282 2283

	max_load = this_load = total_load = total_pwr = 0;
2284 2285
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2286
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2287
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2288
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2289 2290 2291
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2292 2293

	do {
2294
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2295 2296
		int local_group;
		int i;
2297
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2298
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2299 2300 2301

		local_group = cpu_isset(this_cpu, group->cpumask);

2302 2303 2304
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2305
		/* Tally up the load of all CPUs in the group */
2306
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2307 2308

		for_each_cpu_mask(i, group->cpumask) {
2309 2310 2311 2312 2313 2314
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2315

N
Nick Piggin 已提交
2316 2317 2318
			if (*sd_idle && !idle_cpu(i))
				*sd_idle = 0;

L
Linus Torvalds 已提交
2319
			/* Bias balancing toward cpus of our domain */
2320 2321 2322 2323 2324 2325
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2326
				load = target_load(i, load_idx);
2327
			} else
N
Nick Piggin 已提交
2328
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2329 2330

			avg_load += load;
2331
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2332
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2333 2334
		}

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
		 * domains.
		 */
		if (local_group && balance_cpu != this_cpu && balance) {
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2345
		total_load += avg_load;
2346
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2347 2348

		/* Adjust by relative CPU power of the group */
2349 2350
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2351

2352
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2353

L
Linus Torvalds 已提交
2354 2355 2356
		if (local_group) {
			this_load = avg_load;
			this = group;
2357 2358 2359
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2360
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2361 2362
			max_load = avg_load;
			busiest = group;
2363 2364
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2365
		}
2366 2367 2368 2369 2370 2371

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2372 2373 2374
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2375 2376 2377 2378 2379 2380 2381 2382 2383

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2384
		/*
2385 2386
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2387 2388
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2389
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2390
			goto group_next;
2391

I
Ingo Molnar 已提交
2392
		/*
2393
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2394 2395 2396 2397 2398
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2399 2400
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2401 2402
			group_min = group;
			min_nr_running = sum_nr_running;
2403 2404
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2405
		}
2406

I
Ingo Molnar 已提交
2407
		/*
2408
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2420
		}
2421 2422
group_next:
#endif
L
Linus Torvalds 已提交
2423 2424 2425
		group = group->next;
	} while (group != sd->groups);

2426
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2427 2428 2429 2430 2431 2432 2433 2434
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2435
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2459 2460

	/* Don't want to pull so many tasks that a group would go idle */
2461
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2462

L
Linus Torvalds 已提交
2463
	/* How much load to actually move to equalise the imbalance */
2464 2465
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2466 2467
			/ SCHED_LOAD_SCALE;

2468 2469 2470 2471 2472 2473
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
I
Ingo Molnar 已提交
2474
	if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2475
		unsigned long tmp, pwr_now, pwr_move;
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2487

I
Ingo Molnar 已提交
2488 2489
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2490
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2491 2492 2493 2494 2495 2496 2497 2498 2499
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2500 2501 2502 2503
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2504 2505 2506
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2507 2508
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2509
		if (max_load > tmp)
2510
			pwr_move += busiest->__cpu_power *
2511
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2512 2513

		/* Amount of load we'd add */
2514
		if (max_load * busiest->__cpu_power <
2515
				busiest_load_per_task * SCHED_LOAD_SCALE)
2516 2517
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2518
		else
2519 2520 2521 2522
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2523 2524 2525 2526 2527 2528
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2529
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2530 2531 2532 2533 2534
	}

	return busiest;

out_balanced:
2535
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2536
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2537
		goto ret;
L
Linus Torvalds 已提交
2538

2539 2540 2541 2542 2543
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2544
ret:
L
Linus Torvalds 已提交
2545 2546 2547 2548 2549 2550 2551
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2552
static struct rq *
I
Ingo Molnar 已提交
2553
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2554
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2555
{
2556
	struct rq *busiest = NULL, *rq;
2557
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2558 2559 2560
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2561
		unsigned long wl;
2562 2563 2564 2565

		if (!cpu_isset(i, *cpus))
			continue;

2566
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2567
		wl = weighted_cpuload(i);
2568

I
Ingo Molnar 已提交
2569
		if (rq->nr_running == 1 && wl > imbalance)
2570
			continue;
L
Linus Torvalds 已提交
2571

I
Ingo Molnar 已提交
2572 2573
		if (wl > max_load) {
			max_load = wl;
2574
			busiest = rq;
L
Linus Torvalds 已提交
2575 2576 2577 2578 2579 2580
		}
	}

	return busiest;
}

2581 2582 2583 2584 2585 2586
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

2587 2588 2589 2590 2591
static inline unsigned long minus_1_or_zero(unsigned long n)
{
	return n > 0 ? n - 1 : 0;
}

L
Linus Torvalds 已提交
2592 2593 2594 2595
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2596
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2597
			struct sched_domain *sd, enum cpu_idle_type idle,
2598
			int *balance)
L
Linus Torvalds 已提交
2599
{
2600
	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2601 2602
	struct sched_group *group;
	unsigned long imbalance;
2603
	struct rq *busiest;
2604
	cpumask_t cpus = CPU_MASK_ALL;
2605
	unsigned long flags;
N
Nick Piggin 已提交
2606

2607 2608 2609
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2610
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2611
	 * portraying it as CPU_NOT_IDLE.
2612
	 */
I
Ingo Molnar 已提交
2613
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2614
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2615
		sd_idle = 1;
L
Linus Torvalds 已提交
2616 2617 2618

	schedstat_inc(sd, lb_cnt[idle]);

2619 2620
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2621 2622
				   &cpus, balance);

2623
	if (*balance == 0)
2624 2625
		goto out_balanced;

L
Linus Torvalds 已提交
2626 2627 2628 2629 2630
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2631
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2632 2633 2634 2635 2636
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2637
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. nr_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
2649
		local_irq_save(flags);
N
Nick Piggin 已提交
2650
		double_rq_lock(this_rq, busiest);
L
Linus Torvalds 已提交
2651
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2652 2653
				      minus_1_or_zero(busiest->nr_running),
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2654
		double_rq_unlock(this_rq, busiest);
2655
		local_irq_restore(flags);
2656

2657 2658 2659 2660 2661 2662
		/*
		 * some other cpu did the load balance for us.
		 */
		if (nr_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

2663
		/* All tasks on this runqueue were pinned by CPU affinity */
2664 2665 2666 2667
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2668
			goto out_balanced;
2669
		}
L
Linus Torvalds 已提交
2670
	}
2671

L
Linus Torvalds 已提交
2672 2673 2674 2675 2676 2677
	if (!nr_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2678
			spin_lock_irqsave(&busiest->lock, flags);
2679 2680 2681 2682 2683

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2684
				spin_unlock_irqrestore(&busiest->lock, flags);
2685 2686 2687 2688
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2689 2690 2691
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2692
				active_balance = 1;
L
Linus Torvalds 已提交
2693
			}
2694
			spin_unlock_irqrestore(&busiest->lock, flags);
2695
			if (active_balance)
L
Linus Torvalds 已提交
2696 2697 2698 2699 2700 2701
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2702
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2703
		}
2704
	} else
L
Linus Torvalds 已提交
2705 2706
		sd->nr_balance_failed = 0;

2707
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2708 2709
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2710 2711 2712 2713 2714 2715 2716 2717 2718
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2719 2720
	}

2721
	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2722
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2723
		return -1;
L
Linus Torvalds 已提交
2724 2725 2726 2727 2728
	return nr_moved;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2729
	sd->nr_balance_failed = 0;
2730 2731

out_one_pinned:
L
Linus Torvalds 已提交
2732
	/* tune up the balancing interval */
2733 2734
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2735 2736
		sd->balance_interval *= 2;

2737
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2738
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2739
		return -1;
L
Linus Torvalds 已提交
2740 2741 2742 2743 2744 2745 2746
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2747
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2748 2749
 * this_rq is locked.
 */
2750
static int
2751
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2752 2753
{
	struct sched_group *group;
2754
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2755 2756
	unsigned long imbalance;
	int nr_moved = 0;
N
Nick Piggin 已提交
2757
	int sd_idle = 0;
2758
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2759

2760 2761 2762 2763
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2764
	 * portraying it as CPU_NOT_IDLE.
2765 2766 2767
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2768
		sd_idle = 1;
L
Linus Torvalds 已提交
2769

I
Ingo Molnar 已提交
2770
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2771
redo:
I
Ingo Molnar 已提交
2772
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2773
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2774
	if (!group) {
I
Ingo Molnar 已提交
2775
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2776
		goto out_balanced;
L
Linus Torvalds 已提交
2777 2778
	}

I
Ingo Molnar 已提交
2779
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2780
				&cpus);
N
Nick Piggin 已提交
2781
	if (!busiest) {
I
Ingo Molnar 已提交
2782
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2783
		goto out_balanced;
L
Linus Torvalds 已提交
2784 2785
	}

N
Nick Piggin 已提交
2786 2787
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2788
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2789 2790 2791 2792 2793 2794

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2795
					minus_1_or_zero(busiest->nr_running),
I
Ingo Molnar 已提交
2796
					imbalance, sd, CPU_NEWLY_IDLE, NULL);
2797
		spin_unlock(&busiest->lock);
2798 2799 2800 2801 2802 2803

		if (!nr_moved) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2804 2805
	}

N
Nick Piggin 已提交
2806
	if (!nr_moved) {
I
Ingo Molnar 已提交
2807
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2808 2809
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2810 2811
			return -1;
	} else
2812
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2813 2814

	return nr_moved;
2815 2816

out_balanced:
I
Ingo Molnar 已提交
2817
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2818
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2819
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2820
		return -1;
2821
	sd->nr_balance_failed = 0;
2822

2823
	return 0;
L
Linus Torvalds 已提交
2824 2825 2826 2827 2828 2829
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2830
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2831 2832
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2833 2834
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2835 2836

	for_each_domain(this_cpu, sd) {
2837 2838 2839 2840 2841 2842
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2843
			/* If we've pulled tasks over stop searching: */
2844
			pulled_task = load_balance_newidle(this_cpu,
2845 2846 2847 2848 2849 2850 2851
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2852
	}
I
Ingo Molnar 已提交
2853
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2854 2855 2856 2857 2858
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2859
	}
L
Linus Torvalds 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2870
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2871
{
2872
	int target_cpu = busiest_rq->push_cpu;
2873 2874
	struct sched_domain *sd;
	struct rq *target_rq;
2875

2876
	/* Is there any task to move? */
2877 2878 2879 2880
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2881 2882

	/*
2883 2884 2885
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2886
	 */
2887
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2888

2889 2890 2891 2892
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2893
	for_each_domain(target_cpu, sd) {
2894
		if ((sd->flags & SD_LOAD_BALANCE) &&
2895
		    cpu_isset(busiest_cpu, sd->span))
2896
				break;
2897
	}
2898

2899 2900
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2901

2902
		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
I
Ingo Molnar 已提交
2903
			       RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
2904 2905 2906 2907 2908
			       NULL))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2909
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2910 2911
}

2912 2913 2914 2915 2916 2917 2918 2919 2920
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2921
/*
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2932
 *
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
2989 2990 2991 2992 2993
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
2994
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2995
{
2996 2997
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
2998 2999
	unsigned long interval;
	struct sched_domain *sd;
3000
	/* Earliest time when we have to do rebalance again */
3001
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
3002

3003
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3004 3005 3006 3007
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3008
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3009 3010 3011 3012 3013 3014
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3015 3016 3017
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3018

3019 3020 3021 3022 3023
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3024
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3025
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3026 3027
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3028 3029 3030
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3031
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3032
			}
3033
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3034
		}
3035 3036 3037
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3038 3039
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
3040 3041 3042 3043 3044 3045 3046 3047

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3048
	}
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3059 3060 3061 3062
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3063

I
Ingo Molnar 已提交
3064
	rebalance_domains(this_cpu, idle);
3065 3066 3067 3068 3069 3070 3071

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3072 3073
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3074 3075 3076 3077
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3078
		cpu_clear(this_cpu, cpus);
3079 3080 3081 3082 3083 3084 3085 3086 3087
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

I
Ingo Molnar 已提交
3088
			rebalance_domains(balance_cpu, SCHED_IDLE);
3089 3090

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3091 3092
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3105
static inline void trigger_load_balance(struct rq *rq, int cpu)
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3157
}
I
Ingo Molnar 已提交
3158 3159 3160

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3161 3162 3163
/*
 * on UP we do not need to balance between CPUs:
 */
3164
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3165 3166
{
}
I
Ingo Molnar 已提交
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator)
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3181 3182 3183 3184 3185 3186 3187
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3188 3189
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3190
 */
3191
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3192 3193
{
	unsigned long flags;
3194 3195
	u64 ns, delta_exec;
	struct rq *rq;
3196

3197 3198 3199 3200 3201 3202 3203 3204
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
		delta_exec = rq_clock(rq) - p->se.exec_start;
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3205

L
Linus Torvalds 已提交
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3240
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3270
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3293 3294 3295 3296 3297 3298 3299
	struct task_struct *curr = rq->curr;

	spin_lock(&rq->lock);
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	update_cpu_load(rq);
	spin_unlock(&rq->lock);
3300

3301
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3302 3303
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3304
#endif
L
Linus Torvalds 已提交
3305 3306 3307 3308 3309 3310 3311 3312 3313
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3314 3315
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3316 3317 3318 3319
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3320 3321
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3322 3323 3324 3325 3326 3327 3328 3329
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3330 3331
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3332 3333 3334
	/*
	 * Is the spinlock portion underflowing?
	 */
3335 3336 3337 3338
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3339 3340 3341 3342 3343 3344 3345
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3346
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3347
 */
I
Ingo Molnar 已提交
3348
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3349
{
I
Ingo Molnar 已提交
3350 3351 3352 3353 3354 3355 3356
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3357

I
Ingo Molnar 已提交
3358 3359 3360 3361 3362
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3363 3364 3365 3366 3367
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3368 3369 3370
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3371 3372
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3384 3385

	/*
I
Ingo Molnar 已提交
3386 3387
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3388
	 */
I
Ingo Molnar 已提交
3389 3390 3391 3392
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
		p = fair_sched_class.pick_next_task(rq, now);
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3393 3394
	}

I
Ingo Molnar 已提交
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
	class = sched_class_highest;
	for ( ; ; ) {
		p = class->pick_next_task(rq, now);
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3407

I
Ingo Molnar 已提交
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	u64 now;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3431 3432

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3433
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3434 3435 3436

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3437
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3438
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3439 3440
		} else {
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3441
		}
I
Ingo Molnar 已提交
3442
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3443 3444
	}

I
Ingo Molnar 已提交
3445
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3446 3447
		idle_balance(cpu, rq);

I
Ingo Molnar 已提交
3448 3449 3450
	now = __rq_clock(rq);
	prev->sched_class->put_prev_task(rq, prev, now);
	next = pick_next_task(rq, prev, now);
L
Linus Torvalds 已提交
3451 3452

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3453

L
Linus Torvalds 已提交
3454 3455 3456 3457 3458
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3459
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3460 3461 3462
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3463 3464 3465
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3466
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3467
	}
L
Linus Torvalds 已提交
3468 3469 3470 3471 3472 3473 3474 3475
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3476
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3491
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3519
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3531
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3561 3562
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3563
{
3564
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3583 3584 3585
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3586
		if (curr->func(curr, mode, sync, key) &&
3587
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3597
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3598 3599
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3600
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3619
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3631 3632
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3676

L
Linus Torvalds 已提交
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);


#define	SLEEP_ON_VAR					\
	unsigned long flags;				\
	wait_queue_t wait;				\
	init_waitqueue_entry(&wait, current);

#define SLEEP_ON_HEAD					\
	spin_lock_irqsave(&q->lock,flags);		\
	__add_wait_queue(q, &wait);			\
	spin_unlock(&q->lock);

#define	SLEEP_ON_TAIL					\
	spin_lock_irq(&q->lock);			\
	__remove_wait_queue(q, &wait);			\
	spin_unlock_irqrestore(&q->lock, flags);

void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3823 3824
long fastcall __sched
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

void fastcall __sched sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(sleep_on);

long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}

EXPORT_SYMBOL(sleep_on_timeout);

3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3877
void rt_mutex_setprio(struct task_struct *p, int prio)
3878 3879
{
	unsigned long flags;
I
Ingo Molnar 已提交
3880
	int oldprio, on_rq;
3881
	struct rq *rq;
I
Ingo Molnar 已提交
3882
	u64 now;
3883 3884 3885 3886

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3887
	now = rq_clock(rq);
3888

3889
	oldprio = p->prio;
I
Ingo Molnar 已提交
3890 3891 3892 3893 3894 3895 3896 3897 3898
	on_rq = p->se.on_rq;
	if (on_rq)
		dequeue_task(rq, p, 0, now);

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3899 3900
	p->prio = prio;

I
Ingo Molnar 已提交
3901 3902
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
3903 3904
		/*
		 * Reschedule if we are currently running on this runqueue and
3905 3906
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3907
		 */
3908 3909 3910
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3911 3912 3913
		} else {
			check_preempt_curr(rq, p);
		}
3914 3915 3916 3917 3918 3919
	}
	task_rq_unlock(rq, &flags);
}

#endif

3920
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3921
{
I
Ingo Molnar 已提交
3922
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3923
	unsigned long flags;
3924
	struct rq *rq;
I
Ingo Molnar 已提交
3925
	u64 now;
L
Linus Torvalds 已提交
3926 3927 3928 3929 3930 3931 3932 3933

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3934
	now = rq_clock(rq);
L
Linus Torvalds 已提交
3935 3936 3937 3938
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3939
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3940
	 */
3941
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3942 3943 3944
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3945 3946 3947 3948
	on_rq = p->se.on_rq;
	if (on_rq) {
		dequeue_task(rq, p, 0, now);
		dec_load(rq, p, now);
3949
	}
L
Linus Torvalds 已提交
3950 3951

	p->static_prio = NICE_TO_PRIO(nice);
3952
	set_load_weight(p);
3953 3954 3955
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3956

I
Ingo Molnar 已提交
3957 3958 3959
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
		inc_load(rq, p, now);
L
Linus Torvalds 已提交
3960
		/*
3961 3962
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3963
		 */
3964
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3965 3966 3967 3968 3969 3970 3971
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3972 3973 3974 3975 3976
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3977
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3978
{
3979 3980
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3981

M
Matt Mackall 已提交
3982 3983 3984 3985
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
3997
	long nice, retval;
L
Linus Torvalds 已提交
3998 3999 4000 4001 4002 4003

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4004 4005
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4006 4007 4008 4009 4010 4011 4012 4013 4014
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4015 4016 4017
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4036
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4037 4038 4039 4040 4041 4042 4043 4044
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4045
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4064
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4065 4066 4067 4068 4069 4070 4071 4072
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4073
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4074 4075 4076 4077 4078
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4079 4080
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4081
{
I
Ingo Molnar 已提交
4082
	BUG_ON(p->se.on_rq);
4083

L
Linus Torvalds 已提交
4084
	p->policy = policy;
I
Ingo Molnar 已提交
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4097
	p->rt_priority = prio;
4098 4099 4100
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4101
	set_load_weight(p);
L
Linus Torvalds 已提交
4102 4103 4104
}

/**
4105
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4106 4107 4108
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4109
 *
4110
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4111
 */
I
Ingo Molnar 已提交
4112 4113
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4114
{
I
Ingo Molnar 已提交
4115
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4116
	unsigned long flags;
4117
	struct rq *rq;
L
Linus Torvalds 已提交
4118

4119 4120
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4121 4122 4123 4124 4125
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4126 4127
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4128
		return -EINVAL;
L
Linus Torvalds 已提交
4129 4130
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4131 4132
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4133 4134
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4135
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4136
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4137
		return -EINVAL;
4138
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4139 4140
		return -EINVAL;

4141 4142 4143 4144
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4145
		if (rt_policy(policy)) {
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4162 4163 4164 4165 4166 4167
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4168

4169 4170 4171 4172 4173
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4174 4175 4176 4177

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4178 4179 4180 4181 4182
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4183 4184 4185 4186
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4187
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4188 4189 4190
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4191 4192
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4193 4194
		goto recheck;
	}
I
Ingo Molnar 已提交
4195 4196 4197
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
L
Linus Torvalds 已提交
4198
	oldprio = p->prio;
I
Ingo Molnar 已提交
4199 4200 4201
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4202 4203
		/*
		 * Reschedule if we are currently running on this runqueue and
4204 4205
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4206
		 */
4207 4208 4209
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4210 4211 4212
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4213
	}
4214 4215 4216
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4217 4218
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4219 4220 4221 4222
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4223 4224
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4225 4226 4227
{
	struct sched_param lparam;
	struct task_struct *p;
4228
	int retval;
L
Linus Torvalds 已提交
4229 4230 4231 4232 4233

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4234 4235 4236

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4237
	p = find_process_by_pid(pid);
4238 4239 4240
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4241

L
Linus Torvalds 已提交
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4254 4255 4256 4257
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4277
	struct task_struct *p;
L
Linus Torvalds 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4305
	struct task_struct *p;
L
Linus Torvalds 已提交
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4340 4341
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4342

4343
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4344 4345 4346 4347 4348
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4349
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4366 4367 4368 4369
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4370 4371 4372 4373 4374 4375
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4376
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4417
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4418 4419 4420
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4421
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4422 4423
EXPORT_SYMBOL(cpu_online_map);

4424
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4425
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4426 4427 4428 4429
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4430
	struct task_struct *p;
L
Linus Torvalds 已提交
4431 4432
	int retval;

4433
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4434 4435 4436 4437 4438 4439 4440
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4441 4442 4443 4444
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4445
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4446 4447 4448

out_unlock:
	read_unlock(&tasklist_lock);
4449
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
	if (retval)
		return retval;

	return 0;
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4484 4485
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4486 4487 4488
 */
asmlinkage long sys_sched_yield(void)
{
4489
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4490 4491

	schedstat_inc(rq, yld_cnt);
I
Ingo Molnar 已提交
4492
	if (unlikely(rq->nr_running == 1))
L
Linus Torvalds 已提交
4493
		schedstat_inc(rq, yld_act_empty);
I
Ingo Molnar 已提交
4494 4495
	else
		current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4496 4497 4498 4499 4500 4501

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4502
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4503 4504 4505 4506 4507 4508 4509 4510
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4511
static void __cond_resched(void)
L
Linus Torvalds 已提交
4512
{
4513 4514 4515
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4516 4517 4518 4519 4520
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4521 4522 4523 4524 4525 4526 4527 4528 4529
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4530 4531
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4547
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4548
{
J
Jan Kara 已提交
4549 4550
	int ret = 0;

L
Linus Torvalds 已提交
4551 4552 4553
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4554
		ret = 1;
L
Linus Torvalds 已提交
4555 4556
		spin_lock(lock);
	}
4557
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4558
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4559 4560 4561
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4562
		ret = 1;
L
Linus Torvalds 已提交
4563 4564
		spin_lock(lock);
	}
J
Jan Kara 已提交
4565
	return ret;
L
Linus Torvalds 已提交
4566 4567 4568 4569 4570 4571 4572
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4573
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4574
		local_bh_enable();
L
Linus Torvalds 已提交
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4586
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4605
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4606

4607
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4608 4609 4610
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4611
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4612 4613 4614 4615 4616
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4617
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4618 4619
	long ret;

4620
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4621 4622 4623
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4624
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4645
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4646
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4670
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4671
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4688
	struct task_struct *p;
L
Linus Torvalds 已提交
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4705
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4706
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4707 4708 4709 4710 4711 4712 4713 4714 4715
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4716
static const char stat_nam[] = "RSDTtZX";
4717 4718

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4719 4720
{
	unsigned long free = 0;
4721
	unsigned state;
L
Linus Torvalds 已提交
4722 4723

	state = p->state ? __ffs(p->state) + 1 : 0;
4724 4725
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
#if (BITS_PER_LONG == 32)
	if (state == TASK_RUNNING)
		printk(" running ");
	else
		printk(" %08lX ", thread_saved_pc(p));
#else
	if (state == TASK_RUNNING)
		printk("  running task   ");
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4739
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4740 4741
		while (!*n)
			n++;
4742
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4743 4744
	}
#endif
4745
	printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4746 4747 4748 4749 4750 4751 4752 4753 4754
	if (!p->mm)
		printk(" (L-TLB)\n");
	else
		printk(" (NOTLB)\n");

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4755
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4756
{
4757
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4758 4759 4760

#if (BITS_PER_LONG == 32)
	printk("\n"
4761 4762
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4763 4764
#else
	printk("\n"
4765 4766
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4767 4768 4769 4770 4771 4772 4773 4774
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4775
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4776
			show_task(p);
L
Linus Torvalds 已提交
4777 4778
	} while_each_thread(g, p);

4779 4780
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4781 4782 4783
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4784
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4785 4786 4787 4788 4789
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4790 4791
}

I
Ingo Molnar 已提交
4792 4793
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4794
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4795 4796
}

4797 4798 4799 4800 4801 4802 4803 4804
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4805
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4806
{
4807
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4808 4809
	unsigned long flags;

I
Ingo Molnar 已提交
4810 4811 4812
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4813
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4814
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4815
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4816 4817 4818

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4819 4820 4821
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4822 4823 4824 4825
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4826
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4827
#else
A
Al Viro 已提交
4828
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4829
#endif
I
Ingo Molnar 已提交
4830 4831 4832 4833
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long gran_limit = 10000000;

	sysctl_sched_granularity *= factor;
	if (sysctl_sched_granularity > gran_limit)
		sysctl_sched_granularity = gran_limit;

	sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
	sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
}

L
Linus Torvalds 已提交
4867 4868 4869 4870
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4871
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4893
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4894
{
4895
	struct migration_req req;
L
Linus Torvalds 已提交
4896
	unsigned long flags;
4897
	struct rq *rq;
4898
	int ret = 0;
L
Linus Torvalds 已提交
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4921

L
Linus Torvalds 已提交
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4934 4935
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4936
 */
4937
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4938
{
4939
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4940
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4941 4942

	if (unlikely(cpu_is_offline(dest_cpu)))
4943
		return ret;
L
Linus Torvalds 已提交
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4956 4957 4958
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq_src, p, 0);
L
Linus Torvalds 已提交
4959
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4960 4961 4962
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4963
	}
4964
	ret = 1;
L
Linus Torvalds 已提交
4965 4966
out:
	double_rq_unlock(rq_src, rq_dest);
4967
	return ret;
L
Linus Torvalds 已提交
4968 4969 4970 4971 4972 4973 4974
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4975
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4976 4977
{
	int cpu = (long)data;
4978
	struct rq *rq;
L
Linus Torvalds 已提交
4979 4980 4981 4982 4983 4984

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4985
		struct migration_req *req;
L
Linus Torvalds 已提交
4986 4987
		struct list_head *head;

4988
		try_to_freeze();
L
Linus Torvalds 已提交
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5010
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5011 5012
		list_del_init(head->next);

N
Nick Piggin 已提交
5013 5014 5015
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5034 5035 5036 5037
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5038
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5039
{
5040
	unsigned long flags;
L
Linus Torvalds 已提交
5041
	cpumask_t mask;
5042 5043
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5044

5045
restart:
L
Linus Torvalds 已提交
5046 5047
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5048
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5049 5050 5051 5052
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5053
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5054 5055 5056

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5057 5058 5059
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5060
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5061 5062 5063 5064 5065 5066

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5067
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5068 5069
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5070
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5071
	}
5072
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5073
		goto restart;
L
Linus Torvalds 已提交
5074 5075 5076 5077 5078 5079 5080 5081 5082
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5083
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5084
{
5085
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5099
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5100 5101 5102

	write_lock_irq(&tasklist_lock);

5103 5104
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5105 5106
			continue;

5107 5108 5109
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5110 5111 5112 5113

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5114 5115
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5116
 * It does so by boosting its priority to highest possible and adding it to
5117
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5118 5119 5120
 */
void sched_idle_next(void)
{
5121
	int this_cpu = smp_processor_id();
5122
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5123 5124 5125 5126
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5127
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5128

5129 5130 5131
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5132 5133 5134
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5135
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5136 5137

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5138
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5139 5140 5141 5142

	spin_unlock_irqrestore(&rq->lock, flags);
}

5143 5144
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5158
/* called under rq->lock with disabled interrupts */
5159
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5160
{
5161
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5162 5163

	/* Must be exiting, otherwise would be on tasklist. */
5164
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5165 5166

	/* Cannot have done final schedule yet: would have vanished. */
5167
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5168

5169
	get_task_struct(p);
L
Linus Torvalds 已提交
5170 5171 5172 5173 5174

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5175
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5176
	 */
5177
	spin_unlock(&rq->lock);
5178
	move_task_off_dead_cpu(dead_cpu, p);
5179
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5180

5181
	put_task_struct(p);
L
Linus Torvalds 已提交
5182 5183 5184 5185 5186
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5187
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5188
	struct task_struct *next;
5189

I
Ingo Molnar 已提交
5190 5191 5192 5193 5194 5195 5196
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
		next = pick_next_task(rq, rq->curr, rq_clock(rq));
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
L
Linus Torvalds 已提交
5197 5198 5199 5200 5201 5202 5203 5204
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5205 5206
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5207 5208
{
	struct task_struct *p;
5209
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5210
	unsigned long flags;
5211
	struct rq *rq;
L
Linus Torvalds 已提交
5212 5213

	switch (action) {
5214 5215 5216 5217
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5218
	case CPU_UP_PREPARE:
5219
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5220
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5221 5222 5223 5224 5225 5226
		if (IS_ERR(p))
			return NOTIFY_BAD;
		p->flags |= PF_NOFREEZE;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5227
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5228 5229 5230
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5231

L
Linus Torvalds 已提交
5232
	case CPU_ONLINE:
5233
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5234 5235 5236
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5237

L
Linus Torvalds 已提交
5238 5239
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5240
	case CPU_UP_CANCELED_FROZEN:
5241 5242
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5243
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5244 5245
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5246 5247 5248
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5249

L
Linus Torvalds 已提交
5250
	case CPU_DEAD:
5251
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5252 5253 5254 5255 5256 5257
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5258
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5259
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5260 5261
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5262 5263 5264 5265 5266 5267
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5268
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5269 5270 5271
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5272 5273
			struct migration_req *req;

L
Linus Torvalds 已提交
5274
			req = list_entry(rq->migration_queue.next,
5275
					 struct migration_req, list);
L
Linus Torvalds 已提交
5276 5277 5278 5279 5280 5281
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5282 5283 5284
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5285 5286 5287 5288 5289 5290 5291
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5292
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5293 5294 5295 5296 5297 5298 5299
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5300
	int err;
5301 5302

	/* Start one for the boot CPU: */
5303 5304
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5305 5306
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5307

L
Linus Torvalds 已提交
5308 5309 5310 5311 5312
	return 0;
}
#endif

#ifdef CONFIG_SMP
5313 5314 5315 5316 5317

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5318
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5319 5320 5321 5322 5323
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5324 5325 5326 5327 5328
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5348 5349
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5350 5351 5352 5353 5354 5355
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5356 5357
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5358
		if (!cpu_isset(cpu, group->cpumask))
5359 5360
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5373
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5374
				printk("\n");
5375 5376
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5399 5400
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5401 5402 5403

		level++;
		sd = sd->parent;
5404 5405
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5406

5407 5408 5409
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5410 5411 5412 5413

	} while (sd);
}
#else
5414
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5415 5416
#endif

5417
static int sd_degenerate(struct sched_domain *sd)
5418 5419 5420 5421 5422 5423 5424 5425
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5426 5427 5428
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5442 5443
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5462 5463 5464
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5465 5466 5467 5468 5469 5470 5471
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5472 5473 5474 5475
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5476
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5477
{
5478
	struct rq *rq = cpu_rq(cpu);
5479 5480 5481 5482 5483 5484 5485
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5486
		if (sd_parent_degenerate(tmp, parent)) {
5487
			tmp->parent = parent->parent;
5488 5489 5490
			if (parent->parent)
				parent->parent->child = tmp;
		}
5491 5492
	}

5493
	if (sd && sd_degenerate(sd)) {
5494
		sd = sd->parent;
5495 5496 5497
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5498 5499 5500

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5501
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5502 5503 5504
}

/* cpus with isolated domains */
5505
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5523 5524 5525 5526
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5527 5528 5529 5530 5531
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5532
static void
5533 5534 5535
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5536 5537 5538 5539 5540 5541
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5542 5543
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5544 5545 5546 5547 5548 5549
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5550
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5551 5552

		for_each_cpu_mask(j, span) {
5553
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5568
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5569

5570
#ifdef CONFIG_NUMA
5571

5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5624 5625
	cpumask_t span, nodemask;
	int i;
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5636

5637 5638 5639 5640 5641 5642 5643 5644
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5645
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5646

5647
/*
5648
 * SMT sched-domains:
5649
 */
L
Linus Torvalds 已提交
5650 5651
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5652
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5653

5654 5655
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5656
{
5657 5658
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5659 5660 5661 5662
	return cpu;
}
#endif

5663 5664 5665
/*
 * multi-core sched-domains:
 */
5666 5667
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5668
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5669 5670 5671
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5672 5673
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5674
{
5675
	int group;
5676 5677
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5678 5679 5680 5681
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5682 5683
}
#elif defined(CONFIG_SCHED_MC)
5684 5685
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5686
{
5687 5688
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5689 5690 5691 5692
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5693
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5694
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5695

5696 5697
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5698
{
5699
	int group;
5700
#ifdef CONFIG_SCHED_MC
5701
	cpumask_t mask = cpu_coregroup_map(cpu);
5702
	cpus_and(mask, mask, *cpu_map);
5703
	group = first_cpu(mask);
5704
#elif defined(CONFIG_SCHED_SMT)
5705 5706
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5707
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5708
#else
5709
	group = cpu;
L
Linus Torvalds 已提交
5710
#endif
5711 5712 5713
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5714 5715 5716 5717
}

#ifdef CONFIG_NUMA
/*
5718 5719 5720
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5721
 */
5722
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5723
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5724

5725
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5726
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5727

5728 5729
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5730
{
5731 5732 5733 5734 5735 5736 5737 5738 5739
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5740
}
5741

5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5762
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5763 5764 5765 5766 5767
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5768 5769
#endif

5770
#ifdef CONFIG_NUMA
5771 5772 5773
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5774
	int cpu, i;
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5805 5806 5807 5808 5809
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5810

5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5837 5838
	sd->groups->__cpu_power = 0;

5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5849
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5850 5851 5852 5853 5854 5855 5856 5857
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5858
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5859 5860 5861 5862
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5863
/*
5864 5865
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5866
 */
5867
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
5868 5869
{
	int i;
5870 5871
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
5872
	int sd_allnodes = 0;
5873 5874 5875 5876

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
5877
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5878
					   GFP_KERNEL);
5879 5880
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
5881
		return -ENOMEM;
5882 5883 5884
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
5885 5886

	/*
5887
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
5888
	 */
5889
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5890 5891 5892
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

5893
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5894 5895

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
5896 5897
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5898 5899 5900
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
5901
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5902
			p = sd;
5903
			sd_allnodes = 1;
5904 5905 5906
		} else
			p = NULL;

L
Linus Torvalds 已提交
5907 5908
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
5909 5910
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
5911 5912
		if (p)
			p->child = sd;
5913
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
5914 5915 5916 5917 5918 5919 5920
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
5921 5922
		if (p)
			p->child = sd;
5923
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
5924

5925 5926 5927 5928 5929 5930 5931
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
5932
		p->child = sd;
5933
		cpu_to_core_group(i, cpu_map, &sd->groups);
5934 5935
#endif

L
Linus Torvalds 已提交
5936 5937 5938 5939 5940
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
5941
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
5942
		sd->parent = p;
5943
		p->child = sd;
5944
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
5945 5946 5947 5948 5949
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
5950
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5951
		cpumask_t this_sibling_map = cpu_sibling_map[i];
5952
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
5953 5954 5955
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
5956 5957
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
5958 5959 5960
	}
#endif

5961 5962 5963 5964 5965 5966 5967
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
5968 5969
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
5970 5971 5972
	}
#endif

L
Linus Torvalds 已提交
5973 5974 5975 5976
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

5977
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5978 5979 5980
		if (cpus_empty(nodemask))
			continue;

5981
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
5982 5983 5984 5985
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
5986
	if (sd_allnodes)
I
Ingo Molnar 已提交
5987 5988
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
5999 6000
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6001
			continue;
6002
		}
6003 6004 6005 6006

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6007
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6008 6009 6010 6011 6012
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6013 6014 6015 6016 6017 6018
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6019
		sg->__cpu_power = 0;
6020
		sg->cpumask = nodemask;
6021
		sg->next = sg;
6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6040 6041
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6042 6043 6044
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6045
				goto error;
6046
			}
6047
			sg->__cpu_power = 0;
6048
			sg->cpumask = tmp;
6049
			sg->next = prev->next;
6050 6051 6052 6053 6054
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6055 6056 6057
#endif

	/* Calculate CPU power for physical packages and nodes */
6058
#ifdef CONFIG_SCHED_SMT
6059
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6060 6061
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6062
		init_sched_groups_power(i, sd);
6063
	}
L
Linus Torvalds 已提交
6064
#endif
6065
#ifdef CONFIG_SCHED_MC
6066
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6067 6068
		struct sched_domain *sd = &per_cpu(core_domains, i);

6069
		init_sched_groups_power(i, sd);
6070 6071
	}
#endif
6072

6073
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6074 6075
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6076
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6077 6078
	}

6079
#ifdef CONFIG_NUMA
6080 6081
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6082

6083 6084
	if (sd_allnodes) {
		struct sched_group *sg;
6085

6086
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6087 6088
		init_numa_sched_groups_power(sg);
	}
6089 6090
#endif

L
Linus Torvalds 已提交
6091
	/* Attach the domains */
6092
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6093 6094 6095
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6096 6097
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6098 6099 6100 6101 6102
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6103 6104 6105

	return 0;

6106
#ifdef CONFIG_NUMA
6107 6108 6109
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6110
#endif
L
Linus Torvalds 已提交
6111
}
6112 6113 6114
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6115
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6116 6117
{
	cpumask_t cpu_default_map;
6118
	int err;
L
Linus Torvalds 已提交
6119

6120 6121 6122 6123 6124 6125 6126
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6127 6128 6129
	err = build_sched_domains(&cpu_default_map);

	return err;
6130 6131 6132
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6133
{
6134
	free_sched_groups(cpu_map);
6135
}
L
Linus Torvalds 已提交
6136

6137 6138 6139 6140
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6141
static void detach_destroy_domains(const cpumask_t *cpu_map)
6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6159
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6160 6161
{
	cpumask_t change_map;
6162
	int err = 0;
6163 6164 6165 6166 6167 6168 6169 6170

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6171 6172 6173 6174 6175
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6176 6177
}

6178 6179 6180 6181 6182
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6183
	mutex_lock(&sched_hotcpu_mutex);
6184 6185
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6186
	mutex_unlock(&sched_hotcpu_mutex);
6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6211

6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6231 6232
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6245 6246
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6247 6248 6249 6250 6251 6252 6253
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6254 6255 6256
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6257
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6258 6259 6260 6261 6262 6263 6264
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6265
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6266
	case CPU_DOWN_PREPARE:
6267
	case CPU_DOWN_PREPARE_FROZEN:
6268
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6269 6270 6271
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6272
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6273
	case CPU_DOWN_FAILED:
6274
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6275
	case CPU_ONLINE:
6276
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6277
	case CPU_DEAD:
6278
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6279 6280 6281 6282 6283 6284 6285 6286 6287
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6288
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6289 6290 6291 6292 6293 6294

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6295 6296
	cpumask_t non_isolated_cpus;

6297
	mutex_lock(&sched_hotcpu_mutex);
6298
	arch_init_sched_domains(&cpu_online_map);
6299
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6300 6301
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6302
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6303 6304
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6305 6306 6307 6308

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6309
	sched_init_granularity();
L
Linus Torvalds 已提交
6310 6311 6312 6313
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6314
	sched_init_granularity();
L
Linus Torvalds 已提交
6315 6316 6317 6318 6319 6320 6321
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6322

L
Linus Torvalds 已提交
6323 6324 6325 6326 6327
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6328 6329 6330 6331 6332 6333 6334 6335 6336
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6337 6338
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6339
	u64 now = sched_clock();
6340
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6341 6342 6343 6344 6345 6346 6347 6348
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6349

6350
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6351
		struct rt_prio_array *array;
6352
		struct rq *rq;
L
Linus Torvalds 已提交
6353 6354 6355

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6356
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6357
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6358 6359 6360 6361 6362 6363 6364 6365
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
		rq->ls.load_update_last = now;
		rq->ls.load_update_start = now;
L
Linus Torvalds 已提交
6366

I
Ingo Molnar 已提交
6367 6368
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6369
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6370
		rq->sd = NULL;
L
Linus Torvalds 已提交
6371
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6372
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6373
		rq->push_cpu = 0;
6374
		rq->cpu = i;
L
Linus Torvalds 已提交
6375 6376 6377 6378 6379
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6380 6381 6382 6383
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6384
		}
6385
		highest_cpu = i;
I
Ingo Molnar 已提交
6386 6387
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6388 6389
	}

6390
	set_load_weight(&init_task);
6391

6392
#ifdef CONFIG_SMP
6393
	nr_cpu_ids = highest_cpu + 1;
6394 6395 6396
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6397 6398 6399 6400
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6414 6415 6416 6417
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6418 6419 6420 6421 6422
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6423
#ifdef in_atomic
L
Linus Torvalds 已提交
6424 6425 6426 6427 6428 6429 6430
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6431
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6432 6433 6434
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6435
		debug_show_held_locks(current);
6436 6437
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6438 6439 6440 6441 6442 6443 6444 6445 6446 6447
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6448
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6449
	unsigned long flags;
6450
	struct rq *rq;
I
Ingo Molnar 已提交
6451
	int on_rq;
L
Linus Torvalds 已提交
6452 6453

	read_lock_irq(&tasklist_lock);
6454
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
		p->se.wait_start_fair		= 0;
		p->se.wait_start		= 0;
		p->se.exec_start		= 0;
		p->se.sleep_start		= 0;
		p->se.sleep_start_fair		= 0;
		p->se.block_start		= 0;
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6473
			continue;
I
Ingo Molnar 已提交
6474
		}
L
Linus Torvalds 已提交
6475

6476 6477
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6478 6479 6480 6481 6482 6483 6484
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6485

I
Ingo Molnar 已提交
6486 6487 6488 6489 6490 6491
		on_rq = p->se.on_rq;
		if (on_rq)
			deactivate_task(task_rq(p), p, 0);
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
			activate_task(task_rq(p), p, 0);
L
Linus Torvalds 已提交
6492 6493
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6494 6495 6496
#ifdef CONFIG_SMP
 out_unlock:
#endif
6497 6498
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6499 6500
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6501 6502 6503 6504
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6523
struct task_struct *curr_task(int cpu)
6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6543
void set_curr_task(int cpu, struct task_struct *p)
6544 6545 6546 6547 6548
{
	cpu_curr(cpu) = p;
}

#endif