layers.py 238.3 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
X
xzl 已提交
23
from .poolings import MaxPooling, AvgPooling, MaxWithMaskPooling, BasePoolingType, \
24
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
56
    'square_error_cost',
57
    'regression_cost',
Q
qijun 已提交
58
    'classification_cost',
59
    'LayerOutput',
Q
qijun 已提交
60 61 62 63 64 65
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
Q
qijun 已提交
81 82 83 84 85 86 87 88
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
89
    'gru_step_naive_layer',
Q
qijun 已提交
90 91 92 93 94 95 96 97 98 99 100 101
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
102
    'warp_ctc_layer',
Q
qijun 已提交
103 104 105 106 107
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
Q
qijun 已提交
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
Q
qijun 已提交
116 117 118
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
119
    'printer_layer',
Q
qijun 已提交
120
    'print_layer',
Y
yuan 已提交
121
    'priorbox_layer',
122
    'cross_channel_norm_layer',
123 124
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
125
    'roi_pool_layer',
Q
qijun 已提交
126
    'spp_layer',
D
dangqingqing 已提交
127
    'pad_layer',
L
Luo Tao 已提交
128
    'eos_layer',
129
    'smooth_l1_cost',
130
    'layer_support',
W
wwhu 已提交
131
    'multiplex_layer',
D
dangqingqing 已提交
132
    'row_conv_layer',
133
    'dropout_layer',
134
    'prelu_layer',
135
    'switch_order_layer',
136
    'gated_unit_layer',
137
    'crop_layer',
138
    'sub_nested_seq_layer',
139
    'clip_layer',
140
    'slice_projection',
141
    'seq_slice_layer',
142
    'kmax_seq_score_layer',
C
chengduoZH 已提交
143
    'img_pool3d_layer',
G
guosheng 已提交
144
    'scale_shift_layer',
C
chengduoZH 已提交
145
    'img_conv3d_layer',
146
    'resize_layer',
Y
yangyaming 已提交
147
    'sub_seq_layer',
Y
yangyaming 已提交
148
    'scale_sub_region_layer',
Q
qijun 已提交
149
]
Z
zhangjinchao01 已提交
150 151 152 153 154 155 156


class LayerType(object):
    """
    Layer type enumerations.
    """

157 158 159 160 161 162 163 164
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
165
    POOLING_AVG = 'average'
166
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
167
    COST = 'cost'
168 169
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
170
    HSIGMOID = 'hsigmoid'
171 172 173 174 175
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
176
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
177
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
178
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
179 180 181
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
182
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
183 184 185 186
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
187
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
188 189 190 191 192 193 194

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
195
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
196 197 198
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
199
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
200
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
201
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
202 203 204 205 206 207 208 209 210 211 212

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
213
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
214
    BLOCK_EXPAND = "blockexpand"
215
    MAXOUT = "maxout"
Q
qijun 已提交
216
    SPP_LAYER = "spp"
D
dangqingqing 已提交
217
    PAD_LAYER = "pad"
W
wwhu 已提交
218
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
219
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
220 221 222

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
223 224
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
225
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
226 227 228 229 230

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
231
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
232

233 234 235
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

236 237
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
238
    HUBER_REGRESSION = 'huber_regression'
239
    HUBER_CLASSIFICATION = 'huber_classification'
240 241
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
242
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
243 244 245 246 247 248
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
249
    SWITCH_ORDER_LAYER = 'switch_order'
250
    CROP_LAYER = 'crop'
C
caoying03 已提交
251
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
252
    CLIP_LAYER = 'clip'
253
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
254

255
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
256
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
257

258
    RESIZE = 'resize'
Y
yangyaming 已提交
259
    SUB_SEQ_LAYER = 'subseq'
260

Y
yangyaming 已提交
261
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
Z
zhangjinchao01 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
283
    """
L
Luo Tao 已提交
284
    PaddlePaddle supports three sequence types:
285 286 287

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
288 289
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
290

L
Luo Tao 已提交
291
    Accordingly, AggregateLevel supports two modes:
292

L
Luo Tao 已提交
293
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
294
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
295 296
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
297
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
298 299 300
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
301 302
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
303 304 305
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
328
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
329 330
    """

Q
qijun 已提交
331 332 333 334 335 336 337 338 339
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
340
                 reverse=None):
Z
zhangjinchao01 已提交
341 342
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
343
        assert size is not None
Z
zhangjinchao01 已提交
344 345
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
346
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
347
        self.layer_type = layer_type
348 349
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
350 351 352 353 354 355 356 357
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
358
        self.reverse = reverse
Z
zhangjinchao01 已提交
359

360 361 362 363 364 365 366 367
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

368 369 370 371
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

372 373 374 375 376 377 378 379
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
380 381 382

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
383
DEVICE = 'device'
Z
zhangjinchao01 已提交
384 385 386


def layer_support(*attrs):
387
    attrs_list = list(attrs)
388
    attrs_list.append(DEVICE)
Q
qijun 已提交
389

Z
zhangjinchao01 已提交
390 391 392
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
393
            for attr in attrs_list:
Z
zhangjinchao01 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
410 411 412 413 414
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
445
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
446 447 448 449 450 451 452 453
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
454 455
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
456 457 458 459
    proj.origin = input
    return proj


460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
481
    :param input: The input of this layer.
482 483 484 485 486 487 488 489
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
490 491
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
492 493 494 495
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
526
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
527 528 529 530 531 532 533 534
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
535 536
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
537 538 539 540
    proj.origin = input
    return proj


541
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
571
    :param input: The input of this layer.
572
    :type input: LayerOutput
Z
zhangjinchao01 已提交
573 574
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
575
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
576 577 578 579 580 581
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
582 583
        if size is None:
            size = input.size - offset
Q
qijun 已提交
584
        proj = IdentityOffsetProjection(
585
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
586 587 588 589
        proj.origin = input
    return proj


590 591
def slice_projection(input, slices):
    """
592 593
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
594 595

    .. math::
596
       output = [input.slices()]
597 598 599 600 601 602 603 604 605

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
606
    :param input: The input of this layer.
607 608 609 610
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
611
    :type slices: pair of int
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
644
    :param input: The input of this layer.
X
xuwei06 已提交
645 646 647 648 649 650
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
651
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
652 653 654 655
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
656
@wrap_param_attr_default()
657
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
658
    """
659
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
673
    :param input: The input of this layer.
674 675 676 677 678 679
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
680 681
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
682
    proj.origin = input
683
    return proj
Z
zhangjinchao01 已提交
684

685 686

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
687 688
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
689

Z
zhangjinchao01 已提交
690
    .. math::
L
Luo Tao 已提交
691
       out.row[i] += scale * (a.row[i] .* b.row[i])
692

Z
zhangjinchao01 已提交
693 694
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
695

Z
zhangjinchao01 已提交
696
    The example usage is:
697

Z
zhangjinchao01 已提交
698
    .. code-block:: python
699

L
Luo Tao 已提交
700
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
701

702 703 704 705
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
706 707
    :param scale: config scalar, default value is one.
    :type scale: float
708 709
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
710
    """
711 712 713
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
714
    a = kwargs.get('x', a)  # For Backward capacity.
715 716 717 718 719 720
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
721
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
722
    op.origin = [a, b]
723
    return op
Z
zhangjinchao01 已提交
724

725

Z
zhangjinchao01 已提交
726
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
727 728 729
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
744
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
745 746 747 748 749 750 751 752 753
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
754
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
755 756 757 758 759 760 761 762 763 764 765
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
766 767 768 769 770 771
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
785
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
786 787 788 789 790 791
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
792
        :param act: Activation type.
Z
zhangjinchao01 已提交
793
        :type act: BaseActivation
R
ranqiu 已提交
794 795 796
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
797
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
798 799 800
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
801 802 803 804 805 806 807
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
808 809 810 811 812
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

813
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
814 815 816 817 818 819 820 821
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
822
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
823
            self.inputs.append(other)
824 825 826 827
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
828 829 830 831 832 833 834 835
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

836
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
837 838
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
839
        assert len(self.inputs) != 0
840
        ml = MixedLayer(
Z
zhangjinchao01 已提交
841 842 843 844 845
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
846
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
847 848 849
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
850
        self.finalized = True
Z
zhangjinchao01 已提交
851 852 853 854 855 856


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
857 858 859 860 861
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
889
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
890
                  then this function will just return layer's name.
R
ranqiu 已提交
891
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
892
    :type act: BaseActivation
R
ranqiu 已提交
893 894 895
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
896
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
897 898 899 900 901 902 903 904 905
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
906 907 908 909 910 911
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
912
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
913 914 915 916 917 918 919 920
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
921 922
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
923 924 925 926 927 928 929
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
930
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
931

R
ranqiu 已提交
932
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
933 934 935
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
936
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
937
    :type height: int | None
L
Luo Tao 已提交
938
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
939
    :type width: int | None
Z
zhangjinchao01 已提交
940 941
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
942
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
943 944
    :rtype: LayerOutput
    """
Q
qijun 已提交
945 946 947 948
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
949
        depth=depth,
L
Luo Tao 已提交
950 951
        height=height,
        width=width,
Q
qijun 已提交
952
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
953

C
chengduoZH 已提交
954 955
    if depth is None:
        depth = 1
956 957
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
958 959
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
960
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
961 962

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
963 964 965 966


@wrap_name_default("embedding")
@wrap_param_attr_default()
967
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
968 969 970 971
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

972
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
973
    :type name: basestring
R
ranqiu 已提交
974
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
975 976 977 978 979
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
980
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
981
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
982
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
983
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
984 985
    :rtype: LayerOutput
    """
Q
qijun 已提交
986 987 988 989 990 991
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
992 993 994 995 996 997 998 999 1000
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1001 1002 1003 1004 1005 1006 1007
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1020
    which is equal to:
Z
zhangjinchao01 已提交
1021 1022 1023 1024 1025 1026

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1027
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1028
    :type name: basestring
R
ranqiu 已提交
1029 1030
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1031 1032
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
1033
    :param act: Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
1034 1035 1036
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1037 1038 1039
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1040
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1041
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1042
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1043
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1044 1045 1046 1047
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1048
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1049 1050
        param_attr = [param_attr]
    else:
1051
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1052 1053
            assert len(input) == len(param_attr)
        else:
1054
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1055
                logger.fatal(
W
wangmeng28 已提交
1056 1057 1058 1059 1060
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1061 1062
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1063
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1064 1065

    Layer(
Q
qijun 已提交
1066 1067 1068
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1069 1070 1071 1072 1073
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1074 1075 1076
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1077

1078

1079
@wrap_name_default("print")
1080
def printer_layer(input, format=None, name=None):
1081 1082
    """
    Print the output value of input layers. This layer is useful for debugging.
1083

1084
    :param name: The name of this layer. It is optional.
1085
    :type name: basestring
R
ranqiu 已提交
1086 1087
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1088
    :return: LayerOutput
1089
    """
1090 1091 1092 1093 1094
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1095 1096 1097

    Layer(
        name=name,
1098
        format=format,
1099
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1100
        inputs=[l.name for l in input], )
1101
    # this layer don't return anything, can not be input of other layer.
1102

X
xuwei06 已提交
1103 1104 1105 1106 1107 1108 1109
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1110

Y
yuan 已提交
1111
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1112
def priorbox_layer(input,
G
gaoyuan 已提交
1113
                   image,
G
gaoyuan 已提交
1114 1115 1116 1117 1118
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1119 1120 1121
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1122
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1123
    :type name: basestring
R
ranqiu 已提交
1124
    :param input: The input of this layer.
Y
yuan 已提交
1125
    :type input: LayerOutput
G
gaoyuan 已提交
1126 1127
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1139
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1140 1141 1142
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1143
        inputs=[input.name, image.name],
Y
yuan 已提交
1144 1145 1146 1147 1148 1149
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1150 1151
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1152
        parents=[input, image],
G
gaoyuan 已提交
1153 1154 1155
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1171
    :param name: The name of this layer. It is optional.
1172
    :type name: basestring
Y
yangyaming 已提交
1173 1174
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1175
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1176
    :type input_conf: LayerOutput | List of LayerOutput
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1198
    input_loc_num = len(input_loc)
1199 1200 1201 1202 1203 1204

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1205
    input_conf_num = len(input_conf)
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1243 1244
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1245

1246
    :param name: The name of this layer. It is optional.
1247
    :type name: basestring
Y
yangyaming 已提交
1248 1249
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1250
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1251
    :type input_conf: LayerOutput | List of LayerOutput.
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1273
    input_loc_num = len(input_loc)
1274 1275 1276 1277 1278 1279

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1280 1281
    input_conf_num = len(input_conf)

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1310 1311 1312 1313 1314 1315
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1316
                   num_channels=None,
G
guosheng 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
G
guosheng 已提交
1334 1335
    :param num_channels: number of input channel.
    :type num_channels: int
G
guosheng 已提交
1336 1337
    :return: LayerOutput
    """
G
guosheng 已提交
1338 1339 1340 1341
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1342 1343 1344 1345 1346 1347
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
1348 1349
        spatial_scale=spatial_scale,
        num_channels=num_channels)
G
guosheng 已提交
1350 1351
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1352 1353


1354 1355
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1356 1357 1358 1359 1360
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1361

1362
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1363
    :type name: basestring
R
ranqiu 已提交
1364
    :param input: The input of this layer.
G
gaoyuan 已提交
1365 1366 1367 1368 1369
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1370
    assert input.num_filters is not None
G
gaoyuan 已提交
1371 1372
    Layer(
        name=name,
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1386 1387
    return LayerOutput(
        name,
1388
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1389 1390 1391 1392 1393
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1394 1395 1396 1397
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1398 1399 1400 1401
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1402
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1403
                  stride=-1,
Z
zhangjinchao01 已提交
1404 1405 1406 1407
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1408 1409
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1410 1411 1412
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1413
    operation. Note that for sequence with sub-sequence, the default value
1414 1415
    of stride is -1.

Z
zhangjinchao01 已提交
1416 1417 1418 1419 1420 1421
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1422
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1423

L
Luo Tao 已提交
1424 1425
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1426
    :type agg_level: AggregateLevel
1427
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1428
    :type name: basestring
R
ranqiu 已提交
1429
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1430 1431 1432
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1433
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1434
    :param stride: The step size between successive pooling regions.
1435
    :type stride: Int
R
ranqiu 已提交
1436 1437 1438
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1439
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1440
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1441
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1442
    :return: LayerOutput object.
Y
Yu Yang 已提交
1443
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1444 1445
    """
    extra_dict = dict()
1446
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1447 1448
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1449 1450 1451 1452
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1453 1454
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1455 1456 1457
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1458 1459 1460 1461 1462 1463
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1464
        stride=stride,
Q
qijun 已提交
1465
        **extra_dict)
Z
zhangjinchao01 已提交
1466

Q
qijun 已提交
1467 1468
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1469

Q
qijun 已提交
1470

Z
zhangjinchao01 已提交
1471 1472
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1473
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1474 1475
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1476
@layer_support()
Q
qijun 已提交
1477 1478
def lstmemory(input,
              name=None,
1479
              size=None,
Q
qijun 已提交
1480 1481 1482 1483 1484 1485
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1486 1487 1488 1489 1490 1491 1492 1493
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1494
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1495

L
luotao02 已提交
1496
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1497

L
luotao02 已提交
1498
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1499

L
luotao02 已提交
1500
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1501

L
luotao02 已提交
1502
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1503 1504


C
caoying03 已提交
1505
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1506
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1507 1508 1509 1510
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1511

C
caoying03 已提交
1512
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1513 1514
    to config a simple plain lstm layer.

C
caoying03 已提交
1515 1516 1517 1518
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1519 1520 1521 1522 1523

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1524 1525
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1526
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1527 1528 1529
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
R
ranqiu 已提交
1530
    :param act: Activation type. TanhActivation is the default. :math:`h_t`
Z
zhangjinchao01 已提交
1531 1532 1533 1534 1535
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
R
ranqiu 已提交
1536 1537 1538
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1539
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1540
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1541
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1542
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1543
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1544
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1545 1546 1547 1548 1549 1550
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1551
    assert input.size is not None and input.size % 4 == 0
1552

1553 1554 1555 1556 1557
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1558 1559 1560
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1561

Q
qijun 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1572

Q
qijun 已提交
1573 1574 1575 1576 1577
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1578

Z
zhangjinchao01 已提交
1579 1580 1581

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1582
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1583 1584
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1585
@layer_support()
Q
qijun 已提交
1586
def grumemory(input,
1587
              size=None,
Q
qijun 已提交
1588 1589 1590 1591 1592 1593
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1615 1616
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1617 1618 1619 1620 1621

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1622 1623 1624
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1625 1626 1627 1628 1629

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1630
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1631
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1632 1633 1634
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1635

C
caoying03 已提交
1636 1637 1638
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1639 1640 1641 1642 1643 1644 1645 1646

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1647 1648
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1649
    :type input: LayerOutput.
1650 1651
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1652
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1653
    :type reverse: bool
R
ranqiu 已提交
1654
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1655 1656 1657 1658 1659 1660
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
R
ranqiu 已提交
1661 1662 1663
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1664
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1665
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1666
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1667
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1668
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1669
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1670 1671 1672 1673
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1674 1675 1676 1677 1678 1679
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1680 1681 1682
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1683

Q
qijun 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1693

Q
qijun 已提交
1694 1695 1696 1697 1698
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1699

Z
zhangjinchao01 已提交
1700 1701 1702

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1703 1704
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1705
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1706
             stride=-1,
Z
zhangjinchao01 已提交
1707 1708 1709 1710
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1711 1712 1713
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1714
    of stride is -1.
1715

L
Luo Tao 已提交
1716 1717 1718 1719 1720 1721
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1722
    :param agg_level: Aggregated level
1723
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1724
    :type name: basestring
R
ranqiu 已提交
1725
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1726
    :type input: LayerOutput
L
Luo Tao 已提交
1727
    :param stride: The step size between successive pooling regions.
1728
    :type stride: Int
Z
zhangjinchao01 已提交
1729 1730
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1731
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1732 1733
    :rtype: LayerOutput
    """
1734 1735 1736 1737 1738 1739
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1740
    if agg_level == AggregateLevel.TO_SEQUENCE:
1741 1742
        assert stride == -1

Z
zhangjinchao01 已提交
1743 1744 1745 1746 1747
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1748
        stride=stride,
Q
qijun 已提交
1749 1750 1751 1752 1753 1754
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1755 1756 1757 1758


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1759 1760
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1761
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1762
              stride=-1,
Z
zhangjinchao01 已提交
1763 1764 1765 1766
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1767 1768 1769
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1770
    of stride is -1.
1771

L
Luo Tao 已提交
1772 1773 1774 1775 1776 1777
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1778
    :param agg_level: aggregation level
1779
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1780
    :type name: basestring
R
ranqiu 已提交
1781
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1782
    :type input: LayerOutput
L
Luo Tao 已提交
1783
    :param stride: The step size between successive pooling regions.
1784
    :type stride: Int
Z
zhangjinchao01 已提交
1785 1786
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1787
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1788 1789
    :rtype: LayerOutput
    """
1790 1791 1792 1793 1794 1795 1796

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1797
    if agg_level == AggregateLevel.TO_SEQUENCE:
1798 1799
        assert stride == -1

Z
zhangjinchao01 已提交
1800 1801 1802 1803 1804
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1805
        stride=stride,
Q
qijun 已提交
1806 1807 1808 1809 1810 1811
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1812 1813 1814


class ExpandLevel(object):
1815 1816 1817 1818 1819
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1820 1821
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1822 1823
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1824 1825
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1826 1827
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1828 1829
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1830 1831
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1832

1833

Z
zhangjinchao01 已提交
1834 1835
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1836 1837
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1838 1839
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1840
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1852
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1853

R
ranqiu 已提交
1854
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1855 1856 1857
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1858
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1859
    :type name: basestring
R
ranqiu 已提交
1860 1861 1862
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1863
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1864 1865 1866 1867
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1868
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1878 1879 1880 1881 1882 1883
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1884 1885


X
xuwei06 已提交
1886
@wrap_name_default()
X
xuwei06 已提交
1887
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1888
@layer_support()
X
xuwei06 已提交
1889 1890 1891
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1892
                 act=None,
X
xuwei06 已提交
1893 1894
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1895
    """
X
xuwei06 已提交
1896
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1897

X
xuwei06 已提交
1898
    If as_row_vector:
X
xuwei06 已提交
1899
    .. math::
X
xuwei06 已提交
1900 1901 1902 1903 1904
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1905 1906 1907 1908 1909

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1910
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1911

R
ranqiu 已提交
1912
    :param input: The input of this layer.
X
xuwei06 已提交
1913 1914 1915
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1916
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1917 1918 1919 1920 1921 1922
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
R
ranqiu 已提交
1923
    :param act: Activation type. IdentityActivation is the default.
X
xuwei06 已提交
1924
    :type act: BaseActivation
X
xuwei06 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1935
        active_type=act.name,
X
xuwei06 已提交
1936
        num_filters=num_repeats,
X
xuwei06 已提交
1937
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1938
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1939 1940 1941 1942 1943
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1944
        activation=act,
Q
qijun 已提交
1945 1946
        parents=[input])

X
xuwei06 已提交
1947

1948 1949 1950
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1951
@layer_support(ERROR_CLIPPING, DROPOUT)
1952 1953 1954 1955 1956 1957 1958 1959
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1960
    the dimension of each instance is M, and the input reshape_size is N, then the
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1971
    :param input: The input of this layer.
1972 1973 1974
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1975
    :param name: The name of this layer. It is optional.
1976
    :type name: basestring
R
ranqiu 已提交
1977
    :param act: Activation type. IdentityActivation is the default.
1978 1979 1980
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
1981 1982 1983
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1984
    :type bias_attr: ParameterAttribute | None | bool | Any
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
2023 2024
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
2025 2026
    :param weight: Weight layer.
    :type weight: LayerOutput
2027
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2028 2029 2030
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2031
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2032 2033
    :rtype: LayerOutput
    """
2034
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2035
    assert len(input) == 2
2036 2037 2038 2039 2040 2041 2042
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2043 2044 2045 2046
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2047 2048 2049 2050 2051 2052
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2053 2054


L
liaogang 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2071
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2072

L
liaogang 已提交
2073
    :param   input:        A input layer.
L
liaogang 已提交
2074
    :type    input:        LayerOutput.
L
liaogang 已提交
2075
    :param   out_size_x:   bilinear interpolation output width.
R
ranqiu 已提交
2076
    :type    out_size_x:   int | None
L
liaogang 已提交
2077
    :param   out_size_y:   bilinear interpolation output height.
R
ranqiu 已提交
2078
    :type    out_size_y:   int | None
L
liaogang 已提交
2079
    :param   name:         The layer's name, which cna not be specified.
R
ranqiu 已提交
2080
    :type    name:         None | basestring
L
liaogang 已提交
2081
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2082 2083 2084 2085 2086 2087 2088
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2089
    assert input.num_filters is not None
L
liaogang 已提交
2090
    num_channels = input.num_filters
Q
qijun 已提交
2091 2092 2093 2094 2095 2096 2097
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2098
                channels=num_channels)),
Q
qijun 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2108

Z
zhangjinchao01 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2128
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2129 2130 2131
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2132
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2133 2134 2135
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2136
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2137 2138
    :rtype: LayerOutput
    """
2139 2140 2141
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2142 2143 2144
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2145
        inputs=[weight.name, input.name],
Q
qijun 已提交
2146 2147 2148
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2149 2150 2151 2152 2153 2154


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2155
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2156 2157

    .. math::
2158
       y  = w x
Z
zhangjinchao01 已提交
2159

2160 2161 2162 2163 2164
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2165 2166 2167 2168 2169 2170 2171

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2172
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2173 2174 2175
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2176
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2177 2178 2179
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2180
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2181 2182
    :rtype: LayerOutput
    """
2183 2184 2185
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2186 2187 2188 2189
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2190 2191 2192
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2193 2194 2195 2196 2197 2198


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2199
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2212
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2213
    :type input: LayerOutput
2214
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2215 2216 2217
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2218
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2219 2220 2221 2222 2223 2224
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2225 2226 2227
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2228 2229


2230 2231
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2232
def rotate_layer(input, height, width, name=None, layer_attr=None):
2233
    """
H
Haonan 已提交
2234 2235
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2236 2237

    .. math::
H
Haonan 已提交
2238
       y(j,i,:) = x(M-i-1,j,:)
2239

H
Haonan 已提交
2240
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2241 2242 2243 2244 2245 2246

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2247 2248
                          height=100,
                          width=100)
2249

R
ranqiu 已提交
2250
    :param input: The input of this layer.
2251 2252 2253
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2254
    :param name: The name of this layer. It is optional.
2255 2256 2257 2258 2259 2260 2261
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2262 2263 2264
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2265
        width=width,
H
Haonan 已提交
2266 2267 2268 2269 2270 2271 2272 2273
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2274 2275


Z
zhangjinchao01 已提交
2276 2277
@wrap_name_default()
@layer_support()
2278
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2279 2280 2281 2282
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2283
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2284 2285 2286 2287 2288
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2289

2290 2291
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2292

L
Luo Tao 已提交
2293 2294 2295 2296 2297 2298
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2299
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2311
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2312 2313
    :rtype: LayerOutput
    """
2314
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2315 2316 2317 2318 2319 2320
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2321
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2322
    else:
2323 2324
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2325 2326 2327 2328 2329 2330
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2331
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2332
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2333

2334

Z
zhangjinchao01 已提交
2335 2336
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2337
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2338
@layer_support()
Q
qijun 已提交
2339 2340
def hsigmoid(input,
             label,
2341
             num_classes=None,
Q
qijun 已提交
2342 2343 2344 2345
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2357
                        label=data_layer)
Z
zhangjinchao01 已提交
2358

R
ranqiu 已提交
2359 2360
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
2361 2362 2363
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
R
ranqiu 已提交
2364
    :type num_classes: int | None
2365
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2366
    :type name: basestring
R
ranqiu 已提交
2367 2368 2369
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2370
    :type bias_attr: ParameterAttribute | None | bool | Any
2371
    :param param_attr: Parameter Attribute. None means default parameter.
R
ranqiu 已提交
2372
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
2373 2374
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2375
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2376 2377 2378 2379
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2380 2381 2382 2383 2384 2385 2386 2387 2388
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2389 2390 2391
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2392 2393 2394 2395 2396
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2397 2398
    ipts_for_layer = []
    parents = []
2399
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2400
        assert isinstance(each_input, LayerOutput)
2401
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2402 2403 2404 2405
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2406
    l = Layer(
Z
zhangjinchao01 已提交
2407 2408 2409 2410 2411
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2412 2413 2414
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2415

2416

Z
zhangjinchao01 已提交
2417 2418 2419 2420 2421
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2431
                   dilation=1,
Q
qijun 已提交
2432 2433 2434 2435 2436 2437 2438
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2439
                   dilation_y=None,
2440 2441
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2442
    """
2443
    Convolution layer for image. Paddle can support both square and non-square
2444
    input currently.
Z
zhangjinchao01 已提交
2445 2446 2447 2448

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2449

2450
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2451
    and non-square input currently.
2452

X
xuwei06 已提交
2453
    The details of convolution transpose layer,
2454 2455 2456
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2457 2458 2459 2460
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2461 2462 2463
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2464
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2465 2466
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2467

L
Luo Tao 已提交
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2478
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2479
    :type name: basestring
R
ranqiu 已提交
2480
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2481
    :type input: LayerOutput
2482 2483
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
R
ranqiu 已提交
2484
    :type filter_size: int | tuple | list
C
caoying03 已提交
2485 2486 2487
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
R
ranqiu 已提交
2488
    :type filter_size_y: int | None
Z
zhangjinchao01 已提交
2489
    :param num_filters: Each filter group's number of filter
R
ranqiu 已提交
2490
    :param act: Activation type. ReluActivation is the default.
Z
zhangjinchao01 已提交
2491 2492 2493
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2494 2495
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
2496
    :type stride: int | tuple | list
Z
zhangjinchao01 已提交
2497 2498
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2499 2500
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2501
    :type padding: int | tuple | list
Z
zhangjinchao01 已提交
2502 2503
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2504 2505
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2506
    :type dilation: int | tuple | list
W
wanghaoshuang 已提交
2507 2508
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
R
ranqiu 已提交
2509 2510 2511
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2512
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
2513 2514 2515 2516 2517 2518 2519 2520 2521
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2522 2523
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2524
    :param layer_type: specify the layer_type, default is None. If trans=True,
2525 2526
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2527
                       "cudnn_conv"
2528
    :type layer_type: String
D
dangqingqing 已提交
2529
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2530 2531 2532 2533 2534
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2535

Z
zhangjinchao01 已提交
2536
    if filter_size_y is None:
2537 2538 2539 2540 2541 2542
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2543
    if stride_y is None:
2544 2545 2546 2547 2548 2549
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2550
    if padding_y is None:
2551 2552 2553 2554 2555 2556
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2557 2558 2559 2560 2561 2562 2563
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2564 2565
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2566
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2567 2568 2569 2570
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2571

2572
    if layer_type:
W
wanghaoshuang 已提交
2573
        if dilation > 1 or dilation_y > 1:
X
xzl 已提交
2574 2575 2576
            assert layer_type in [
                "cudnn_conv", "cudnn_convt", "exconv", "exconvt"
            ]
2577
        if trans:
2578
            assert layer_type in ["exconvt", "cudnn_convt"]
2579 2580 2581 2582 2583
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2584

X
xuwei06 已提交
2585
    l = Layer(
Z
zhangjinchao01 已提交
2586
        name=name,
Q
qijun 已提交
2587 2588 2589 2590 2591
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2592
                dilation=dilation,
Q
qijun 已提交
2593 2594 2595 2596 2597
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2598
                dilation_y=dilation_y,
Q
qijun 已提交
2599 2600
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2601 2602 2603 2604
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2605
        type=lt,
Q
qijun 已提交
2606 2607 2608 2609 2610 2611 2612 2613
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2614 2615 2616 2617


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2628 2629
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2630 2631 2632 2633 2634 2635 2636
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2665
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2666
    :type padding: int
2667
    :param padding_y: pooling padding height. It's equal to padding by default.
R
ranqiu 已提交
2668
    :type padding_y: int | None
Z
zhangjinchao01 已提交
2669 2670
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2671
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2672
    :type input: LayerOutput
2673
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2674
    :type pool_size: int
2675
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
R
ranqiu 已提交
2676
    :type pool_size_y: int | None
Z
zhangjinchao01 已提交
2677 2678
    :param num_channels: number of input channel.
    :type num_channels: int
2679
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2680 2681
                      MaxPooling.
    :type pool_type: BasePoolingType
2682
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2683
    :type stride: int
2684
    :param stride_y: stride height of pooling. It is equal to stride by default.
R
ranqiu 已提交
2685
    :type stride_y: int | None
Z
zhangjinchao01 已提交
2686 2687
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2688 2689 2690 2691
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2692 2693
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

X
xzl 已提交
2704
    assert type(pool_type) in [AvgPooling, MaxPooling, MaxWithMaskPooling, CudnnAvgPooling,
W
wanghaoshuang 已提交
2705
                               CudnnMaxPooling], \
X
xzl 已提交
2706
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling, MaxWithMaskPooling are supported"
W
wanghaoshuang 已提交
2707

2708
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2709
        if (
Y
Yu Yang 已提交
2710
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2711
        else pool_type.name
2712 2713 2714 2715
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2716
    l = Layer(
Z
zhangjinchao01 已提交
2717 2718
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2731
                    padding_y=padding_y))
Q
qijun 已提交
2732
        ],
2733
        ceil_mode=ceil_mode,
Q
qijun 已提交
2734 2735 2736 2737 2738 2739 2740
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2741 2742


C
chengduoZH 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2795
    :type padding: int | tuple | list
C
chengduoZH 已提交
2796 2797
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2798
    :param input: The input of this layer.
C
chengduoZH 已提交
2799 2800
    :type input: LayerOutput
    :param pool_size: pooling window width
R
ranqiu 已提交
2801
    :type pool_size: int | tuple | list
C
chengduoZH 已提交
2802 2803 2804 2805 2806 2807
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
R
ranqiu 已提交
2808
    :type stride: int | tuple | list
C
chengduoZH 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2883 2884
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2885 2886 2887 2888 2889 2890
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2891 2892 2893 2894 2895
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2896 2897 2898 2899
    The example usage is:

    ..  code-block:: python

2900 2901 2902
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2903 2904
                        pool_type=MaxPooling())

2905
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2906
    :type name: basestring
R
ranqiu 已提交
2907
    :param input: The input of this layer.
Q
qijun 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2933
    l = Layer(
Q
qijun 已提交
2934 2935
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2936 2937 2938 2939 2940
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2941
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2953 2954 2955 2956
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2957
    l = Layer(
Q
qijun 已提交
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2977 2978 2979 2980


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2981 2982 2983 2984 2985 2986
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2987
                      layer_attr=None):
Z
zhangjinchao01 已提交
2988
    """
2989
    Response normalization across feature maps.
D
dangqingqing 已提交
2990 2991
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2992

L
Luo Tao 已提交
2993 2994 2995
    The example usage is:

    ..  code-block:: python
2996

L
Luo Tao 已提交
2997 2998
        norm = img_cmrnorm_layer(input=net, size=5)

2999
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3000 3001
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3002
    :type input: LayerOutput
3003
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
3004
    :type size: int
D
dangqingqing 已提交
3005
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
3006
    :type scale: float
D
dangqingqing 已提交
3007
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
3008 3009 3010 3011 3012
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3013
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3014 3015 3016
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
3017
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
3018 3019 3020


@wrap_bias_attr_default()
3021 3022
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
3023 3024
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
3025
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3026 3027 3028
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
3029
                     img3D=False,
Q
qijun 已提交
3030 3031 3032 3033
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
3034 3035
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
3036 3037
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
3056 3057 3058
    The example usage is:

    ..  code-block:: python
3059

L
Luo Tao 已提交
3060 3061
        norm = batch_norm_layer(input=net, act=ReluActivation())

3062
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3063 3064 3065 3066
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
                            enable use_mkldnn. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU,
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
                            Otherwise, select batch norm type based on the
                            specified type. If you use cudnn_batch_norm,
Z
zhangjinchao01 已提交
3077
                            we suggested you use latest version, such as v5.1.
R
ranqiu 已提交
3078
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3079
                           or "mkldnn_batch_norm"
Z
zhangjinchao01 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
R
ranqiu 已提交
3089
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
R
ranqiu 已提交
3101
    :type use_global_stats: bool | None.
Z
zhangjinchao01 已提交
3102 3103 3104 3105 3106
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3107 3108
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3109
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3110 3111 3112 3113 3114 3115 3116 3117 3118
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3119
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3120
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3121
    l = Layer(
Z
zhangjinchao01 已提交
3122
        name=name,
C
chengduoZH 已提交
3123
        img3D=img3D,
Q
qijun 已提交
3124 3125
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3126 3127 3128 3129 3130 3131
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3132
        mean_var_names=mean_var_names,
Q
qijun 已提交
3133
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3134

Q
qijun 已提交
3135 3136 3137 3138 3139 3140 3141
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3163
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3164
    :type input: LayerOutput
3165
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3166 3167 3168
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3169
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3170 3171 3172 3173 3174 3175
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3176 3177 3178
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3179 3180


G
guosheng 已提交
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3199
    :param input: The input of this layer.
G
guosheng 已提交
3200
    :type input: LayerOutput
3201
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3217 3218 3219
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3220
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3221
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3244 3245 3246
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3247 3248

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3249 3250
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3251 3252
    Please refer to dropout_layer for details.

3253
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3254 3255 3256
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
R
ranqiu 已提交
3257 3258
    :type input: LayerOutput | list | tuple
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
3259
    :type act: BaseActivation
R
ranqiu 已提交
3260 3261 3262
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3263
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3264 3265
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3266
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3267 3268 3269 3270 3271 3272
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3273
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3274 3275 3276 3277 3278 3279 3280
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3281
    l = Layer(
Q
qijun 已提交
3282 3283 3284
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3285 3286
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3287
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3288

Q
qijun 已提交
3289 3290 3291 3292 3293 3294 3295
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3296 3297 3298 3299


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3300
@layer_support(DROPOUT, ERROR_CLIPPING)
3301
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3302 3303 3304 3305
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3306 3307 3308 3309 3310 3311
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3312
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3313 3314
    :type name: basestring
    :param input: input layers or projections
R
ranqiu 已提交
3315 3316
    :type input: list | tuple | collections.Sequence
    :param act: Activation type. IdentityActivation is the default.
Z
zhangjinchao01 已提交
3317 3318 3319
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3320
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3321 3322 3323 3324 3325 3326 3327 3328
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3329
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3330 3331

    def __is_type__(o, tp):
3332
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3354 3355
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3356

Q
qijun 已提交
3357 3358
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3359

3360 3361
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3362

3363
    layer = Layer(
Q
qijun 已提交
3364 3365
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3366 3367
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3368
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3369
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3370

3371
    sz = layer.config.size
Z
zhangjinchao01 已提交
3372

Q
qijun 已提交
3373 3374 3375 3376 3377 3378 3379 3380
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3381 3382
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3383
@wrap_bias_attr_default(has_bias=False)
3384
@layer_support(DROPOUT, ERROR_CLIPPING)
3385 3386 3387 3388
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3389

3390
    Inputs:
X
xuwei06 已提交
3391
      - a = [a1, a2, ..., am]
3392
      - b = [b1, b2, ..., bn]
3393

X
xuwei06 已提交
3394 3395 3396 3397
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3398 3399 3400 3401 3402 3403 3404

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3405
    :param name: The name of this layer. It is optional.
3406 3407 3408 3409 3410
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
R
ranqiu 已提交
3411
    :param act: Activation type. IdentityActivation is the default.
3412 3413 3414
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3415 3416 3417
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3418
    :type bias_attr: ParameterAttribute | None | bool | Any
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3440
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3441 3442
def memory(name,
           size,
3443
           memory_name=None,
Q
qijun 已提交
3444 3445 3446 3447
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3468 3469 3470 3471 3472 3473 3474 3475 3476
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3477

3478 3479 3480 3481 3482 3483 3484
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3485 3486 3487
    :type name: basestring
    :param size: size of memory.
    :type size: int
3488 3489 3490
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3491
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3492 3493
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
R
ranqiu 已提交
3494
    :type boot_layer: LayerOutput | None
Z
zhangjinchao01 已提交
3495
    :param boot_bias: boot layer's bias
R
ranqiu 已提交
3496
    :type boot_bias: ParameterAttribute | None
Z
zhangjinchao01 已提交
3497 3498 3499 3500
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3501
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3512 3513
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3514

3515 3516 3517 3518 3519 3520 3521 3522
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3523 3524

    lout = LayerOutput(
3525
        name=memory_name,
Q
qijun 已提交
3526 3527 3528
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3529 3530 3531 3532
    return lout


@wrap_bias_attr_default()
3533 3534
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3535 3536 3537
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3538 3539
def lstm_step_layer(input,
                    state,
3540
                    size=None,
Q
qijun 已提交
3541 3542 3543 3544 3545 3546
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3547
    """
3548 3549
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3550 3551 3552

    ..  math::

3553
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3554

3555
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3556

3557
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3558

3559
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3560

L
luotao02 已提交
3561
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3562 3563


L
luotao02 已提交
3564
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3565
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3566
    input vectors.
Z
zhangjinchao01 已提交
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3577 3578
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3579 3580
    :code:`get_output_layer` to extract this output.

3581
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3582
    :type name: basestring
3583 3584
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3585 3586 3587 3588 3589 3590
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
R
ranqiu 已提交
3591
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3592
    :type act: BaseActivation
R
ranqiu 已提交
3593
    :param gate_act: Gate Activation Type. SigmoidActivation is the default.
Z
zhangjinchao01 已提交
3594
    :type gate_act: BaseActivation
R
ranqiu 已提交
3595
    :param state_act: State Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3596
    :type state_act: BaseActivation
P
peterzhang2029 已提交
3597 3598
    :param bias_attr: The parameter attribute for bias. If this parameter is
                     set to True or None, the bias is initialized to zero.
P
peterzhang2029 已提交
3599
    :type bias_attr: ParameterAttribute | None | True
Z
zhangjinchao01 已提交
3600 3601
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3602
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3603 3604
    :rtype: LayerOutput
    """
3605 3606 3607

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3608 3609 3610 3611 3612 3613 3614
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3615
        size=state.size,
Q
qijun 已提交
3616 3617
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3618

Q
qijun 已提交
3619 3620 3621 3622 3623 3624 3625
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3626 3627 3628


@wrap_bias_attr_default()
W
wangyang59 已提交
3629
@wrap_param_attr_default()
Q
qijun 已提交
3630
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3631 3632 3633
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3634 3635 3636 3637 3638 3639 3640
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3641
                   param_attr=None,
Q
qijun 已提交
3642
                   layer_attr=None):
Z
zhangjinchao01 已提交
3643 3644 3645 3646 3647 3648 3649
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
R
ranqiu 已提交
3650
    :type act: BaseActivation
3651
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3652 3653
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3654 3655 3656 3657
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3658
    :type bias_attr: ParameterAttribute | None | bool | Any
3659 3660
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3661
    :param layer_attr:
D
dangqingqing 已提交
3662
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3663 3664 3665 3666 3667 3668 3669 3670
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3671 3672 3673 3674
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3675
        # backward model compatibility.
3676
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3677 3678 3679 3680
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3681
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3682
    return LayerOutput(
Q
qijun 已提交
3683 3684
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3685
        parents=[input, output_mem],
Q
qijun 已提交
3686 3687
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3688 3689


Y
Yu Yang 已提交
3690 3691 3692 3693
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3694
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
3712
    :param name: The name of this layer. It is optional.
Y
Yu Yang 已提交
3713
    :param act:
R
ranqiu 已提交
3714 3715 3716
    :type act: BaseActivation
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3717 3718 3719 3720
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3721
    :type bias_attr: ParameterAttribute | None | bool | Any
Y
Yu Yang 已提交
3722 3723 3724
    :param param_attr:
    :param layer_attr:
    :return:
R
ranqiu 已提交
3725
    :rtype: LayerOutput
Y
Yu Yang 已提交
3726 3727 3728 3729 3730 3731
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3732
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3733 3734 3735 3736
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3737

Y
Yu Yang 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3775 3776 3777 3778
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3779 3780 3781 3782
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3783

3784
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3785 3786 3787 3788 3789 3790 3791
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3792
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3793 3794 3795 3796 3797 3798 3799
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3800 3801 3802 3803 3804 3805 3806
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3807

Q
qijun 已提交
3808 3809 3810 3811 3812
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3813 3814 3815 3816 3817 3818 3819


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3820 3821 3822 3823 3824 3825 3826
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3827
    """
3828 3829
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3830

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3846
    :param input: The input of this layer.
3847
    :type input: LayerOutput
R
ranqiu 已提交
3848
    :param act: Activation type. TanhActivation is the default.
3849
    :type act: BaseActivation
P
peterzhang2029 已提交
3850 3851 3852 3853
    :param bias_attr: The parameter attribute for bias. If this parameter is set to 
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If the parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3854
    :type bias_attr: ParameterAttribute | None | bool | Any
3855 3856
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
3857
    :param name: The name of this layer. It is optional.
3858 3859 3860
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3861
    :return: LayerOutput object.
3862
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3863
    """
Q
qijun 已提交
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3879 3880 3881 3882 3883 3884


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3885 3886
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3887
    """
3888

Z
zhangjinchao01 已提交
3889 3890 3891
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3892
        assert input.size is not None
Z
zhangjinchao01 已提交
3893
        if size is not None:
3894
            assert input.size == size
Z
zhangjinchao01 已提交
3895 3896


3897
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3898
    """
3899
    DEPRECATED.
Z
zhangjinchao01 已提交
3900 3901 3902 3903 3904 3905 3906 3907
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3908
    return input
Z
zhangjinchao01 已提交
3909 3910 3911


@wrap_name_default("recurrent_group")
3912
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3913
    """
C
caoying03 已提交
3914 3915 3916 3917 3918
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

R
ranqiu 已提交
3961
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
3962

3963 3964
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3965
    :type reverse: bool
3966

3967 3968
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3969 3970 3971 3972 3973 3974 3975

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
3976
    :type targetInlink: LayerOutput | SubsequenceInput
3977

D
dangqingqing 已提交
3978
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3979 3980 3981 3982
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3983
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3984
        input = [input]
3985
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3986 3987

    def is_in_links(x):
3988
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3989 3990 3991 3992

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3993
        name=name,
3994 3995
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3996 3997
    in_args = []
    for each_input in input:
3998
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3999
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
4000
            mem = memory(
4001
                name=None,
Q
qijun 已提交
4002 4003
                size=each_input.input.size,
                boot_layer=each_input.input)
4004
            mem.set_input(mem)
Z
zhangjinchao01 已提交
4005
            in_args.append(mem)
4006 4007
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
4008

Z
zhangjinchao01 已提交
4009 4010 4011 4012 4013
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

4014 4015 4016 4017 4018 4019
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
4020 4021 4022

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
4023
    for layer_out in layer_outs:
4024 4025
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
4026 4027
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
4028 4029 4030 4031 4032
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

4033

Z
zhangjinchao01 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4062 4063

    def before_real_step(self):
Q
qijun 已提交
4064 4065 4066 4067 4068 4069 4070 4071 4072
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4073 4074 4075
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4076
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4094
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4095
    :type input: LayerOutput
4096
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4097 4098 4099
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4100
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4101 4102 4103 4104
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4115

4116

H
Haonan 已提交
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4129
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4153

Z
zhangjinchao01 已提交
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4170
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4171
    :type name: basestring
R
ranqiu 已提交
4172
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4173 4174 4175 4176 4177
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4178
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4179 4180
    :rtype: LayerOutput
    """
Q
qijun 已提交
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4192 4193 4194


@wrap_name_default()
Q
qijun 已提交
4195 4196 4197 4198 4199 4200 4201
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4202
                num_results_per_sample=None):
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4214
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4215 4216 4217 4218
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4219 4220 4221 4222 4223
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4224 4225
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4226 4227
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4228 4229
                               bos_id=0,
                               eos_id=1,
4230
                               beam_size=5)
4231 4232 4233 4234 4235 4236 4237 4238 4239

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
4240
                 step, and it is applied to sequences with arbitrary length by
4241 4242 4243 4244 4245
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4246 4247
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4248
                  In beam_search, none of the input's type should be LayerOutput.
4249
    :type input: list
4250 4251 4252
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4253
                   symbol is essential, since it is used to initialize the RNN
4254 4255 4256 4257 4258 4259 4260 4261
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4262 4263
    :param max_length: Max generated sequence length.
    :type max_length: int
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4274 4275
    :return: The generated word index.
    :rtype: LayerOutput
4276 4277
    """

Z
zhangjinchao01 已提交
4278 4279 4280 4281 4282
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4283
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4284 4285 4286 4287 4288 4289
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4290 4291 4292
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4293
        if isinstance(each_input, BaseGeneratedInput):
4294 4295
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4296
            generated_input_index = i
4297

Z
zhangjinchao01 已提交
4298 4299 4300
        else:
            real_input.append(each_input)

4301
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4302 4303 4304 4305 4306 4307 4308 4309

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4310 4311 4312 4313 4314 4315
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4316 4317 4318 4319 4320 4321

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4322
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4323 4324
        return predict

4325 4326
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4327

Q
qijun 已提交
4328

4329 4330
def __cost_input__(input, label, weight=None):
    """
4331
    inputs and parents for cost layers.
4332
    """
C
caoying03 已提交
4333 4334 4335 4336 4337 4338
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4339
    if weight is not None:
4340
        assert weight.size == 1
4341 4342 4343
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4344

Z
zhangjinchao01 已提交
4345 4346

@wrap_name_default()
L
luotao1 已提交
4347
@layer_support()
4348 4349 4350 4351 4352 4353
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4354
    """
4355
    sum of square error cost:
L
Luo Tao 已提交
4356 4357 4358

    ..  math::

4359
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4360

4361
    :param name: The name of this layer. It is optional.
4362
    :type name: basestring
Z
zhangjinchao01 已提交
4363
    :param input: Network prediction.
4364
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4365
    :param label: Data label.
4366 4367 4368 4369
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4370 4371
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4372 4373
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4374
    :return: LayerOutput object.
4375
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4376
    """
4377 4378
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4379 4380 4381 4382
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4383
        coeff=coeff,
Q
qijun 已提交
4384
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4385
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4386 4387


4388
regression_cost = square_error_cost
L
Luo Tao 已提交
4389 4390


Z
zhangjinchao01 已提交
4391
@wrap_name_default("cost")
4392
@layer_support()
Q
qijun 已提交
4393 4394 4395 4396
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4397
                        evaluator=classification_error_evaluator,
4398 4399
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4400 4401 4402
    """
    classification cost Layer.

4403
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4404 4405 4406 4407 4408
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4409 4410 4411
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4412
    :param evaluator: Evaluator method.
4413 4414
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4415 4416
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4417
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4418 4419 4420 4421 4422
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4423 4424 4425

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4426 4427 4428 4429
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4430
        coeff=coeff,
Q
qijun 已提交
4431
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4442
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4443

4444
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4445 4446 4447 4448 4449
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4450
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4451

4452

Q
qijun 已提交
4453 4454 4455 4456 4457 4458 4459 4460 4461
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4462 4463
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4474 4475
       op = conv_operator(img=input1,
                          filter=input2,
4476
                          filter_size=3,
Z
zhangjinchao01 已提交
4477 4478 4479
                          num_filters=64,
                          num_channels=64)

4480 4481 4482 4483
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4484 4485
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4486 4487 4488
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4489
    :type filter_size_y: int
4490 4491
    :param num_filters: channel of output data.
    :type num_filters: int
4492 4493
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4494
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4495
    :type stride: int
Z
zhangjinchao01 已提交
4496
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4497
    :type stride_y: int
Z
zhangjinchao01 已提交
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4511

4512 4513
    if num_channels is None:
        num_channels = img.num_filters
4514 4515

    assert isinstance(filter, LayerOutput)
4516
    assert filter.size is not None
4517

4518 4519 4520
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4532

4533
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4534 4535
    return op

Q
qijun 已提交
4536

4537
@wrap_param_attr_default()
Q
qijun 已提交
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4548 4549
                    param_attr=None,
                    trans=False):
4550 4551 4552 4553 4554 4555 4556 4557 4558
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4559
       proj = conv_projection(input=input1,
4560 4561 4562 4563
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4564
    :param input: The input of this layer.
4565 4566 4567 4568 4569 4570 4571 4572 4573
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4574 4575
    :param num_channels: channel of input data.
    :type num_channels: int
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4588
    :param trans: whether it is convTrans or conv
R
ranqiu 已提交
4589
    :type trans: bool
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4620
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4621 4622 4623 4624 4625
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4626 4627 4628
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4641 4642 4643 4644

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4645

D
dangqingqing 已提交
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4663

D
dangqingqing 已提交
4664
    For example,
4665

4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4687 4688

    The simply usage is:
D
dangqingqing 已提交
4689 4690 4691 4692 4693 4694 4695 4696

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4697
    :param input: The input of this layer.
D
dangqingqing 已提交
4698 4699
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
R
ranqiu 已提交
4700
    :type pad_c: list | None
D
dangqingqing 已提交
4701
    :param pad_h: padding size in height dimension.
R
ranqiu 已提交
4702
    :type pad_h: list | None
D
dangqingqing 已提交
4703
    :param pad_w: padding size in width dimension.
R
ranqiu 已提交
4704
    :type pad_w: list | None
D
dangqingqing 已提交
4705 4706
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
4707
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4750
@wrap_name_default()
L
luotao1 已提交
4751 4752
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4764 4765 4766 4767
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4768 4769 4770 4771 4772

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4773
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4774

4775
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4776
    :type name: basestring
4777 4778
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4779
    :param b: input layer b.
4780
    :type b: LayerOutput
L
luotao1 已提交
4781 4782
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4783
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4784 4785
    :rtype: LayerOutput
    """
4786 4787
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4788 4789 4790
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4791
        inputs=[a.name, b.name],
Q
qijun 已提交
4792
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4793

Q
qijun 已提交
4794 4795
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4796 4797 4798 4799 4800


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4801
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4802
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4803 4804 4805 4806 4807 4808 4809 4810
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4811 4812 4813 4814 4815
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4816
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4817 4818

    In this formular:
4819 4820
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4821 4822
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4823
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4824 4825 4826 4827 4828

    The simple usage is:

    .. code-block:: python

4829
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4830

4831
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4832
    :type name: basestring
4833 4834 4835 4836
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4837
    :param size: the layer dimension.
L
luotao02 已提交
4838
    :type size: int.
R
ranqiu 已提交
4839
    :param act: Activation type. LinearActivation is the default.
Z
zhangjinchao01 已提交
4840 4841
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4842
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
4843 4844 4845 4846
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
4847
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4848
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4849
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4850
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4851 4852
    :rtype: LayerOutput
    """
4853
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4854 4855 4856 4857 4858 4859
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4860 4861 4862 4863
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4864 4865 4866 4867 4868 4869


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4870
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4871 4872
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4873
                       select=None,
Q
qijun 已提交
4874 4875
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4876 4877 4878
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4879 4880 4881
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4892
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4893

4894
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4895
    :type name: basestring
R
ranqiu 已提交
4896 4897
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
4898 4899
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4900
                   If is None, acts exactly like fc_layer.
4901
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4902 4903
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
4904
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
4905 4906 4907
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
4908 4909 4910 4911
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
4912
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4913
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4914
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4915
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4916 4917 4918 4919
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4920
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4921 4922
        param_attr = [param_attr]
    else:
4923
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4924 4925
            assert len(input) == len(param_attr)
        else:
4926
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
4927
                logger.fatal(
W
wangmeng28 已提交
4928 4929 4930 4931 4932
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
4933 4934
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4935 4936 4937 4938
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4939
    Layer(
Q
qijun 已提交
4940 4941 4942
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4943 4944 4945
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4946
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4947 4948 4949 4950
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4951 4952 4953 4954 4955 4956 4957
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4958 4959 4960


@wrap_name_default()
L
luotao1 已提交
4961 4962
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
4973
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4974
    :type input: LayerOutput
4975
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4976
    :type name: basestring
L
luotao1 已提交
4977
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4978
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4979
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4980 4981
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4982
    l = Layer(
Z
zhangjinchao01 已提交
4983 4984 4985
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4986 4987 4988
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4989 4990 4991


@wrap_name_default()
L
luotao1 已提交
4992
@layer_support()
Q
qijun 已提交
4993 4994 4995 4996
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4997
                          layer_attr=None):
Z
zhangjinchao01 已提交
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
5011
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5012
    :type input: LayerOutput
5013
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5014 5015 5016 5017 5018
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
5019
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5020
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5021
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5022 5023 5024 5025 5026 5027 5028 5029
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
5030 5031 5032
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
5033 5034 5035


@wrap_name_default()
L
luotao1 已提交
5036
@layer_support()
Q
qijun 已提交
5037
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5038
    """
5039 5040 5041 5042
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5043 5044 5045

    .. math::

5046
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5047

5048 5049 5050 5051 5052
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5053

5054
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5055 5056

    In this formular:
5057 5058 5059 5060 5061 5062
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5063 5064 5065 5066 5067

    The simple usage is:

    .. code-block:: python

5068
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5069 5070
                                       size=elem_dim)

5071 5072 5073 5074
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
5075 5076
    :param size: the dimension of this layer.
    :type size: int
5077
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5078
    :type name: basestring
L
luotao1 已提交
5079
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5080
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5081
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5082 5083
    :rtype: LayerOutput
    """
5084 5085 5086 5087
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5088
            size = vectors.size / weights.size
5089 5090
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5091 5092
    Layer(
        name=name,
5093
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5094
        size=size,
5095
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5096 5097 5098
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5099

5100

5101
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5102

5103

Z
zhangjinchao01 已提交
5104
@wrap_name_default()
L
luotao1 已提交
5105
@layer_support()
Z
zhangjinchao01 已提交
5106 5107 5108 5109 5110 5111 5112
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5113
                       num_channels=None,
L
luotao1 已提交
5114 5115
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5116 5117
    """
    Expand feature map to minibatch matrix.
5118
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5119
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
5130
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
5131 5132
    convolution neural network, and before recurrent neural network.

5133 5134 5135 5136
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5137
       block_expand = block_expand_layer(input=layer,
5138
                                         num_channels=128,
5139 5140 5141 5142 5143
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5144
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5145
    :type input: LayerOutput
5146
    :param num_channels: The channel number of input layer.
R
ranqiu 已提交
5147
    :type num_channels: int | None
Z
zhangjinchao01 已提交
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5160
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5161
    :type name: None | basestring.
L
luotao1 已提交
5162
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5163
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5164
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5165 5166
    :rtype: LayerOutput
    """
5167 5168 5169
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5187 5188


5189 5190
@wrap_name_default()
@layer_support()
5191
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5192 5193 5194 5195 5196
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

5197
    So groups should be larger than 1, and the num of channels should be able
5198 5199
    to devided by groups.

X
xuwei06 已提交
5200 5201 5202 5203 5204 5205 5206 5207
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5208
    Please refer to Paper:
5209 5210 5211 5212
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
5213

5214 5215 5216 5217 5218 5219 5220 5221
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5222
    :param input: The input of this layer.
5223 5224 5225
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
R
ranqiu 已提交
5226
    :type num_channels: int | None
5227 5228
    :param groups: The group number of input layer.
    :type groups: int
5229
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5230
    :type name: None | basestring.
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5242 5243 5244 5245 5246 5247 5248 5249 5250
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5251 5252


Z
zhangjinchao01 已提交
5253
@wrap_name_default()
L
luotao1 已提交
5254
@layer_support()
Q
qijun 已提交
5255 5256 5257 5258 5259
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5260
              layer_attr=None):
Z
zhangjinchao01 已提交
5261 5262 5263 5264 5265
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

5266 5267
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
5268 5269
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
5270 5271 5272 5273 5274 5275 5276 5277

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5278
    The example usage is:
Z
zhangjinchao01 已提交
5279 5280 5281 5282 5283 5284 5285 5286

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5287
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5288 5289 5290
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5291
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5292
    :type size: int
5293
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5294
    :type name: basestring | None
Z
zhangjinchao01 已提交
5295 5296
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5297
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5298
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5299
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5300 5301 5302 5303
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5304 5305 5306 5307 5308
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5309
    Layer(
5310 5311 5312 5313
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5314
        inputs=[input.name, label.name],
Q
qijun 已提交
5315
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5316 5317
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5318

5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5330
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5331
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5332 5333 5334 5335 5336 5337 5338
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

5339 5340 5341
    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5342
    icml2006_GravesFGS06.pdf>`_.
5343 5344 5345

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5346 5347 5348
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5349 5350
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5351
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5352
          'linear' activation is expected instead in the 'input' layer.
5353

C
caoying03 已提交
5354
    The example usage is:
5355 5356 5357 5358 5359 5360 5361 5362 5363

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5364
    :param input: The input of this layer.
5365 5366 5367 5368 5369
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
5370
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5371
    :type name: basestring | None
5372 5373 5374 5375 5376
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5377
    :type layer_attr: ExtraLayerAttribute | None
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5400
@wrap_name_default()
5401
@wrap_param_attr_default()
L
luotao1 已提交
5402
@layer_support()
Q
qijun 已提交
5403 5404 5405 5406 5407 5408
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5409
              coeff=1.0,
L
luotao1 已提交
5410
              layer_attr=None):
Z
zhangjinchao01 已提交
5411 5412 5413 5414
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5415
    The example usage is:
Z
zhangjinchao01 已提交
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5426
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5427 5428 5429 5430 5431 5432 5433
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5434
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5435
    :type name: None | basestring
5436 5437
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5438
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5439
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5440
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5441 5442 5443 5444 5445
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5446 5447 5448 5449 5450 5451
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5452

Q
qijun 已提交
5453
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5454 5455 5456 5457
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5458 5459 5460 5461
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5462
        coeff=coeff,
Q
qijun 已提交
5463
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5464 5465 5466
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5467 5468 5469 5470
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5471

5472

Z
zhangjinchao01 已提交
5473
@wrap_name_default()
5474
@wrap_param_attr_default()
L
luotao1 已提交
5475
@layer_support()
Q
qijun 已提交
5476 5477 5478 5479 5480
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5481
                       layer_attr=None):
Z
zhangjinchao01 已提交
5482 5483 5484 5485 5486 5487 5488
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5489
    The example usage is:
L
Luo Tao 已提交
5490 5491 5492 5493 5494 5495

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5496 5497 5498 5499 5500 5501 5502 5503
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5504
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5505
    :type name: None | basestring
L
luotao1 已提交
5506
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5507
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5508
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5509 5510 5511 5512 5513 5514
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5515
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5516 5517 5518 5519
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5520 5521 5522 5523
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5524
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5525 5526 5527
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5528 5529 5530 5531
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5532

Q
qijun 已提交
5533

C
caoying03 已提交
5534 5535 5536 5537 5538
"""
Following are cost Layers.
"""


5539
@wrap_bias_attr_default(has_bias=True)
5540
@wrap_param_attr_default()
5541 5542
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5543 5544
def nce_layer(input,
              label,
C
caoying03 已提交
5545
              num_classes=None,
5546
              param_attr=None,
Q
qijun 已提交
5547 5548 5549 5550 5551 5552
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5553
    """
C
caoying03 已提交
5554 5555 5556 5557 5558 5559
    Noise-contrastive estimation. This layer implements the method in the
    following paper:

    Reference:
        A fast and simple algorithm for training neural probabilistic language
        models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
5560 5561 5562 5563 5564

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5565 5566
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5567 5568
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5569
    :param name: The name of this layer. It is optional.
5570
    :type name: basestring
C
caoying03 已提交
5571 5572
    :param input: The input layers. It should be a LayerOutput or a list/tuple
                  of LayerOutput.
R
ranqiu 已提交
5573
    :type input: LayerOutput | list | tuple | collections.Sequence
C
caoying03 已提交
5574
    :param label: The ground truth.
5575
    :type label: LayerOutput
C
caoying03 已提交
5576 5577
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. The default value is None.
5578
    :type weight: LayerOutput
C
caoying03 已提交
5579
    :param num_classes: The class number.
5580
    :type num_classes: int
C
caoying03 已提交
5581 5582 5583 5584
    :param param_attr: The parameter attributes.
    :type param_attr: ParameterAttribute|list
    :param num_neg_samples: The number of sampled negative labels. The default
                            value is 10.
5585
    :type num_neg_samples: int
C
caoying03 已提交
5586 5587 5588 5589 5590 5591 5592
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
                             uniform distribution will be used. A user defined
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5593
    :type neg_distribution: list | tuple | collections.Sequence | None
P
peterzhang2029 已提交
5594 5595 5596 5597
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5598
    :type bias_attr: ParameterAttribute | None | bool | Any
5599 5600
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
C
caoying03 已提交
5601
    :return: The LayerOutput object.
5602 5603 5604 5605
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5606 5607 5608 5609 5610 5611 5612 5613
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5614
    assert isinstance(input, collections.Sequence)
5615

5616 5617
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5618 5619
    if num_classes is None:
        num_classes = label.size
5620 5621 5622
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5623
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5624

5625 5626
    ipts_for_layer = []
    parents = []
5627
    for each_input, attr in zip(input, param_attr):
5628
        assert isinstance(each_input, LayerOutput)
5629
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5640
    l = Layer(
5641 5642 5643 5644
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
5645
        active_type=SigmoidActivation().name,
5646 5647 5648
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5649 5650
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5651 5652 5653 5654
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
5655
        activation=SigmoidActivation())
5656 5657


Z
zhangjinchao01 已提交
5658
@wrap_name_default()
L
luotao1 已提交
5659
@layer_support()
Q
qijun 已提交
5660 5661 5662 5663 5664 5665 5666
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5667
    """
5668
    A cost Layer for learning to rank using gradient descent. Details can refer
5669 5670
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5671 5672 5673 5674 5675
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5676
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5677

L
luotao02 已提交
5678
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5679

L
luotao02 已提交
5680
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5681 5682 5683 5684 5685 5686 5687 5688

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5689
    The example usage is:
Z
zhangjinchao01 已提交
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
R
ranqiu 已提交
5706
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5707
    :type name: None | basestring
Z
zhangjinchao01 已提交
5708 5709
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5710 5711
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5712
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5725 5726 5727 5728 5729 5730
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5731

X
xuwei06 已提交
5732
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5733

5734

Z
zhangjinchao01 已提交
5735
@wrap_name_default()
L
luotao1 已提交
5736
@layer_support()
Q
qijun 已提交
5737 5738 5739 5740 5741 5742
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5743 5744 5745
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5746
    The example usage is:
Z
zhangjinchao01 已提交
5747 5748 5749 5750 5751 5752 5753 5754

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5755
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5756 5757 5758 5759
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5760
                     e.g., 5 for NDCG@5. It must be less than or equal to the
Z
zhangjinchao01 已提交
5761 5762 5763 5764 5765 5766
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5767 5768 5769
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5770
    :type max_sort_size: int
R
ranqiu 已提交
5771
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5772
    :type name: None | basestring
L
luotao1 已提交
5773 5774
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5775
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5776 5777
    :rtype: LayerOutput
    """
5778 5779 5780
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5781 5782 5783 5784 5785 5786 5787
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5788

Q
qijun 已提交
5789 5790
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5791

5792

Z
zhangjinchao01 已提交
5793
@wrap_name_default()
L
luotao1 已提交
5794
@layer_support()
5795 5796 5797 5798 5799 5800
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5801 5802 5803
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5804 5805
    The example usage is:

Z
zhangjinchao01 已提交
5806 5807
    .. code-block:: python

X
xuwei06 已提交
5808
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5809
                            label=label_layer)
Z
zhangjinchao01 已提交
5810 5811 5812 5813

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
5814
    :type input: LayerOutput
R
ranqiu 已提交
5815
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5816 5817 5818 5819
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
5820 5821 5822 5823
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
R
ranqiu 已提交
5824 5825
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5826
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5827
    :return: LayerOutput object.
R
ranqiu 已提交
5828
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5829 5830
    """

5831
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5832 5833 5834
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5835
        inputs=ipts,
Q
qijun 已提交
5836 5837
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5838
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5839

5840

Z
zhangjinchao01 已提交
5841
@wrap_name_default()
L
luotao1 已提交
5842
@layer_support()
Q
qijun 已提交
5843 5844 5845 5846
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5847 5848
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5849 5850
    """
    A loss layer for multi class entropy with selfnorm.
5851
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5852

C
caoying03 已提交
5853 5854
    The example usage is:

Z
zhangjinchao01 已提交
5855 5856
    .. code-block:: python

X
xuwei06 已提交
5857
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5858
                                          label=label_layer)
Z
zhangjinchao01 已提交
5859 5860

    :param input: The first input layer.
R
ranqiu 已提交
5861
    :type input: LayerOutput
Z
zhangjinchao01 已提交
5862
    :param label: The input label.
R
ranqiu 已提交
5863
    :type input: LayerOutput
R
ranqiu 已提交
5864
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5865 5866 5867 5868
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
Z
zhangjinchao01 已提交
5869
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
5870 5871 5872
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5873
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5874
    :return: LayerOutput object.
R
ranqiu 已提交
5875
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5876
    """
Q
qijun 已提交
5877 5878 5879 5880 5881 5882 5883
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5884

Q
qijun 已提交
5885 5886 5887 5888 5889
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5890

5891

X
xuwei06 已提交
5892 5893 5894 5895
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
5896
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
5897

C
caoying03 已提交
5898 5899
    The example usage is:

X
xuwei06 已提交
5900 5901
    .. code-block:: python

L
Luo Tao 已提交
5902
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5903

R
ranqiu 已提交
5904
    :param input: The input of this layer.
R
ranqiu 已提交
5905
    :type input: LayerOutput
R
ranqiu 已提交
5906
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5907 5908 5909
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
5910 5911 5912 5913
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5914
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5915 5916 5917 5918 5919
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5920

Q
qijun 已提交
5921
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5922 5923


Z
zhangjinchao01 已提交
5924
@wrap_name_default()
L
luotao1 已提交
5925
@layer_support()
L
Luo Tao 已提交
5926 5927 5928 5929 5930 5931
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
5932
    """
5933 5934 5935
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
5936 5937 5938 5939 5940
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
5941

C
caoying03 已提交
5942 5943
    The example usage is:

Z
zhangjinchao01 已提交
5944 5945
    .. code-block:: python

L
Luo Tao 已提交
5946
       cost = huber_regression_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5947 5948

    :param input: The first input layer.
R
ranqiu 已提交
5949
    :type input: LayerOutput
Z
zhangjinchao01 已提交
5950
    :param label: The input label.
R
ranqiu 已提交
5951
    :type input: LayerOutput
R
ranqiu 已提交
5952
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5953
    :type name: basestring
L
Luo Tao 已提交
5954
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
5955 5956 5957 5958 5959 5960
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5961
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5962
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5963 5964
    :rtype: LayerOutput.
    """
5965
    assert isinstance(input, LayerOutput)
L
Luo Tao 已提交
5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
5977
@wrap_name_default()
L
luotao1 已提交
5978
@layer_support()
5979 5980 5981 5982 5983
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5984
    """
5985 5986 5987
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
5988 5989 5990
    loss is defined as:

    .. math:
5991
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
5992
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5993

C
caoying03 已提交
5994 5995
    The example usage is:

Z
zhangjinchao01 已提交
5996 5997
    .. code-block:: python

5998
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5999 6000

    :param input: The first input layer.
R
ranqiu 已提交
6001
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6002
    :param label: The input label.
R
ranqiu 已提交
6003
    :type input: LayerOutput
R
ranqiu 已提交
6004
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6005 6006 6007 6008 6009 6010
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6011
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6012
    :return: LayerOutput object.
R
ranqiu 已提交
6013
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6014
    """
6015 6016 6017
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
6018 6019
    Layer(
        name=name,
6020
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
6021 6022 6023
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6024 6025
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
6026

6027

Z
zhangjinchao01 已提交
6028
@wrap_name_default()
L
luotao1 已提交
6029
@layer_support()
Q
qijun 已提交
6030 6031 6032 6033
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
6034
                                     layer_attr=None):
Z
zhangjinchao01 已提交
6035 6036 6037
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
6038 6039
    The example usage is:

Z
zhangjinchao01 已提交
6040 6041
    .. code-block:: python

X
xuwei06 已提交
6042
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6043
                                               label=label_layer)
Z
zhangjinchao01 已提交
6044 6045 6046 6047 6048

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6049
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6050 6051 6052
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
Z
zhangjinchao01 已提交
6053
    :type coeff: float
R
ranqiu 已提交
6054 6055
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6056
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6057
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6058 6059 6060
    :rtype: LayerOutput
    """

6061 6062
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6063 6064 6065 6066
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6079 6080


C
caoying03 已提交
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


D
dangqingqing 已提交
6103 6104
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6105
def cross_entropy_over_beam(input, name=None):
D
dangqingqing 已提交
6106
    """
C
caoying03 已提交
6107 6108 6109
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
D
dangqingqing 已提交
6110

C
caoying03 已提交
6111 6112 6113 6114 6115
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
D
dangqingqing 已提交
6116

C
caoying03 已提交
6117 6118 6119 6120 6121
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.
D
dangqingqing 已提交
6122

C
caoying03 已提交
6123 6124 6125
    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.
D
dangqingqing 已提交
6126

C
caoying03 已提交
6127 6128 6129 6130
    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.
D
dangqingqing 已提交
6131

C
caoying03 已提交
6132 6133 6134
    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6135
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6136 6137
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.
D
dangqingqing 已提交
6138

D
dangqingqing 已提交
6139

C
caoying03 已提交
6140 6141
    The example usage is:

D
dangqingqing 已提交
6142 6143
    .. code-block:: python

C
caoying03 已提交
6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6156
    :param input: Input beams for this layer.
C
caoying03 已提交
6157
    :type input: BeamInput
R
ranqiu 已提交
6158
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6185 6186 6187
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6188 6189
@wrap_name_default()
@layer_support()
6190
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6191 6192
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6193
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6194 6195 6196 6197 6198 6199 6200 6201 6202

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6203
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6204

R
ranqiu 已提交
6205 6206 6207
    Reference:
        Fast R-CNN
        https://arxiv.org/pdf/1504.08083v2.pdf
D
dangqingqing 已提交
6208

C
caoying03 已提交
6209 6210
    The example usage is:

D
dangqingqing 已提交
6211 6212
    .. code-block:: python

6213 6214
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6215 6216 6217 6218 6219

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6220
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6221
    :type name: basestring
R
ranqiu 已提交
6222 6223
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
6224
    :type coeff: float
R
ranqiu 已提交
6225 6226
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6239
        coeff=coeff,
D
dangqingqing 已提交
6240 6241 6242
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6243 6244 6245 6246 6247


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6248 6249 6250
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6251
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6252 6253
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6254 6255 6256 6257 6258 6259 6260 6261

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6262 6263
    The example usage is:

W
wwhu 已提交
6264 6265 6266 6267 6268 6269
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6270
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6271
    :type name: basestring
R
ranqiu 已提交
6272 6273
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6297 6298


6299 6300 6301 6302
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6303 6304 6305 6306 6307 6308
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6309
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6310
    :type name: basestring
R
ranqiu 已提交
6311
    :param input: The input of this layer.
R
ranqiu 已提交
6312 6313 6314 6315 6316
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6317 6318 6319 6320 6321 6322 6323
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6324 6325


D
dangqingqing 已提交
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6339
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6340 6341 6342 6343 6344 6345 6346
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6347
    efficient manner to improve unidirectional RNNs.
6348

R
ranqiu 已提交
6349
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6350 6351 6352 6353
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6354

D
dangqingqing 已提交
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6370
    :param input: The input of this layer.
D
dangqingqing 已提交
6371 6372 6373 6374
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
R
ranqiu 已提交
6375
    :param act: Activation Type. LinearActivation is the default.
D
dangqingqing 已提交
6376
    :type act: BaseActivation
R
ranqiu 已提交
6377 6378
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6379
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6380 6381
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6382
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6398 6399


6400 6401 6402 6403 6404
@layer_support()
@wrap_name_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
6405 6406
                channel_shared=None,
                num_channels=None,
6407 6408 6409
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6410
    The Parametric Relu activation that actives outputs with a learnable weight.
6411 6412 6413 6414 6415 6416 6417 6418 6419

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6420 6421 6422 6423 6424 6425
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6426
    :param name: The name of this layer. It is optional.
6427
    :type name: basestring
R
ranqiu 已提交
6428
    :param input: The input of this layer.
6429
    :type input: LayerOutput
R
ranqiu 已提交
6430
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6431 6432

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6433 6434
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6435 6436

    :type partial_sum: int
6437 6438 6439 6440
    :param channel_shared: whether or not the parameter are shared across channels.
        - channel_shared = True, we set the partial_sum to the number of outputs.
        - channel_shared = False, we set the partial_sum to the number of elements in one channel.
    :type channel_shared: bool
6441 6442
    :param num_channels: number of input channel.
    :type num_channels: int
6443
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6444 6445 6446
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6447
    :type layer_attr: ExtraLayerAttribute | None
6448 6449 6450 6451
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6452
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
X
xzl 已提交
6453

6454
    if not param_attr:
X
xzl 已提交
6455
        param_attr = ParamAttr(initial_mean=0.25, initial_std=0.0)
6456 6457 6458 6459
    else:
        assert isinstance(param_attr, ParameterAttribute)

    if num_channels is None:
6460 6461
        assert input.num_filters is not None, \
                'the input channel cannot be detected, please specify the num_channels parameter'
6462 6463 6464 6465
        num_channels = input.num_filters

    if channel_shared is not None:
        assert isinstance(channel_shared, bool)
6466 6467
        assert (input.height != 0 and input.width != 0), \
            'input height and widht must be setted'
6468 6469 6470 6471
        if channel_shared:
            partial_sum = input.height * input.width * num_channels
        else:
            partial_sum = input.height * input.width
6472 6473 6474

    l = Layer(
        name=name,
C
caoying03 已提交
6475
        type=LayerType.PRELU,
C
caoying03 已提交
6476
        inputs=Input(input.name, **param_attr.attr),
6477 6478 6479 6480 6481 6482
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
X
xzl 已提交
6483
        num_filters=num_channels,
6484
        size=l.config.size)
6485 6486


6487
@wrap_name_default()
C
caoying03 已提交
6488
@layer_support(ERROR_CLIPPING, DROPOUT)
6489 6490 6491 6492 6493 6494 6495
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6496 6497
                     gate_bias_attr=True,
                     inproj_attr=None,
6498 6499 6500 6501 6502 6503 6504
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6505
    product between :match:`X'` and :math:`\sigma` is finally returned.
6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6519
    :param input: The input of this layer.
6520
    :type input: LayerOutput
R
ranqiu 已提交
6521
    :param size: The dimension of this layer's output.
6522
    :type size: int
R
ranqiu 已提交
6523
    :param act: Activation type of the projection. LinearActivation is the default.
6524
    :type act: BaseActivation
6525
    :param name: The name of this layer. It is optional.
6526
    :type name: basestring
R
ranqiu 已提交
6527 6528
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6529
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6530 6531 6532
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6533
    :param gate_bias_attr: The bias attribute of the gate. If this parameter is set to False or
R
ranqiu 已提交
6534
                           an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6535
                           If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6536 6537 6538
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6539
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6540 6541 6542
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6543
    :param inproj_bias_attr: The bias attribute of the projection. If this parameter is set to False
R
ranqiu 已提交
6544
                             or an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6545
                             If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6546 6547 6548
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6549
    :type layer_attr: ExtraLayerAttribute | None
6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6562
        layer_attr=inproj_attr,
6563 6564 6565 6566 6567 6568 6569 6570 6571
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6572
        param_attr=gate_param_attr,
6573 6574 6575 6576 6577
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6578 6579


6580
@layer_support()
6581
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6582 6583
def switch_order_layer(input,
                       name=None,
6584
                       reshape_axis=None,
W
wanghaoshuang 已提交
6585 6586
                       act=None,
                       layer_attr=None):
6587
    """
6588
    This layer switch dimension order of image input.
6589 6590
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6591 6592 6593 6594

    The example usage is:

    .. code-block:: python
6595 6596
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6597
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6598

R
ranqiu 已提交
6599
    :param input: The input of this layer.
6600
    :type input: LayerOutput
6601
    :param name: The name of this layer. It is optional.
6602
    :type name: basestring
R
ranqiu 已提交
6603 6604
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6605 6606 6607
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6608
    assert isinstance(input, LayerOutput)
6609 6610 6611 6612 6613
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6614 6615
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6616
        inputs=input.name,
6617 6618
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6619
        active_type=act.name,
6620 6621 6622
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6623
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6624
        activation=act,
6625 6626
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6627 6628


6629 6630
@wrap_name_default()
@layer_support()
6631
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6632
    """
R
ranqiu 已提交
6633 6634 6635
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6636

6637 6638 6639
    The example usage is:

    .. code-block:: python
W
whs 已提交
6640
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6641

R
ranqiu 已提交
6642 6643
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
R
ranqiu 已提交
6644 6645
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6646
    :type offset: Sequence
R
ranqiu 已提交
6647
    :param axis: The start axis to be cropped. For image input layer:
6648 6649 6650 6651
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6652 6653
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6654
    :type shape: Sequence | None
6655
    :param name: The name of this layer. It is optional.
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6677 6678


C
caoying03 已提交
6679 6680
@wrap_name_default()
@layer_support()
6681
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6682
    """
6683
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6684
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6685

C
caoying03 已提交
6686 6687 6688
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6689 6690 6691 6692

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6693

R
ranqiu 已提交
6694
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6695

C
caoying03 已提交
6696

R
ranqiu 已提交
6697
    :param input: The input of this layer. It is a nested sequence.
6698
    :type input: LayerOutput
R
ranqiu 已提交
6699
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6700
    :type input: LayerOutput
6701
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6702 6703 6704 6705
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6706

6707 6708 6709 6710 6711 6712 6713
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6714
    l = Layer(
6715 6716
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6717 6718 6719 6720 6721 6722 6723
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6724 6725


G
guosheng 已提交
6726
@wrap_name_default("clip")
6727
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6728 6729 6730 6731 6732 6733 6734 6735 6736
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6737
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6738

6739
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6740
    :type name: basestring
R
ranqiu 已提交
6741
    :param input: The input of this layer.
G
guosheng 已提交
6742
    :type input: LayerOutput.
6743
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
6744
    :type min: float
6745
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
6746
    :type max: float
6747 6748
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6749 6750 6751 6752 6753
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6754 6755
        min=min,
        max=max)
G
guosheng 已提交
6756 6757
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6758 6759


6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6784
    :param name: The name of this layer. It is optional.
6785
    :type name: basestring
R
ranqiu 已提交
6786
    :param input: The input of this layer, which should be a sequence.
6787
    :type input: LayerOutput
R
ranqiu 已提交
6788
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
6789
    :type starts: LayerOutput | None
R
ranqiu 已提交
6790
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
6791
    :type ends: LayerOutput | None
6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6823 6824


6825 6826
@wrap_name_default()
@layer_support()
6827
def kmax_seq_score_layer(input, name=None, beam_size=1):
6828
    """
R
ranqiu 已提交
6829
    This layer accepts one input which is scores over a sequence or a nested
6830 6831 6832 6833
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6834
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6835 6836


6837
    :param name: The name of this layer. It is optional.
6838
    :type name: basestring
R
ranqiu 已提交
6839 6840
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
6841
    :type input: LayerOutput
R
ranqiu 已提交
6842 6843
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
6844 6845 6846
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6847
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6848
                                            "accepts only one input.")
6849
    assert input.size == 1, (
6850
        "input of kmax_seq_score_layer is a score "
6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6861 6862


6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
6889
        conv = img_conv3d_layer(input=data, filter_size=1,
6890 6891 6892 6893 6894
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

6895
    :param name: The name of this layer. It is optional.
6896
    :type name: basestring
R
ranqiu 已提交
6897
    :param input: The input of this layer.
6898
    :type input: LayerOutput
R
ranqiu 已提交
6899 6900
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
6901
    :type filter_size: int | tuple | list
R
ranqiu 已提交
6902 6903
    :param num_filters: The number of filters in each group.
    :type num_filters: int
R
ranqiu 已提交
6904
    :param act: Activation type. ReluActivation is the default.
6905
    :type act: BaseActivation
R
ranqiu 已提交
6906
    :param groups: The number of the filter groups.
6907
    :type groups: int
R
ranqiu 已提交
6908 6909
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
6910
    :type stride: int | tuple | list
R
ranqiu 已提交
6911 6912
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
6913
    :type padding: int | tuple | list
R
ranqiu 已提交
6914 6915 6916
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6917
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
6918 6919 6920
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None,  its actual value will be automatically set to
                         the channels number of the input .
6921
    :type num_channels: int
R
ranqiu 已提交
6922 6923
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
6924
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6925
    :param shared_biases: Whether biases will be shared between filters or not.
6926
    :type shared_biases: bool
R
ranqiu 已提交
6927 6928
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
6929
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
6930
    :param trans: True if it is a convTransLayer, False if it is a convLayer
6931
    :type trans: bool
R
ranqiu 已提交
6932 6933 6934 6935
    :param layer_type: Specify the layer_type. If the parameter is set, it must be "deconv3d"
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
6936 6937 6938 6939 6940 6941 6942
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
6943 6944 6945 6946 6947 6948
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
6949

C
chengduoZH 已提交
6950 6951 6952 6953 6954 6955
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
6956

C
chengduoZH 已提交
6957 6958 6959 6960 6961 6962
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
7009 7010


G
guosheng 已提交
7011 7012 7013 7014 7015
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
7016
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
7017
    the input matrix. For each element, the layer first re-scales it and then
7018 7019
    adds a bias to it.

X
xuwei06 已提交
7020
    This layer is very like the SlopeInterceptLayer, except the scale and
7021 7022
    bias are trainable.

G
guosheng 已提交
7023 7024 7025 7026 7027 7028 7029 7030
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

7031
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7032
    :type name: basestring
R
ranqiu 已提交
7033 7034
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
7035 7036
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
7037
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7038 7039 7040
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7041
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
7052 7053 7054 7055 7056 7057 7058 7059 7060


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
7061
    :param input: The input of this layer.
7062 7063 7064
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7065
    :param size: The resized output dimension of this layer.
7066 7067 7068 7069 7070 7071
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7091 7092
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7093
    :type offsets: LayerOutput
R
ranqiu 已提交
7094
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7095
    :type sizes: LayerOutput
R
ranqiu 已提交
7096
    :param act: Activation type, LinearActivation is the default.
Y
yangyaming 已提交
7097
    :type act: BaseActivation.
R
ranqiu 已提交
7098 7099 7100
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7126 7127


Y
yangyaming 已提交
7128 7129
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7130
    """
Y
yangyaming 已提交
7131 7132 7133 7134 7135 7136
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7137 7138 7139

    .. code-block:: python

Y
yangyaming 已提交
7140 7141 7142
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7158 7159
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7160 7161 7162 7163 7164 7165 7166
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7167
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7168 7169 7170 7171 7172
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7173
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7174
        parents=[input, indices],
Y
yangyaming 已提交
7175
        num_filters=input.num_filters,
Y
yangyaming 已提交
7176
        size=input.size)