nn.py 212.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
25 26 27
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
Y
ying 已提交
32 33 34
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
35
    'dynamic_lstmp',
G
guosheng 已提交
36
    'dynamic_gru',
Y
ying 已提交
37 38 39 40 41 42 43 44 45
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
46
    'conv3d',
Y
ying 已提交
47
    'sequence_pool',
48 49
    'sequence_softmax',
    'softmax',
Y
ying 已提交
50
    'pool2d',
Y
yuyang18 已提交
51
    'pool3d',
Y
ying 已提交
52 53 54
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
55
    'conv3d_transpose',
Y
ying 已提交
56
    'sequence_expand',
F
fengjiayi 已提交
57
    'sequence_pad',
Y
ying 已提交
58 59 60 61 62
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
63
    'reduce_prod',
Y
ying 已提交
64 65 66 67
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
68 69
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
70 71
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
72
    'topk',
Y
ying 已提交
73 74
    'warpctc',
    'sequence_reshape',
75
    'transpose',
76
    'im2sequence',
77
    'nce',
W
weixing02 已提交
78
    'hsigmoid',
Q
Qiao Longfei 已提交
79
    'beam_search',
80
    'row_conv',
81
    'multiplex',
G
guosheng 已提交
82
    'layer_norm',
83 84
    'softmax_with_cross_entropy',
    'smooth_l1',
85
    'one_hot',
Y
Yu Yang 已提交
86
    'autoincreased_step_counter',
C
caoying03 已提交
87
    'reshape',
Y
Yibing Liu 已提交
88 89
    'squeeze',
    'unsqueeze',
Y
yangyaming 已提交
90
    'lod_reset',
D
dragonwarrior 已提交
91
    'lrn',
G
guosheng 已提交
92
    'pad',
C
chengduo 已提交
93
    'pad_constant_like',
94
    'label_smooth',
95
    'roi_pool',
W
whs 已提交
96
    'dice_loss',
F
fengjiayi 已提交
97 98
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
99
    'resize_bilinear',
W
whs 已提交
100
    'gather',
101
    'scatter',
102
    'random_crop',
Y
yuyang18 已提交
103 104 105
    'mean_iou',
    'relu',
    'log',
106
    'crop',
107
    'rank_loss',
J
jerrywgz 已提交
108
    'prelu',
109
    'flatten',
Q
qingqing01 已提交
110
    'sequence_mask',
S
sneaxiy 已提交
111
    'stack',
W
whs 已提交
112
    'pad2d',
D
dzhwinter 已提交
113
    'unstack',
Y
Yu Yang 已提交
114 115 116 117 118 119 120 121
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
122
       use_mkldnn=False,
Y
Yu Yang 已提交
123
       act=None,
J
Jacek Czaja 已提交
124
       is_test=False,
125
       name=None):
Y
Yu Yang 已提交
126
    """
127
    **Fully Connected Layer**
Y
Yu Yang 已提交
128

129 130 131 132 133 134 135 136
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
137
    to the output as well.
C
caoying03 已提交
138

C
caoying03 已提交
139
    This process can be formulated as follows:
140 141 142

    .. math::

143
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
144 145 146

    In the above equation:

C
caoying03 已提交
147 148 149 150
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
151
    * :math:`Act`: The activation function.
C
caoying03 已提交
152
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
153 154

    Args:
R
ranqiu 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
170 171
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
172
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
173
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
174 175
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
176
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
177

178
    Returns:
F
fengjiayi 已提交
179
        Variable: The transformation result.
180 181

    Raises:
C
caoying03 已提交
182
        ValueError: If rank of the input tensor is less than 2.
183 184 185 186

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
187
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
188
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
189
    """
C
caoying03 已提交
190

C
caoying03 已提交
191
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
192 193 194 195

    dtype = helper.input_dtype()

    mul_results = []
196 197
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
198 199 200
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
201

Y
Yu Yang 已提交
202
        w = helper.create_parameter(
203 204
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
205
        helper.append_op(
206 207 208
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
209
            outputs={"Out": tmp},
M
mozga-intel 已提交
210 211
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
212 213 214 215
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
216
    else:
217 218
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
219 220 221 222
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
223 224 225 226
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
227 228


229 230 231
def embedding(input,
              size,
              is_sparse=False,
232
              is_distributed=False,
233 234 235
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
236
    """
237 238
    **Embedding Layer**

239
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
240 241
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
242 243 244

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
245 246

    Args:
247 248 249 250 251
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
252
        is_distributed(bool): Whether to run lookup table from remote parameter server.
253 254
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
255
            with zeros whenever lookup encounters it in :attr:`input`. If
256
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
257 258
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
259
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
260

261 262 263
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
264

265 266
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
267

C
chengduoZH 已提交
268
          dict_size = len(dataset.ids)
269
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
270
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
271 272 273 274 275 276
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
277 278
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
279 280 281 282 283
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
284 285 286 287 288
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
289 290 291
    return tmp


Y
yi.wu 已提交
292
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
293 294
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
295 296
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
297 298 299 300 301 302 303
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
304 305
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
306
    """
Y
yi.wu 已提交
307
    ${comment}
Y
Yibing Liu 已提交
308 309

    Args:
Y
yi.wu 已提交
310 311
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
312 313 314 315 316 317 318
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

319
        param_attr(ParamAttr|None): The parameter attribute for the learnable
320
                               hidden-hidden weights.
Y
Yibing Liu 已提交
321 322 323

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
324 325
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
326
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
327 328 329
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
330

331
                              1. `use_peepholes = False`
Y
yi.wu 已提交
332 333
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
334
                              2. `use_peepholes = True`
Y
yi.wu 已提交
335
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
336
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
337
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
338 339 340 341 342 343 344 345
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
346 347

    Returns:
Y
Yibing Liu 已提交
348 349
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
350

Y
Yibing Liu 已提交
351
    Examples:
Y
Yibing Liu 已提交
352 353
        .. code-block:: python

Y
Yibing Liu 已提交
354 355
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
356
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
357 358
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
359
    """
360

Y
Yu Yang 已提交
361
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
362
    size = size // 4
Y
Yu Yang 已提交
363 364 365 366 367 368 369 370 371 372 373 374
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
375 376 377 378 379 380 381 382 383 384
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
385 386 387

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
388
        inputs=inputs,
Y
Yu Yang 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
405 406 407 408 409 410 411 412 413 414 415
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
416 417
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
418 419 420
    """
    **Dynamic LSTMP Layer**

421 422 423 424 425 426
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
427 428 429 430 431

    The formula is as follows:

    .. math::

432
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
433

434
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
435

436
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
437

438
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
439

440
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
441

442
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
443

444
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
445

Y
Yibing Liu 已提交
446 447 448 449 450 451
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
452
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
453
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
454
          bias vector).
Y
Yibing Liu 已提交
455 456 457
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
458
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
459
    * :math:`h`: The hidden state.
460
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
461 462
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
463
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
464
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
465
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
466 467
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
468 469 470 471

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
472

Y
Yibing Liu 已提交
473 474 475 476 477 478 479 480 481 482 483 484
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
485
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
486 487
                               hidden-hidden weight and projection weight.

488 489
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
490 491
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
492 493
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
494 495
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
496 497 498 499 500 501
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
502
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
503 504 505
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
506
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
507 508 509 510 511 512 513 514 515
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
516
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
517 518
                              default "tanh".
        proj_activation(str): The activation for projection output.
519
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
520 521
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
522 523
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
524 525

    Returns:
526 527 528 529
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
530 531

    Examples:
532

Y
Yibing Liu 已提交
533 534
        .. code-block:: python

535 536 537 538
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
539
            hidden_dim, proj_dim = 512, 256
540
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
541
                                     act=None, bias_attr=None)
542 543 544
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
545 546 547 548
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
549
    """
550

Y
Yibing Liu 已提交
551
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
552
    size = size // 4
Y
Yibing Liu 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
597 598 599 600 601 602 603 604 605
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
606
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
607

608
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
609
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
610

G
guosheng 已提交
611 612 613 614 615 616 617 618 619
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
620

G
guosheng 已提交
621
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
622

G
guosheng 已提交
623
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
624 625
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
626 627 628 629
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
630
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
631 632

    Args:
633 634
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
635
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
636
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
637 638
            is the hidden size.
        size(int): The dimension of the gru cell.
639
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
640 641
            hidden-hidden weight matrix. Note:

642
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
643
              :math:`D` is the hidden size.
644
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
645
              The first part are weights of the update gate and reset gate with
646
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
647
              candidate hidden state with shape :math:`(D \\times D)`.
648
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
649
            hidden-hidden bias.
650
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
651 652 653
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
654
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
655
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
656 657 658 659
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
660 661

    Returns:
G
guosheng 已提交
662
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
663
            and sequence length is the same with the input.
664

G
guosheng 已提交
665
    Examples:
666

G
guosheng 已提交
667 668
        .. code-block:: python

669 670 671 672
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
673
            hidden_dim = 512
674
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
675 676 677 678 679 680 681 682 683 684
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
685
    batch_size = input.shape[0]
G
guosheng 已提交
686 687 688
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
689 690 691
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
715 716 717
def gru_unit(input,
             hidden,
             size,
718 719
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
720
             activation='tanh',
721
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
722
    """
723
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
724

725 726
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
727

728
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
729

730
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
731

732
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
733 734

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
735 736 737
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
738 739
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

740 741
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
742 743 744
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
745 746 747 748 749

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
750 751
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
752 753 754 755
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
756

757 758 759 760 761 762
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
763

764
             # assuming we have x_t_data and prev_hidden of size=10
765
             x_t = fluid.layers.fc(input=x_t_data, size=30)
766 767
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
768 769 770 771 772 773 774 775 776 777 778 779

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
780
    size = size // 3
Y
Yu Yang 已提交
781 782

    # create weight
783 784
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
785

786 787 788 789
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
790
    # create bias
791
    if helper.bias_attr:
Y
Yu Yang 已提交
792 793 794
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
795
        inputs['Bias'] = bias
Y
Yu Yang 已提交
796 797 798

    helper.append_op(
        type='gru_unit',
799
        inputs=inputs,
Y
Yu Yang 已提交
800 801 802 803 804 805
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
806 807
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
808 809 810 811 812
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
813
@templatedoc()
814
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
815 816 817 818 819 820 821
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
822
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
823 824 825 826
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
827 828 829
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
830 831

    """
Y
Yu Yang 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
857
@templatedoc()
858
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
859 860 861 862 863
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
864

Y
yuyang18 已提交
865
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
866

Y
yuyang18 已提交
867 868 869
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
870
        Variable: ${viterbi_path_comment}
871

Y
yi.wu 已提交
872 873 874 875 876
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
877
    """
Y
Yu Yang 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
891
@templatedoc()
F
fengjiayi 已提交
892
def cos_sim(X, Y):
Y
Yu Yang 已提交
893
    """
Y
yi.wu 已提交
894 895 896
    ${comment}

    Args:
897 898
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
899

Y
yi.wu 已提交
900
    Returns:
901
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
902
    """
F
fengjiayi 已提交
903
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


917
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
918 919 920 921 922
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
923
    training. The dropout operator randomly sets (according to the given dropout
924 925 926 927
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
928 929
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
930 931 932 933 934 935 936
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
937 938

    Returns:
939
        Variable: A tensor variable is the shape with `x`.
940 941

    Examples:
942

943 944
        .. code-block:: python

945 946
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
947 948
    """

F
fengjiayi 已提交
949
    helper = LayerHelper('dropout', **locals())
950 951
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
952 953 954 955

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

956 957 958 959 960
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
961 962 963 964 965 966
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
967 968 969
    return out


F
fengjiayi 已提交
970
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
971
    """
Y
Yibing Liu 已提交
972 973
    **Cross Entropy Layer**

974 975 976
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
977 978

    1) One-hot cross-entropy:
F
fengjiayi 已提交
979
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
980

Y
Yibing Liu 已提交
981
        .. math::
Y
yangyaming 已提交
982

Y
Yibing Liu 已提交
983 984 985
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
986 987
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
988 989 990 991 992

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
993
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
994 995 996
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
997 998
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
999
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1000

Y
Yibing Liu 已提交
1001
    Args:
Y
yangyaming 已提交
1002
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1003 1004 1005 1006
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1007
        label (Variable|list): the ground truth which is a 2-D tensor. When
1008 1009 1010 1011
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1012
        soft_label (bool): a flag indicating whether to
1013 1014
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
1015 1016 1017 1018 1019

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1020 1021 1022 1023 1024
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1025 1026 1027 1028 1029 1030

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1031
    """
F
fengjiayi 已提交
1032
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1033 1034 1035 1036 1037 1038
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1039
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1040 1041 1042
    return out


F
fengjiayi 已提交
1043
def square_error_cost(input, label):
Y
Yu Yang 已提交
1044
    """
1045 1046
    **Square error cost layer**

1047 1048
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1063 1064
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1065 1066

    Returns:
G
guosheng 已提交
1067
        Variable: The tensor variable storing the element-wise squared error \
1068
                  difference of input and label.
1069 1070 1071 1072 1073 1074 1075 1076

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1077
    """
F
fengjiayi 已提交
1078
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1088 1089
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1090 1091 1092
    return square_out


Y
yi.wu 已提交
1093
@templatedoc()
Y
Yu Yang 已提交
1094 1095 1096 1097
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1098
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1099
    """
Y
yi.wu 已提交
1100
    **Chunk Evaluator**
Y
yi.wu 已提交
1101

Y
yangyaming 已提交
1102
    This function computes and outputs the precision, recall and
1103
    F1-score of chunk detection.
Y
yi.wu 已提交
1104

Y
yi.wu 已提交
1105 1106 1107 1108 1109 1110 1111 1112
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1113

Y
yi.wu 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1139

Y
yi.wu 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1164
    Args:
1165 1166 1167 1168 1169
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1170

Y
yi.wu 已提交
1171
    Returns:
Y
update  
yi.wu 已提交
1172 1173 1174
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1175

Y
yi.wu 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1188
    """
F
fengjiayi 已提交
1189
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1190 1191 1192 1193 1194

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1195 1196 1197
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1198 1199 1200 1201 1202 1203 1204 1205

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1206 1207 1208 1209
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1210 1211 1212
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1213 1214
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1215
        })
1216 1217
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1218 1219


1220
@templatedoc()
Y
Yu Yang 已提交
1221 1222 1223 1224 1225 1226 1227
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1228
                  act=None):
Y
Yu Yang 已提交
1229 1230 1231 1232
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1243

1244 1245
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1264
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1265 1266 1267 1268 1269 1270
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1271
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1272 1273 1274
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1275
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1295

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1318
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1319
    """
1320
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1321
    has the same shape as the input.
Q
qiaolongfei 已提交
1322

1323 1324 1325 1326 1327 1328
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1329
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1330 1331 1332 1333 1334 1335 1336

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1337
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1372 1373 1374
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1375 1376
           stride=1,
           padding=0,
1377
           dilation=1,
Y
Yu Yang 已提交
1378 1379 1380
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1381
           use_cudnn=True,
1382
           use_mkldnn=False,
1383 1384
           act=None,
           name=None):
Y
Yu Yang 已提交
1385
    """
C
chengduoZH 已提交
1386
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1387 1388
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1389
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1390 1391 1392 1393 1394 1395 1396
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1397 1398 1399
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1400

1401
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1402

C
chengduoZH 已提交
1403 1404
    .. math::

C
refine  
chengduoZH 已提交
1405
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1406

T
tensor-tang 已提交
1407
    Where:
C
chengduoZH 已提交
1408

1409 1410 1411 1412 1413
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1414
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1415 1416 1417

    Example:

1418 1419
        - Input:

W
weixing02 已提交
1420
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1421

W
weixing02 已提交
1422
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1423

1424
        - Output:
T
tensor-tang 已提交
1425

W
weixing02 已提交
1426
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1427

C
chengduoZH 已提交
1428
        Where
1429 1430

        .. math::
C
chengduoZH 已提交
1431

W
weixing02 已提交
1432 1433
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1434 1435

    Args:
1436
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1437
        num_filters(int): The number of filter. It is as same as the output
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1460 1461
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1462 1463 1464
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1465 1466

    Returns:
G
guosheng 已提交
1467
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1468 1469
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1470
    Raises:
1471 1472
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1473

C
chengduoZH 已提交
1474 1475 1476
    Examples:
        .. code-block:: python

1477 1478
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1479 1480 1481
    """

    num_channels = input.shape[1]
1482 1483

    l_type = 'conv2d'
X
xzl 已提交
1484 1485
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1486
        l_type = 'depthwise_conv2d'
1487 1488 1489 1490

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1491 1492 1493 1494 1495
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1496
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1497

C
chengduoZH 已提交
1498 1499 1500
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1501
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1502

C
chengduoZH 已提交
1503 1504
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1505 1506

    input_shape = input.shape
M
minqiyang 已提交
1507
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1522
        type=l_type,
Y
Yu Yang 已提交
1523 1524 1525 1526 1527
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1528 1529 1530
        attrs={
            'strides': stride,
            'paddings': padding,
1531
            'dilations': dilation,
C
chengduoZH 已提交
1532
            'groups': groups,
1533 1534
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1535
        })
Y
Yu Yang 已提交
1536 1537 1538 1539 1540 1541

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1560 1561 1562 1563 1564 1565
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1575 1576
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1577 1578 1579
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1580
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1606
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1607 1608
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1609
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1610 1611
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1612
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1613 1614
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1615
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1642 1643
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1658
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1699
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1700 1701 1702 1703

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1704
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1705
    """
Y
yangyaming 已提交
1706 1707 1708
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1720
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1721 1722 1723 1724 1725
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1726
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1727 1728 1729 1730 1731 1732 1733

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1734 1735
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1736

L
Luo Tao 已提交
1737 1738
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1739
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1740 1741 1742 1743 1744 1745 1746 1747
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1748

Y
yangyaming 已提交
1749
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1750 1751 1752 1753 1754
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1755 1756
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1757
    """
F
fengjiayi 已提交
1758
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1770 1771 1772 1773 1774
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1775 1776 1777
    return pool_out


F
fengjiayi 已提交
1778
def sequence_first_step(input):
L
Luo Tao 已提交
1779
    """
L
Luo Tao 已提交
1780
    This function gets the first step of sequence.
L
Luo Tao 已提交
1781 1782 1783 1784

    .. code-block:: text

       x is a 1-level LoDTensor:
1785
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1786 1787 1788 1789 1790
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1791
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1792
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1793

L
Luo Tao 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1803

Y
yangyaming 已提交
1804
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1805 1806 1807
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1808 1809 1810
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1811
def sequence_last_step(input):
L
Luo Tao 已提交
1812
    """
L
Luo Tao 已提交
1813
    This function gets the last step of sequence.
L
Luo Tao 已提交
1814 1815 1816 1817

    .. code-block:: text

       x is a 1-level LoDTensor:
1818
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1819 1820 1821 1822 1823
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1824
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1825
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1826

L
Luo Tao 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1836

Y
yangyaming 已提交
1837
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1838 1839 1840
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1841 1842 1843
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1844
@templatedoc()
Y
Yu Yang 已提交
1845
def pool2d(input,
C
chengduoZH 已提交
1846 1847
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1848 1849
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1850
           global_pooling=False,
C
chengduoZH 已提交
1851
           use_cudnn=True,
1852
           ceil_mode=False,
1853
           use_mkldnn=False,
C
caoying03 已提交
1854
           name=None):
Y
Yu Yang 已提交
1855
    """
F
fengjiayi 已提交
1856
    ${comment}
1857 1858

    Args:
1859 1860 1861
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1862
                          feature, and W is the width of the feature.
1863
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1864
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1865
        pool_type: ${pooling_type_comment}
1866 1867
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1868 1869 1870 1871
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1872
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1873 1874
                        layer will be named automatically.

1875
    Returns:
F
fengjiayi 已提交
1876
        Variable: The pooling result.
F
fengjiayi 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1890 1891 1892 1893
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1894
                            global_pooling=False)
Y
Yu Yang 已提交
1895 1896 1897 1898 1899
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1900

C
chengduoZH 已提交
1901 1902 1903 1904 1905
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1906 1907 1908 1909
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1910 1911
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1912

C
Add doc  
chengduoZH 已提交
1913
    l_type = 'pool2d'
1914 1915

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1916 1917 1918 1919
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1949
    pooling configurations mentioned in input parameters.
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1963

1964
    Returns:
1965
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1966 1967 1968 1969 1970
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1971

C
chengduoZH 已提交
1972 1973 1974 1975 1976
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1977 1978 1979
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1980

C
chengduoZH 已提交
1981 1982
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1983

1984 1985
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1986 1987 1988 1989
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1990
        type=l_type,
Y
Yu Yang 已提交
1991 1992 1993 1994 1995 1996 1997
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1998
            "paddings": pool_padding,
1999
            "use_cudnn": use_cudnn,
2000 2001
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2014
               data_layout='NCHW',
Y
Yang Yang 已提交
2015
               in_place=False,
2016
               use_mkldnn=False,
2017 2018
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2019
               moving_variance_name=None,
2020 2021
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2022
    """
Q
qiaolongfei 已提交
2023 2024 2025 2026
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2027

Q
qiaolongfei 已提交
2028
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2029

Q
qiaolongfei 已提交
2030 2031
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2032 2033 2034
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2047 2048

    Args:
Q
qiaolongfei 已提交
2049
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2050 2051 2052 2053
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2054 2055 2056
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2057
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2058 2059 2060 2061 2062
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2063
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2064
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2065 2066

    Returns:
Q
qiaolongfei 已提交
2067
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2068 2069 2070 2071 2072 2073 2074

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2098
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2099

2100 2101
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2102 2103 2104
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2105
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2106
        shape=param_shape,
2107 2108 2109 2110 2111 2112 2113
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2114
            trainable=False,
W
wanghaoshuang 已提交
2115
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2116
        shape=param_shape,
2117 2118
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2119 2120 2121 2122 2123 2124

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2125 2126
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2127

2128
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2146 2147 2148 2149
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2150 2151
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2152
        })
Y
Yu Yang 已提交
2153 2154 2155 2156

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2157
@templatedoc()
G
guosheng 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2168
    ${comment}
G
guosheng 已提交
2169 2170 2171

    The formula is as follows:

Y
yuyang18 已提交
2172
    ..  math::
G
guosheng 已提交
2173 2174 2175 2176 2177 2178 2179

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2180 2181 2182 2183 2184 2185 2186 2187
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2188

G
guosheng 已提交
2189 2190
    Args:
        input(Variable): The input tensor variable.
2191
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2192
            normalization.
2193
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2194
            normalization.
2195
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2196
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2197
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2198 2199 2200 2201 2202 2203
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2204
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2205 2206

    Returns:
Y
yuyang18 已提交
2207
        ${y_comment}
G
guosheng 已提交
2208 2209 2210

    Examples:

Y
yuyang18 已提交
2211 2212 2213
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2229
    if shift:
G
guosheng 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2254 2255 2256 2257
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2258 2259 2260
                     padding=0,
                     stride=1,
                     dilation=1,
2261
                     groups=None,
C
caoying03 已提交
2262
                     param_attr=None,
2263
                     bias_attr=None,
C
chengduoZH 已提交
2264
                     use_cudnn=True,
2265
                     act=None,
C
caoying03 已提交
2266
                     name=None):
Y
Yu Yang 已提交
2267
    """
2268 2269 2270 2271 2272 2273 2274 2275
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2276 2277
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2278 2279 2280
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2281 2282 2283 2284 2285

    For each input :math:`X`, the equation is:

    .. math::

2286
        Out = \sigma (W \\ast X + b)
2287

2288
    Where:
2289 2290 2291

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2292 2293 2294 2295
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2296

2297 2298 2299 2300
    Example:

        - Input:

2301
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2302

2303
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2304 2305 2306

        - Output:

2307
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2308 2309

        Where
Y
Yu Yang 已提交
2310

2311 2312 2313 2314
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2315 2316

    Args:
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2350 2351

    Returns:
2352
        Variable: The tensor variable storing the convolution transpose result.
2353 2354

    Raises:
2355 2356
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2357 2358 2359 2360

    Examples:
       .. code-block:: python

2361 2362
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2363
    """
2364 2365 2366 2367 2368 2369 2370 2371 2372

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2373 2374 2375
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2376 2377 2378
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2379

C
chengduoZH 已提交
2380 2381
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2382

Y
Yu Yang 已提交
2383 2384 2385 2386 2387
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2388

Y
Yu Yang 已提交
2389 2390
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2391

C
chengduoZH 已提交
2392
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2393
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2394
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2395
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2396
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2397 2398 2399
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2400

2401
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2402
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2403 2404 2405
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2406
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2407
    helper.append_op(
2408
        type=op_type,
Y
Yu Yang 已提交
2409 2410
        inputs={'Input': [input],
                'Filter': [img_filter]},
2411
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2412
        attrs={
2413 2414 2415 2416 2417
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2418 2419
        })

2420 2421 2422
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2423 2424


2425
def conv3d_transpose(input,
Y
Yu Yang 已提交
2426 2427 2428
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2429 2430 2431
                     padding=0,
                     stride=1,
                     dilation=1,
2432
                     groups=None,
C
caoying03 已提交
2433
                     param_attr=None,
2434
                     bias_attr=None,
C
chengduoZH 已提交
2435
                     use_cudnn=True,
2436
                     act=None,
C
caoying03 已提交
2437
                     name=None):
Y
Yu Yang 已提交
2438
    """
2439
    **Convlution3D transpose layer**
2440

2441
    The convolution3D transpose layer calculates the output based on the input,
2442
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2443 2444 2445 2446 2447 2448
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2449 2450 2451
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2452 2453 2454 2455 2456

    For each input :math:`X`, the equation is:

    .. math::

2457
        Out = \sigma (W \\ast X + b)
2458 2459 2460

    In the above equation:

2461 2462
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2463 2464 2465 2466
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2467

2468 2469 2470 2471
    Example:

        - Input:

2472
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2473

2474
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2475 2476 2477

        - Output:

2478
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2479 2480

        Where
Y
Yu Yang 已提交
2481

2482 2483
        .. math::

2484 2485 2486
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2487 2488

    Args:
2489
        input(Variable): The input image with [N, C, D, H, W] format.
2490 2491 2492
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2493
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2494 2495
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2496
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2497 2498 2499
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2500 2501
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2502
        stride(int|tuple): The stride size. If stride is a tuple, it must
2503 2504
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2505
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2506 2507 2508
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2509 2510 2511 2512 2513
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2514 2515 2516
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2517 2518 2519 2520 2521
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2522 2523

    Returns:
2524
        Variable: The tensor variable storing the convolution transpose result.
2525 2526

    Raises:
2527 2528
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2529 2530 2531 2532

    Examples:
       .. code-block:: python

2533 2534
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2535
    """
2536 2537
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2538
    if not isinstance(input, Variable):
2539
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2540 2541
    input_channel = input.shape[1]

2542 2543 2544
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2545

C
chengduoZH 已提交
2546 2547 2548
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2549 2550 2551 2552 2553 2554
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2555 2556 2557
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2558

2559
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2560
                         padding[0] - 1) // dilation[0] + 1
2561
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2562
                         padding[1] - 1) // dilation[1] + 1
2563
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2564
                         padding[2] - 1) // dilation[2] + 1
2565
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2566
    else:
2567 2568
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2569

2570
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2571
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2572 2573 2574
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2575
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2576
    helper.append_op(
2577
        type=l_type,
Y
Yu Yang 已提交
2578 2579
        inputs={'Input': [input],
                'Filter': [img_filter]},
2580
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2581 2582 2583 2584
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2585
            'groups': groups,
C
chengduoZH 已提交
2586 2587
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2588

2589 2590
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2591
    return out
Y
yangyaming 已提交
2592 2593


Y
yangyaming 已提交
2594
def sequence_expand(x, y, ref_level=-1, name=None):
2595
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2596 2597 2598 2599
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2600 2601 2602 2603 2604

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2605
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2606
                x.data = [[a], [b], [c], [d]]
2607 2608 2609
                x.dims = [4, 1]

            y is a LoDTensor:
2610 2611
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2612

Y
yangyaming 已提交
2613
            ref_level: 0
2614

Y
yangyaming 已提交
2615
            then output is a 1-level LoDTensor:
2616
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2617
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2618 2619 2620 2621
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2622
                x.data = [[a], [b], [c]]
2623 2624 2625
                x.dims = [3, 1]

            y is a LoDTensor:
2626
                y.lod = [[2, 0, 3]]
2627

Y
yangyaming 已提交
2628
            ref_level: -1
2629

Y
yangyaming 已提交
2630 2631 2632
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2633 2634 2635
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2636 2637
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2638
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2639
                        will be named automatically.
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2650
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2651
    """
Y
yangyaming 已提交
2652
    helper = LayerHelper('sequence_expand', input=x, **locals())
2653 2654 2655
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2656 2657 2658 2659 2660
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2661
    return tmp
2662 2663


F
fengjiayi 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
        Variable: The padded sequence batch. All sequences has the same length.
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
        outputs={'Out': out},
        attrs={'padded_length': maxlen})
    return out


2709 2710 2711 2712 2713 2714 2715 2716 2717
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2718 2719
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2720 2721 2722

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2723 2724

    This layer does the search in beams for one time step. Specifically, it
2725 2726 2727 2728 2729 2730
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2731

2732 2733 2734 2735 2736 2737 2738 2739
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2740

2741
    Args:
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2767

2768
    Returns:
2769 2770
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2771 2772 2773 2774

    Examples:
        .. code-block:: python

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2803
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2821 2822 2823 2824 2825 2826 2827
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2828

2829 2830 2831 2832 2833 2834 2835 2836 2837
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2838

2839 2840 2841 2842 2843 2844
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2845

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2871 2872 2873 2874
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2875
              param_attr=None,
C
caoying03 已提交
2876 2877
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2878 2879 2880 2881
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2882
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2883

2884
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2885

2886
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2887

2888
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2889 2890 2891

            h_t & = o_t tanh(c_t)

2892 2893 2894 2895 2896 2897
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2898 2899 2900

        .. math::

2901
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2902 2903 2904 2905 2906 2907 2908 2909

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2910
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2911 2912

    Args:
Y
yangyaming 已提交
2913 2914 2915 2916 2917 2918
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2919
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2920 2921
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2922 2923
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2924 2925
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2926 2927

    Returns:
Y
yangyaming 已提交
2928
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2929 2930

    Raises:
2931 2932 2933 2934
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2935 2936 2937 2938 2939 2940

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2941
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2942
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2943
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2960
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2961 2962 2963 2964
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2965 2966
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2967 2968 2969
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2970
    size = cell_t_prev.shape[1]
2971
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2972 2973
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2974
                param_attr=param_attr,
2975
                bias_attr=bias_attr)
Y
yangyaming 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2988
    return h, c
G
guosheng 已提交
2989 2990


C
caoying03 已提交
2991
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2992
    """
Y
yangyaming 已提交
2993
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2994 2995 2996

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2997
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2998 2999
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3000 3001
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3002
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3003
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3004
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3005 3006
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3007 3008 3009

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3010

G
guosheng 已提交
3011 3012 3013 3014 3015 3016
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3017
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3018 3019 3020 3021
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3022 3023 3024 3025

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3026
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3027 3028 3029
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3030 3031 3032
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3033 3034
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3035 3036 3037 3038 3039
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3040
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3041 3042 3043 3044
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3045 3046


C
caoying03 已提交
3047
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3048
    """
Y
Yibing Liu 已提交
3049
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3050 3051 3052

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3053 3054 3055
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3056
            must be in the range :math:`[-rank(input), rank(input))`. If
3057
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3058
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3059 3060
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3061
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3062
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3063
                       will be named automatically.
G
guosheng 已提交
3064 3065

    Returns:
Y
Yibing Liu 已提交
3066
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3067

G
guosheng 已提交
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3078 3079
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3080 3081 3082 3083 3084 3085 3086

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3087 3088 3089
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3090 3091
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3092 3093 3094 3095 3096
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3097
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3098 3099 3100 3101
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3102 3103


C
caoying03 已提交
3104
def reduce_max(input, dim=None, keep_dim=False, name=None):
3105
    """
Y
yangyaming 已提交
3106
    Computes the maximum of tensor elements over the given dimension.
3107 3108 3109

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3110
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3111 3112 3113
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3114
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3115 3116
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3117
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3118 3119
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3120 3121 3122

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3123

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3135 3136 3137 3138 3139 3140 3141

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3142 3143 3144
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3145 3146
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3147 3148 3149 3150 3151
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3152
            'dim': dim if dim != None else [0],
3153 3154 3155 3156 3157 3158
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3159
def reduce_min(input, dim=None, keep_dim=False, name=None):
3160
    """
Y
yangyaming 已提交
3161
    Computes the minimum of tensor elements over the given dimension.
3162 3163 3164

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3165
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3166 3167 3168
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3169
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3170 3171
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3172
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3173 3174
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3175 3176 3177

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3178

3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3190 3191 3192 3193 3194 3195 3196

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3197 3198 3199
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3200 3201
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3202 3203 3204 3205 3206
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3207
            'dim': dim if dim != None else [0],
3208 3209 3210 3211
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3212 3213


3214 3215 3216 3217 3218 3219
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3220
        dim (list|int|None): The dimensions along which the product is performed. If
3221 3222
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3223 3224
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3225 3226 3227
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3228
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3229
            layer will be named automatically.
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3244
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3245
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3246 3247 3248 3249 3250 3251 3252

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3253 3254 3255
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3256 3257
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3258 3259 3260 3261 3262
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3263
            'dim': dim if dim != None else [0],
3264 3265 3266 3267 3268 3269
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3270
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3271
    """
C
caoying03 已提交
3272
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3273 3274 3275

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3276 3277 3278 3279 3280
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3281
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3282
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3283
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3284 3285
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3286 3287

    Returns:
D
dzhwinter 已提交
3288
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3289 3290 3291 3292 3293 3294 3295 3296 3297

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3298 3299
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3329 3330 3331 3332 3333 3334 3335 3336 3337


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3338
    .. math::
3339 3340

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3341 3342 3343 3344 3345

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3346
        x(Variable|list): The input tensor to l2_normalize layer.
3347
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3348 3349
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3350
        epsilon(float): The epsilon value is used to avoid division by zero, \
3351
            the defalut value is 1e-10.
3352
        name(str|None): A name for this layer(optional). If set None, the layer \
3353
            will be named automatically.
C
caoying03 已提交
3354 3355

    Returns:
3356
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3357 3358

    Examples:
3359

C
caoying03 已提交
3360 3361
        .. code-block:: python

3362 3363 3364 3365
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3366 3367
    """

F
fengjiayi 已提交
3368 3369
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3370 3371
    helper = LayerHelper("l2_normalize", **locals())

3372 3373
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3374
    helper.append_op(
3375 3376 3377 3378
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3379
        attrs={
3380 3381
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3382 3383
        })
    return out
3384 3385


3386
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3387
    """
Y
ying 已提交
3388 3389 3390 3391
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3392

C
chengduoZH 已提交
3393
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3394
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3395

3396 3397 3398 3399 3400
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3401
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3402

C
chengduoZH 已提交
3403
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3404
      performs in the following way.
G
guosheng 已提交
3405

3406
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3407
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3408
        last two dimensions and a batched matrix multiply supporting broadcast
3409
        applies on the two tensors.
G
guosheng 已提交
3410

Y
ying 已提交
3411 3412
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3413
    removed after matrix multiplication.
G
guosheng 已提交
3414 3415 3416

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3417 3418 3419
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3420
        name(str|None): A name for this layer(optional). If set None, the layer
3421
            will be named automatically.
G
guosheng 已提交
3422 3423

    Returns:
3424
        Variable: The product Tensor variable.
G
guosheng 已提交
3425

G
guosheng 已提交
3426 3427 3428
    Examples:
        .. code-block:: python

3429
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3430 3431
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3432

3433 3434
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3435

3436 3437
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3438

3439 3440
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3441 3442 3443 3444

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3445 3446
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3447

Y
ying 已提交
3448
            # x: [M], y: [N]
3449
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3450
    """
Y
ying 已提交
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3463
            y_shape = y_shape + [1]
Y
ying 已提交
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3480
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3481
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3482
    helper.append_op(
3483 3484 3485 3486 3487 3488 3489
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3490 3491


3492
def topk(input, k, name=None):
Q
qingqing01 已提交
3493 3494 3495 3496
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3497
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3498 3499 3500 3501 3502 3503
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3525 3526 3527
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3528
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3529
                 of input.
3530
        name(str|None): A name for this layer(optional). If set None, the layer
3531
                       will be named automatically.
F
fengjiayi 已提交
3532
                       Default: None
Q
qingqing01 已提交
3533 3534

    Returns:
3535 3536 3537
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3538
        within the last dimension of input.
Q
qingqing01 已提交
3539

F
fengjiayi 已提交
3540 3541
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3542 3543 3544 3545 3546 3547 3548

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3549
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3567
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3568
    """
Y
ying 已提交
3569 3570 3571 3572 3573 3574 3575 3576 3577
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3578

Y
ying 已提交
3579
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3580

3581
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3582 3583
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3584
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3585

3586
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3587 3588
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3589

3590 3591 3592
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3593
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3594
                          the length of reference string.
3595
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3596
                                     calculating edit distance.
3597
        name (str): The name of this layer. It is optional.
3598

W
wanghaoshuang 已提交
3599
    Returns:
W
wanghaoshuang 已提交
3600
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3601 3602 3603 3604 3605

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3606
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3607
            cost = fluid.layers.edit_distance(input=x,label=y)
3608
    """
3609
    helper = LayerHelper("edit_distance", **locals())
3610

3611
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3612
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3613 3614 3615 3616 3617 3618 3619
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3620
            attrs={"tokens": ignored_tokens})
3621 3622 3623 3624 3625
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3626
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3627
            attrs={"tokens": ignored_tokens})
3628 3629
        label = erased_label

3630 3631
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3632
    sequence_num = helper.create_tmp_variable(dtype="int64")
3633 3634 3635 3636
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3637 3638
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3639 3640
        attrs={"normalized": normalized})

3641
    return edit_distance_out, sequence_num
3642 3643 3644 3645 3646


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3647

Y
ying 已提交
3648 3649 3650 3651
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3669
        input.lod = [[4, 4]]
3670 3671 3672 3673 3674 3675 3676

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3677
        output.lod = [[2, 1]]
3678 3679 3680

    Args:

Y
ying 已提交
3681 3682 3683 3684 3685 3686 3687 3688 3689
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3690
        name (str): The name of this layer. It is optional.
3691 3692

    Returns:
3693
        Variable: CTC greedy decode result. If all the sequences in result were
3694
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3695 3696 3697 3698 3699

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3700

3701
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3702
    """
3703
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3704
    _, topk_indices = topk(input, k=1)
3705 3706 3707 3708 3709 3710

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3711
        outputs={"Output": [ctc_out]},
3712 3713
        attrs={"merge_repeated": True,
               "blank": blank})
3714
    return ctc_out
3715 3716


F
fengjiayi 已提交
3717
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3718
    """
3719 3720
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3721
    to compute Connectionist Temporal Classification (CTC) loss.
3722 3723
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3724 3725 3726
    input tensor.

    Args:
3727
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3728 3729 3730 3731
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3732
       label (Variable): The ground truth of variable-length sequence,
3733 3734 3735
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3736 3737
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3738 3739 3740
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3741
         follewed by a mean_op.
W
wanghaoshuang 已提交
3742 3743

    Returns:
3744 3745
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3746 3747

    Examples:
3748

W
wanghaoshuang 已提交
3749
        .. code-block:: python
3750

3751 3752 3753
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3754 3755

    """
F
fengjiayi 已提交
3756
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3783 3784 3785
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3786 3787 3788 3789 3790
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3791

3792
            out.lod  = [[0, 1, 3]]
3793 3794 3795 3796

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3797 3798 3799 3800 3801 3802 3803
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3804 3805 3806

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3807 3808

    Returns:
3809

3810 3811 3812 3813 3814
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3815
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3816
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3817 3818 3819 3820 3821 3822 3823 3824 3825
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3826 3827


3828 3829 3830 3831
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3832 3833 3834 3835 3836 3837 3838
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3839 3840 3841 3842 3843 3844 3845
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3846 3847
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3848
            sample is 1.0.
3849 3850 3851
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3852

3853
    Returns:
Y
Yibing Liu 已提交
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3881
    """
Y
Yang Yu 已提交
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3901 3902 3903 3904 3905 3906 3907 3908 3909
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3926
    return cost / (num_neg_samples + 1)
3927 3928


G
guosheng 已提交
3929
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3930 3931
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
3932
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
3933 3934 3935 3936 3937 3938 3939 3940 3941
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
3942

W
weixing02 已提交
3943
    Args:
M
minqiyang 已提交
3944
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
3945 3946 3947 3948 3949
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3950 3951
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
3952
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
3953 3954
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
3955 3956 3957 3958 3959 3960 3961 3962

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
3963 3964 3965
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
3966 3967 3968 3969 3970 3971 3972 3973
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
3974
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
3975 3976 3977 3978 3979
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
3980 3981 3982 3983 3984 3985 3986 3987
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
3988 3989
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
3990
        inputs=inputs,
W
weixing02 已提交
3991 3992 3993 3994 3995 3996
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
3997
def transpose(x, perm, name=None):
Y
ying 已提交
3998 3999 4000 4001 4002 4003 4004
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4005 4006 4007
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4008 4009 4010 4011 4012 4013 4014 4015

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4016
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4017 4018
    """

Y
fix ci.  
ying 已提交
4019
    if len(perm) != len(x.shape):
Y
ying 已提交
4020 4021 4022
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4023 4024 4025 4026 4027 4028
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4029 4030

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4031
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4032 4033
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
4034
        inputs={'X': [x]},
Y
ying 已提交
4035 4036 4037
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
4038 4039


4040 4041 4042 4043 4044 4045 4046
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4047
    """
4048 4049 4050 4051 4052 4053 4054
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4083 4084 4085 4086 4087 4088 4089 4090 4091
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4092 4093 4094
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4095 4096 4097 4098 4099
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4127 4128 4129
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4142
            output.dims = {8, 8}
4143

4144
            output.lod = [[4, 4]]
4145

D
dzhwinter 已提交
4146
     Examples:
4147 4148 4149

        .. code-block:: python

4150 4151
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4152 4153

    """
W
wanghaoshuang 已提交
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4164 4165 4166 4167 4168 4169 4170
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4171
    helper = LayerHelper('im2sequence', **locals())
4172 4173
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4174
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4175
    return out
4176 4177


Y
yuyang18 已提交
4178
@templatedoc()
4179
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4180 4181
    """
    ${comment}
4182 4183

    Args:
Y
yuyang18 已提交
4184
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4185 4186
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4187 4188 4189 4190 4191
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4192
        ${out_comment}.
4193 4194

    Examples:
Y
yuyang18 已提交
4195 4196 4197 4198
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4211
    return helper.append_activation(out)
4212 4213


Y
yuyang18 已提交
4214
@templatedoc()
4215 4216
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4217 4218 4219 4220 4221 4222 4223
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4224 4225

    Args:
Y
yuyang18 已提交
4226 4227
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4228 4229

    Returns:
Y
yuyang18 已提交
4230
        ${out_comment}.
4231 4232
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4233 4234 4235 4236 4237 4238

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4239 4240 4241 4242 4243 4244
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4245 4246 4247 4248 4249


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4250

4251 4252 4253 4254
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4255

4256 4257 4258
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4259

4260 4261 4262
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4263

4264
    The equation is as follows:
4265

4266
    1) Hard label (one-hot label, so every sample has exactly one class)
4267

4268 4269 4270 4271
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4272

4273 4274 4275
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4276

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4298 4299
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4316 4317
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4318
    For each instance, it computes the smooth L1 loss element by element first
4319
    and then sums all the losses. So the shape of ouput Variable is
4320
    [batch_size, 1].
4321

4322 4323
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4324
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4325
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4326
            L1 loss op with same shape as :attr:`x`.
4327
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4328 4329
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4330
            by this tensor element by element.
4331
        outside_weight (Variable|None): A tensor with rank at least 2. This
4332 4333
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4334
            element by element.
4335
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4336 4337
           scalar with default value 1.0.

4338
    Returns:
4339
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4340 4341 4342 4343 4344

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4345 4346
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4347
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4348
            out = fluid.layers.smooth_l1(x=fc, y=label)
4349
    """
4350

4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4366 4367 4368 4369


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4370
    This layer creates the one-hot representations for input indices.
4371 4372

    Args:
Y
Yibing Liu 已提交
4373 4374
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4375 4376

    Returns:
Y
Yibing Liu 已提交
4377
        Variable: The one-hot representations of input.
4378 4379

    Examples:
C
caoying03 已提交
4380
        .. code-block:: python
4381

Y
Yibing Liu 已提交
4382 4383
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4384 4385 4386 4387 4388 4389 4390 4391 4392
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4393 4394


Y
Yu Yang 已提交
4395
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4396
    """
Y
yi.wu 已提交
4397 4398 4399
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4400 4401 4402 4403 4404 4405

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4406 4407
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4408 4409 4410 4411 4412 4413

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4414 4415
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4416 4417
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4418 4419 4420 4421 4422
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4423
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4424
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4425 4426
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4427 4428
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4429 4430 4431
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4432 4433


4434
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4435
    """
C
caoying03 已提交
4436 4437
    Gives a new shape to the input Tensor without changing its data.

4438 4439 4440 4441 4442
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4443

4444
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4445

4446 4447 4448 4449
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4450
    2. 0 means the actual dimension value is going to be copied from the
4451 4452 4453 4454
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4455 4456

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4457
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4458
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4459

4460
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4461 4462
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4463 4464
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4465
    dimensions.
C
caoying03 已提交
4466

4467
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4468 4469 4470 4471
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4472 4473

    Args:
4474
        x(variable): The input tensor.
C
caoying03 已提交
4475 4476
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4477 4478 4479 4480 4481
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4482
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4483 4484 4485 4486
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4487
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4488

4489 4490
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4491

X
Xin Pan 已提交
4492 4493 4494
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4495 4496
    Examples:
        .. code-block:: python
G
guosheng 已提交
4497

4498
            data = fluid.layers.data(
4499
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4500
            reshaped = fluid.layers.reshape(
4501
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4502 4503 4504 4505
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")
X
Xin Pan 已提交
4506 4507 4508 4509 4510
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4511

4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4527
    helper = LayerHelper("reshape", **locals())
D
dzhwinter 已提交
4528
    out = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4529 4530
    helper.append_op(
        type="reshape",
X
Xin Pan 已提交
4531
        inputs=inputs,
D
dzhwinter 已提交
4532 4533
        attrs={"shape": shape},
        outputs={"Out": out})
C
caoying03 已提交
4534

D
dzhwinter 已提交
4535
    return helper.append_activation(out)
4536

4537

4538
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
    """
    Remove single-dimensional entries from the shape of a tensor. Takes a 
    parameter axes with a list of axes to squeeze. If axes is not provided, all 
    the single dimensions will be removed from the shape. If an axis is 
    selected with shape entry not equal to one, an error is raised.
        
    Examples:
    Case 1:
      Given 
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
        and 
          axes = []
        we get:
          Out.shape = (3, 5)
    
    Args:
4562
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4563
        axes (list): List of integers, indicating the dimensions to be squeezed.
4564
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4565 4566 4567 4568 4569 4570 4571 4572

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4573
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4574 4575
    """
    helper = LayerHelper("squeeze", **locals())
4576
    out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4577 4578
    helper.append_op(
        type="squeeze",
4579
        inputs={"X": input},
Y
Yibing Liu 已提交
4580 4581 4582
        attrs={"axes": axes},
        outputs={"Out": out})

4583 4584 4585
    return out


4586
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
    """
    Insert single-dimensional entries to the shape of a tensor. Takes one 
    required argument axes, a list of dimensions that will be inserted. 
    Dimension indices in axes are as seen in the output tensor. 

    For example: 
      Given a tensor such that tensor with shape [3, 4, 5], 
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
    
    Args:
4597
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4598
        axes (list): List of integers, indicating the dimensions to be inserted.
4599
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4600 4601 4602 4603 4604 4605 4606 4607

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4608
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4609 4610
    """
    helper = LayerHelper("unsqueeze", **locals())
4611
    out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4612 4613
    helper.append_op(
        type="unsqueeze",
4614
        inputs={"X": input},
Y
Yibing Liu 已提交
4615 4616 4617
        attrs={"axes": axes},
        outputs={"Out": out})

4618 4619
    return out

4620

Y
yangyaming 已提交
4621
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4622
    """
Y
Yibing Liu 已提交
4623
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4624 4625 4626 4627
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4628
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4629 4630 4631 4632 4633 4634

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4635
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4636 4637 4638
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4639
            target_lod: [4, 2]
Y
yangyaming 已提交
4640 4641

            then we get a 1-level LoDTensor:
4642
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4643 4644 4645 4646 4647 4648
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4649
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4650 4651 4652 4653
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4654
                y.data = [[2, 4]]
Y
yangyaming 已提交
4655 4656 4657
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4658
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4659 4660 4661 4662 4663 4664
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4665
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4666 4667 4668 4669
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4670
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4671 4672 4673 4674
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4675
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4676 4677 4678 4679 4680
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4681
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4682
                           from :attr:`y`.
Y
yangyaming 已提交
4683
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4684
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4685 4686

    Returns:
Y
Yibing Liu 已提交
4687
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4688 4689

    Raises:
Y
Yibing Liu 已提交
4690
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4726
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4755 4756
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4784 4785 4786 4787


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4788
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4789
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4790

G
guosheng 已提交
4791 4792 4793 4794
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4817
                         The length of :attr:paddings must be
G
guosheng 已提交
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4828

G
guosheng 已提交
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4843 4844


C
chengduo 已提交
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


4925 4926 4927 4928 4929 4930 4931
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4932 4933
    called label-smoothing regularization (LSR).

4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4957
                              be :math:`(1, class\_num)`.
4958 4959
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4960
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4988 4989


Y
yi.wu 已提交
4990
@templatedoc()
4991 4992
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4993
    ${comment}
4994 4995

    Args:
Y
yi.wu 已提交
4996 4997
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4998 4999 5000
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5001 5002

    Returns:
Y
update  
yi.wu 已提交
5003
        Variable: ${out_comment}.
5004 5005

    Examples:
5006 5007
        .. code-block:: python

5008
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5054 5055
        .. code-block:: python

W
whs 已提交
5056 5057 5058 5059
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5060
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5061 5062 5063 5064 5065 5066
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5067 5068


5069 5070 5071 5072 5073
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5074
    """
Q
qiaolongfei 已提交
5075
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5076

5077
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5078 5079 5080
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5081

5082
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5083

5084
    Args:
5085
        input (Variable): The input tensor of image resize layer,
5086 5087
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5088
        out_shape(list|tuple|Variable|None): Output shape of image resize
5089 5090
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5091
        scale(float|None): The multiplier for the input height or width.
5092 5093 5094
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5095 5096
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5097 5098
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5099 5100

    Returns:
Q
update  
qiaolongfei 已提交
5101 5102
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5103

5104 5105 5106
    Examples:
        .. code-block:: python

5107
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5108
    """
5109 5110 5111 5112
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5113 5114
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5115 5116
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5117 5118 5119 5120

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5121 5122 5123
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5124
    if out_shape is not None:
B
baiyf 已提交
5125 5126 5127
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5128 5129 5130 5131 5132 5133
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5134 5135 5136 5137
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5138 5139
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5140
        type=resample_methods[resample],
5141
        inputs=inputs,
5142 5143 5144 5145
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5146 5147


Y
yuyang18 已提交
5148
@templatedoc(op_type="bilinear_interp")
5149 5150
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5151 5152 5153 5154 5155 5156
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5157

Y
yuyang18 已提交
5158 5159 5160 5161 5162 5163 5164 5165
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5166 5167 5168 5169 5170 5171 5172
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5173 5174 5175
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5176 5177 5178 5179 5180 5181 5182
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5183
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5184

5185
    Returns:
Q
update  
qiaolongfei 已提交
5186
        Variable: The output is a 4-D tensor of the shape
5187
        (num_batches, channls, out_h, out_w).
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5198 5199 5200
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5201 5202 5203
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5204 5205
def gather(input, index):
    """
Q
qiaolongfei 已提交
5206 5207
    **Gather Layer**

5208
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5209 5210 5211 5212
    of X indexed by `index` and concatenate them together.

    .. math::

5213
        Out = X[Index]
W
whs 已提交
5214 5215 5216 5217 5218 5219 5220


    .. code-block:: text


                Given:

5221 5222
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5233
        input (Variable): The source input with rank>=1.
W
whs 已提交
5234 5235 5236 5237 5238 5239
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5240

W
whs 已提交
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5310

5311 5312 5313
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5314
    """
F
stash  
fengjiayi 已提交
5315
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5316
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5317
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5318
    if seed is None:
5319
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5320
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5321
    if isinstance(seed, int):
F
fengjiayi 已提交
5322 5323 5324 5325 5326
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5327 5328 5329 5330
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5331
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5332 5333
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5334 5335
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5336
    return out
W
whs 已提交
5337 5338


5339
def log(x, name=None):
W
wanghaoshuang 已提交
5340 5341 5342 5343 5344
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5345
        Out = \\ln(x)
W
wanghaoshuang 已提交
5346 5347

    Args:
5348
        x (Variable): Input tensor.
5349 5350
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5351 5352 5353 5354 5355 5356 5357 5358

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5359
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5360 5361
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5362
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5363
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5364
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5365 5366 5367
    return out


5368
def relu(x, name=None):
W
wanghaoshuang 已提交
5369 5370
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5371
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5372 5373 5374 5375
    the tensor elementwise.

    .. math::

5376
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5377 5378

    Args:
5379
        x (Variable): The input tensor.
5380 5381
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5382 5383 5384 5385 5386 5387 5388 5389

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5390
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5391 5392
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5393
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5394
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5395
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5396
    return out
5397 5398


W
whs 已提交
5399 5400 5401
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5402 5403 5404 5405
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5406
    .. math::
5407 5408

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5409

5410
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5411 5412 5413 5414 5415
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5416
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5417
                           Its shape should be the same as input.
5418
        num_classes (int): The possible number of labels.
W
whs 已提交
5419 5420 5421 5422

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5423
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5424 5425 5426 5427

    Examples:

        .. code-block:: python
5428

W
whs 已提交
5429 5430 5431 5432 5433 5434 5435 5436 5437
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5438 5439
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5440
        outputs={
W
whs 已提交
5441 5442 5443
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5444 5445 5446
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5521
                    isinstance(shape, Variable)):
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5545 5546 5547 5548 5549 5550 5551 5552 5553 5554


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5555

5556 5557
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5558

5559 5560 5561 5562
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5563

5564 5565 5566 5567 5568
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5569 5570 5571

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5616 5617


W
whs 已提交
5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
      
      X = [[1, 2, 3],
           [4, 5, 6]]
      
      Case 0:
      
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
        
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
      
      Case 1:
      
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
        
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
        
      Case 2:
      
        paddings = [0, 1, 2, 1],
        mode = 'edge'
        
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
    
  
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


J
jerrywgz 已提交
5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
5720 5721
	name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 
J
jerrywgz 已提交
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5772

5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5783 5784
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
5800
        ValueError: If axis is not in range [0, rank(x)].
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
    helper.append_op(
        type='flatten',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
5824 5825


S
sneaxiy 已提交
5826 5827 5828 5829 5830 5831 5832 5833 5834
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
5835

S
sneaxiy 已提交
5836
    .. math::
5837

S
sneaxiy 已提交
5838 5839 5840
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
5841
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
5842 5843 5844 5845
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
5846 5847 5848
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
5849 5850
    Returns:
        Variable: The output sequence mask.
5851

S
sneaxiy 已提交
5852 5853
    """

Q
qingqing01 已提交
5854
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
5855 5856 5857 5858 5859
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
5860 5861 5862
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
5863 5864 5865 5866 5867 5868
        outputs={'Y': out},
        attrs={
            'max_len': maxlen if maxlen is not None else -1,
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
5869 5870


X
Xin Pan 已提交
5871
def stack(x, axis=0):
S
sneaxiy 已提交
5872 5873 5874 5875
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
5876 5877 5878 5879 5880 5881 5882

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
5883
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
5884
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
5885 5886

    Args:
5887
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
5888
        axis (int|None): The axis along which all inputs are stacked.
5889

S
sneaxiy 已提交
5890 5891
    Returns:
        Variable: The stacked variable.
5892

S
sneaxiy 已提交
5893 5894
    """

X
Xin Pan 已提交
5895 5896 5897 5898 5899 5900 5901 5902
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
5903 5904
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
X
Xin Pan 已提交
5905
    return out
D
dzhwinter 已提交
5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
   
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised. 

    Args:
        x (Variable): Input variable. 
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
    
    Returns:
        list(Variable): The unstacked variables.
    
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs