infershape_utils.cc 25.0 KB
Newer Older
C
Chen Weihang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/infershape_utils.h"

17
#include <algorithm>
18 19
#include <string>

20
#include "paddle/fluid/framework/convert_utils.h"
C
Chen Weihang 已提交
21
#include "paddle/fluid/framework/framework.pb.h"
22
#include "paddle/fluid/framework/phi_utils.h"
C
Chen Weihang 已提交
23
#include "paddle/fluid/platform/enforce.h"
24
#include "paddle/phi/common/int_array.h"
25
#include "paddle/phi/common/scalar.h"
26 27 28 29 30 31
#include "paddle/phi/core/compat/arg_map_context.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/core/tensor_utils.h"
C
Chen Weihang 已提交
32 33 34 35

namespace paddle {
namespace framework {

36
class InferShapeArgumentMappingContext : public phi::ArgumentMappingContext {
C
Chen Weihang 已提交
37 38 39 40 41 42 43 44 45 46 47 48
 public:
  explicit InferShapeArgumentMappingContext(const InferShapeContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
    return ctx_.HasInput(name);
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

49 50 51 52
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

C
Chen Weihang 已提交
53 54 55 56 57 58
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.Attrs().GetAttr(name);
    return GetAttrValue(attr);
  }

  size_t InputSize(const std::string& name) const override {
59 60 61 62 63 64
    if (ctx_.HasInputs(name)) {
      return ctx_.Inputs(name).size();
    } else if (ctx_.HasInput(name)) {
      return 1;
    }
    return 0;
C
Chen Weihang 已提交
65 66 67 68 69 70 71 72
  }

  size_t OutputSize(const std::string& name) const override {
    return ctx_.Outputs(name).size();
  }

  bool IsDenseTensorInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
73 74 75 76
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::LOD_TENSOR;
                       });
C
Chen Weihang 已提交
77 78 79 80
  }

  bool IsSelectedRowsInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
81 82 83 84
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::SELECTED_ROWS;
                       });
C
Chen Weihang 已提交
85 86
  }

87 88
  bool IsDenseTensorVectorInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
89 90 91 92
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::LOD_TENSOR_ARRAY;
                       });
93 94
  }

95 96
  bool IsDenseTensorOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
97 98 99 100
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::LOD_TENSOR;
                       });
101 102 103 104
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
105 106 107 108
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::SELECTED_ROWS;
                       });
109 110
  }

111 112
  bool IsForInferShape() const override { return true; }

113 114
  bool IsRuntime() const override { return ctx_.IsRuntime(); }

C
Chen Weihang 已提交
115 116 117 118
 private:
  const InferShapeContext& ctx_;
};

119 120 121 122 123 124 125
int64_t CompatMetaTensor::numel() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    return var->Get<Tensor>().numel();
  } else {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);
    return var->ElementSize();
C
Chen Weihang 已提交
126
  }
127
}
C
Chen Weihang 已提交
128

129 130 131 132 133 134 135 136 137 138 139
DDim CompatMetaTensor::dims() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().dims();
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().dims();
    } else if (var->IsType<framework::LoDTensorArray>()) {
      // use tensor array size as dims
      auto& tensor_array = var->Get<framework::LoDTensorArray>();
      return phi::make_ddim({static_cast<int64_t>(tensor_array.size())});
C
Chen Weihang 已提交
140
    } else {
141 142 143
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can get dims from DenseTensor or SelectedRows or "
          "DenseTensorArray."));
C
Chen Weihang 已提交
144
    }
145 146 147 148 149
  } else {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);

    return var->GetShape().empty() ? phi::make_ddim({0UL})
                                   : phi::make_ddim(var->GetShape());
C
Chen Weihang 已提交
150
  }
151
}
C
Chen Weihang 已提交
152

153 154 155 156 157 158 159 160 161 162 163
phi::DataType CompatMetaTensor::dtype() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().dtype();
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().dtype();
    } else if (var->IsType<framework::LoDTensorArray>()) {
      // NOTE(chenweihang): do nothing
      // Unsupported get dtype from LoDTensorArray now
      return phi::DataType::UNDEFINED;
C
Chen Weihang 已提交
164
    } else {
165 166
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can get dtype from DenseTensor or SelectedRows."));
C
Chen Weihang 已提交
167
    }
168 169 170
  } else {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);
    return paddle::framework::TransToPhiDataType(var->GetDataType());
C
Chen Weihang 已提交
171
  }
172
}
C
Chen Weihang 已提交
173

174 175 176 177 178 179 180 181
DataLayout CompatMetaTensor::layout() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().layout();
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().layout();
    } else if (var->IsType<framework::LoDTensorArray>()) {
182
      // NOTE(chenweihang): do nothing
183 184 185 186 187 188
      // Unsupported get layout from LoDTensorArray now
      return phi::DataLayout::UNDEFINED;
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can get layout from DenseTensor or "
          "SelectedRows."));
C
Chen Weihang 已提交
189
    }
190 191 192 193
  } else {
    // NOTE(chenweihang): do nothing
    // Unsupported get layout for VarDesc now
    return DataLayout::UNDEFINED;
C
Chen Weihang 已提交
194
  }
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
}

void CompatMetaTensor::set_dims(const DDim& dims) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
    } else if (var->IsType<framework::LoDTensorArray>()) {
      auto* tensor_array = var->GetMutable<framework::LoDTensorArray>();
      // Note: Here I want enforce `tensor_array->size() == 0UL`, because
      // inplace using on LoDTensorArray is dangerous, but the unittest
      // `test_list` contains this behavior
      PADDLE_ENFORCE_EQ(dims.size(), 1UL,
                        platform::errors::InvalidArgument(
                            "LoDTensorArray can only have one dimension."));
      // only set the array size for LoDTensorArray input
      tensor_array->resize(dims[0]);
C
Chen Weihang 已提交
216
    } else {
217 218
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can set dims from DenseTensor or SelectedRows."));
C
Chen Weihang 已提交
219
    }
220 221 222
  } else {
    auto* var = BOOST_GET(VarDesc*, var_);
    var->SetShape(vectorize(dims));
C
Chen Weihang 已提交
223
  }
224 225 226 227 228 229 230 231 232 233 234 235 236 237
}

void CompatMetaTensor::set_dtype(phi::DataType dtype) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
    } else if (var->IsType<framework::LoDTensorArray>()) {
      // NOTE(chenweihang): do nothing
      // Unsupported set dtype for LoDTensorArray now
C
Chen Weihang 已提交
238
    } else {
239 240
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can set dtype from DenseTensor or SelectedRows."));
C
Chen Weihang 已提交
241
    }
242 243 244
  } else {
    auto* var = BOOST_GET(VarDesc*, var_);
    var->SetDataType(paddle::framework::TransToProtoVarType(dtype));
C
Chen Weihang 已提交
245
  }
246 247 248 249 250 251 252 253 254 255 256 257
}

void CompatMetaTensor::set_layout(DataLayout layout) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->layout = layout;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->layout = layout;
    } else if (var->IsType<framework::LoDTensorArray>()) {
258
      // NOTE(chenweihang): do nothing
259 260 261 262 263
      // Unsupported set dtype for LoDTensorArray now
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can set layout from DenseTensor or "
          "SelectedRows."));
C
Chen Weihang 已提交
264
    }
265 266 267
  } else {
    // NOTE(chenweihang): do nothing
    // Unsupported set layout for VarDesc now
C
Chen Weihang 已提交
268
  }
269 270 271 272 273 274 275 276 277
}

void CompatMetaTensor::share_lod(const MetaTensor& meta_tensor) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->lod =
          static_cast<const CompatMetaTensor&>(meta_tensor).GetRuntimeLoD();
C
Chen Weihang 已提交
278
    } else {
279 280
      // NOTE(chenweihang): do nothing
      // only LoDTensor need to share lod
C
Chen Weihang 已提交
281
    }
282 283 284 285
  } else {
    auto* var = BOOST_GET(VarDesc*, var_);
    var->SetLoDLevel(
        static_cast<const CompatMetaTensor&>(meta_tensor).GetCompileTimeLoD());
C
Chen Weihang 已提交
286
  }
287 288 289 290 291 292 293 294 295 296 297 298
}

void CompatMetaTensor::share_dims(const MetaTensor& meta_tensor) {
  set_dims(meta_tensor.dims());
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::SelectedRows>()) {
      auto* selected_rows = var->GetMutable<phi::SelectedRows>();
      auto& input_selected_rows =
          static_cast<const CompatMetaTensor&>(meta_tensor).GetSelectedRows();
      selected_rows->set_rows(input_selected_rows.rows());
      selected_rows->set_height(input_selected_rows.height());
299
    }
300
  }
301 302 303 304 305 306 307 308 309
}

void CompatMetaTensor::share_meta(const MetaTensor& meta_tensor) {
  share_dims(meta_tensor);
  set_dtype(meta_tensor.dtype());
  set_layout(meta_tensor.layout());
  // special case: share lod of LoDTensor
  share_lod(meta_tensor);
}
C
Chen Weihang 已提交
310

311 312
phi::InferMetaContext BuildInferMetaContext(InferShapeContext* ctx,
                                            const std::string& op_type) {
313 314
  // 1. get kernel args
  InitDefaultKernelSignatureMap();
315
  auto arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_type);
316 317 318 319 320 321 322 323
  PADDLE_ENFORCE_NOT_NULL(
      arg_map_fn, platform::errors::NotFound(
                      "The ArgumentMappingFn of %s op is not found.", op_type));
  InferShapeArgumentMappingContext arg_map_context(*ctx);
  auto signature = arg_map_fn(arg_map_context);
  VLOG(3) << "BuildInferMetaContext: op kernel signature - " << signature;

  // 2. build infermeta context
F
From00 已提交
324 325
  phi::InferMetaContext infer_meta_context(
      {ctx->IsRuntime(), ctx->IsRunMKLDNNKernel()});
326 327

  auto& input_names = std::get<0>(signature.args);
328
  auto& attr_names = std::get<1>(signature.args);
329 330
  auto& output_names = std::get<2>(signature.args);

331 332 333 334 335 336 337 338 339 340
  auto kernels_map =
      phi::KernelFactory::Instance().SelectKernelMap(signature.name);
  if (kernels_map.size() == 0) {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not find `%s` kernels when construct "
                                        "InferMetaContext.",
                                        signature.name));
  }
  auto attr_defs = kernels_map.cbegin()->second.args_def().attribute_defs();

341
  // TODO(chenweihang): support multiple inputs and outputs later
342
  phi::InferMetaContext infer_mete_context;
343
  for (auto& in_name : input_names) {
344 345 346 347 348 349 350 351 352 353 354 355 356 357
    if (ctx->HasInputs(in_name)) {
      auto input_var = ctx->GetInputVarPtrs(in_name);
      if (input_var.size() == 1) {
        infer_meta_context.EmplaceBackInput(
            std::make_shared<CompatMetaTensor>(input_var[0], ctx->IsRuntime()));
      } else {
        paddle::SmallVector<std::shared_ptr<phi::MetaTensor>> inputs;
        inputs.reserve(input_var.size());
        for (const auto& in : input_var) {
          inputs.push_back(
              std::make_shared<CompatMetaTensor>(in, ctx->IsRuntime()));
        }
        infer_meta_context.EmplaceBackInputs(std::move(inputs));
      }
358 359 360
    } else {
      infer_meta_context.EmplaceBackInput({nullptr});
    }
361
  }
362 363

  auto attr_reader = ctx->Attrs();
364 365
  for (size_t i = 0; i < attr_names.size(); ++i) {
    auto attr_name = attr_names[i];
366 367
    if (attr_defs[i].type_index == std::type_index(typeid(phi::IntArray))) {
      // When attr is a vector_tensor or tensor, transform it to IntArray
368 369 370
      if (ctx->HasInputs(attr_name) || ctx->HasInput(attr_name)) {
        const auto& infershape_inputs = ctx->GetInputVarPtrs(attr_name);
        if (ctx->IsRuntime()) {
371
          // If is in runtime, we will get tensor's value for IntArray
372 373 374 375 376 377 378 379
          // and push it into attrs
          std::vector<Variable*> vars;
          vars.reserve(infershape_inputs.size());
          for (size_t i = 0; i < infershape_inputs.size(); i++) {
            vars.push_back(BOOST_GET_CONST(Variable*, infershape_inputs[i]));
          }
          if (infershape_inputs.size() != 1) {
            infer_meta_context.EmplaceBackAttr(
380
                std::move(experimental::MakePhiIntArrayFromVarList(vars)));
381 382
          } else {
            infer_meta_context.EmplaceBackAttr(
383
                std::move(experimental::MakePhiIntArrayFromVar(*vars[0])));
384 385
          }
        } else {
386
          // If is not in runtime, we will set default value(-1) for IntArray
387 388
          std::vector<VarDesc*> vars;
          vars.reserve(infershape_inputs.size());
389
          for (size_t i = 0; i < infershape_inputs.size(); ++i) {
390 391
            vars.push_back(BOOST_GET_CONST(VarDesc*, infershape_inputs[i]));
          }
392

393
          int64_t num_ele = 0;
394 395 396
          if (vars.size() == 1) {
            num_ele = 1;
            const auto& tensor_dims = vars[0]->GetShape();
397 398 399
            for (size_t i = 0; i < tensor_dims.size(); ++i) {
              num_ele *= tensor_dims[i];
            }
400 401 402

            if (num_ele <= 0) {
              PADDLE_THROW(platform::errors::Unimplemented(
403
                  "Invalid number for construct phi::IntArray, expected "
404 405 406 407
                  "number > 0, but actually is %d. ",
                  num_ele));
            }

408
          } else {
409
            num_ele = vars.size();
410
          }
411
          phi::IntArray tensor_attr(std::vector<int32_t>(num_ele, -1));
412 413 414 415 416 417 418 419
          tensor_attr.SetFromTensor(true);
          infer_meta_context.EmplaceBackAttr(std::move(tensor_attr));
        }
      } else if (ctx->HasAttr(attr_name)) {
        auto& attr = attr_reader.GetAttr(attr_name);
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int32_t>))) {
          infer_meta_context.EmplaceBackAttr(std::move(
420
              phi::IntArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
421 422 423
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::vector<int64_t>))) {
          infer_meta_context.EmplaceBackAttr(std::move(
424
              phi::IntArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
425 426 427
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          infer_meta_context.EmplaceBackAttr(
428
              phi::IntArray({BOOST_GET_CONST(int, attr)}));
429 430
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
431
              "Unsupported cast op attribute `%s` to IntArray when "
432
              "construct InferMetaContext.",
433 434 435
              attr_name));
        }
      }
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(phi::Scalar))) {
      if (ctx->HasAttr(attr_name)) {
        // TODO(chentianyu03): support other attrs later
        auto& attr = attr_reader.GetAttr(attr_name);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(float, attr)));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(std::string, attr)));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(int, attr)));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "InferMetaContext.",
              attr_name));
        }
      } else if (ctx->HasInput(attr_name)) {
        const auto& infershape_input = ctx->GetInputVarPtrs(attr_name);
        if (infershape_input.size() == 1) {
          if (ctx->IsRuntime()) {
            Variable* var = BOOST_GET_CONST(Variable*, infershape_input[0]);
            infer_meta_context.EmplaceBackAttr(
464
                std::move(experimental::MakePhiScalarFromVar(*var)));
465 466 467 468 469 470 471 472 473 474 475 476
          } else {
            phi::Scalar tensor_scalar(-1);
            tensor_scalar.SetFromTensor(true);
            infer_meta_context.EmplaceBackAttr(std::move(tensor_scalar));
          }
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Invalid input.size() when cast op attribute `%s` to Scalar, "
              "expected 1, but actually is %d .",
              attr_name, infershape_input.size()));
        }
      }
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(std::vector<phi::Scalar>))) {
      auto& attr = attr_reader.GetAttr(attr_name);
      if (std::type_index(attr.type()) ==
          std::type_index(typeid(std::vector<int32_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<float>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<double>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` to vector<Scalar> when "
            "construct InferMetaContext.",
            attr_names[i]));
      }
522 523
    } else if (ctx->HasAttr(attr_name)) {
      // Emplace Back Attr according to the type of attr.
524
      auto& attr = attr_reader.GetAttr(attr_name);
525
      if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
526
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
527
      } else if (attr_defs[i].type_index == std::type_index(typeid(int))) {
528
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int, attr));
529
      } else if (attr_defs[i].type_index == std::type_index(typeid(int64_t))) {
530
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr));
531
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
532
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(float, attr));
533
      } else if (attr_defs[i].type_index ==
534 535
                 std::type_index(typeid(std::string))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(std::string, attr));
536
      } else if (attr_defs[i].type_index ==
537 538 539
                 std::type_index(typeid(std::vector<bool>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<bool>, attr));
540
      } else if (attr_defs[i].type_index ==
541 542 543
                 std::type_index(typeid(std::vector<int>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<int>, attr));
544
      } else if (attr_defs[i].type_index ==
545
                 std::type_index(typeid(std::vector<int64_t>))) {
546 547 548 549 550 551 552 553 554 555 556 557
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Phi_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          infer_meta_context.EmplaceBackAttr(vector_int64_attr);
        } else {
          infer_meta_context.EmplaceBackAttr(
              BOOST_GET_CONST(std::vector<int64_t>, attr));
        }
      } else if (attr_defs[i].type_index ==
558 559 560
                 std::type_index(typeid(std::vector<float>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<float>, attr));
561
      } else if (attr_defs[i].type_index ==
562 563 564
                 std::type_index(typeid(std::vector<double>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<double>, attr));
565
      } else if (attr_defs[i].type_index ==
566 567 568
                 std::type_index(typeid(std::vector<std::string>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr));
569 570
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(phi::DataType))) {
571
        auto data_type = paddle::framework::TransToPhiDataType(
572 573 574
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        infer_meta_context.EmplaceBackAttr(data_type);
575
      } else {
576 577 578
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported attribute type is received when call "
            "InferShapeFunctor."));
579
      }
H
hong 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    } else if (ctx->HasInput(attr_name)) {
      // convert from data
      if (attr_defs[i].type_index == std::type_index(typeid(int32_t))) {
        if (ctx->IsRuntime()) {
          const auto& infershape_inputs = ctx->GetInputVarPtrs(attr_name);
          auto var_temp = BOOST_GET_CONST(Variable*, infershape_inputs[i]);
          auto val = experimental::MakePhiScalarFromVar(*var_temp);
          int32_t val_int = val.template to<int32_t>();
          infer_meta_context.EmplaceBackAttr(val_int);
        } else {
          infer_meta_context.EmplaceBackAttr(-1);
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Get value from variable only support int yet"));
      }
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
    }
  }

  for (auto& out_name : output_names) {
    if (ctx->HasOutputs(out_name)) {
      auto output_var = ctx->GetOutputVarPtrs(out_name);
      if (output_var.size() == 1) {
        infer_meta_context.EmplaceBackOutput(std::make_shared<CompatMetaTensor>(
            output_var[0], ctx->IsRuntime()));
      } else {
        paddle::SmallVector<std::shared_ptr<phi::MetaTensor>> outputs;
        outputs.reserve(output_var.size());
        for (const auto& out : output_var) {
          outputs.emplace_back(
              std::make_shared<CompatMetaTensor>(out, ctx->IsRuntime()));
        }
        infer_meta_context.EmplaceBackOutputs(std::move(outputs));
      }
    } else {
      infer_meta_context.EmplaceBackOutput({nullptr});
616
    }
617 618 619 620 621
  }

  return infer_meta_context;
}

C
Chen Weihang 已提交
622 623
}  // namespace framework
}  // namespace paddle