infershape_utils.cc 13.2 KB
Newer Older
C
Chen Weihang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/infershape_utils.h"

17 18
#include <string>

19
#include "paddle/fluid/framework/convert_utils.h"
C
Chen Weihang 已提交
20
#include "paddle/fluid/framework/framework.pb.h"
21
#include "paddle/fluid/framework/pten_utils.h"
C
Chen Weihang 已提交
22
#include "paddle/fluid/platform/enforce.h"
23 24 25 26 27 28 29
#include "paddle/phi/core/compat/arg_map_context.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/core/meta_tensor.h"
#include "paddle/phi/core/tensor_utils.h"
C
Chen Weihang 已提交
30 31 32 33

namespace paddle {
namespace framework {

34
class InferShapeArgumentMappingContext : public phi::ArgumentMappingContext {
C
Chen Weihang 已提交
35 36 37 38 39 40 41 42 43 44 45 46
 public:
  explicit InferShapeArgumentMappingContext(const InferShapeContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
    return ctx_.HasInput(name);
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

47 48 49 50
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

C
Chen Weihang 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.Attrs().GetAttr(name);
    return GetAttrValue(attr);
  }

  size_t InputSize(const std::string& name) const override {
    return ctx_.Inputs(name).size();
  }

  size_t OutputSize(const std::string& name) const override {
    return ctx_.Outputs(name).size();
  }

  bool IsDenseTensorInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
    return var_types[0] == proto::VarType::LOD_TENSOR;
  }

  bool IsSelectedRowsInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
    return var_types[0] == proto::VarType::SELECTED_ROWS;
  }

74 75 76 77 78 79 80 81 82 83
  bool IsDenseTensorOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
    return var_types[0] == proto::VarType::LOD_TENSOR;
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
    return var_types[0] == proto::VarType::SELECTED_ROWS;
  }

C
Chen Weihang 已提交
84 85 86 87 88
 private:
  const InferShapeContext& ctx_;
};

// TODO(chenweihang): Support TensorArray later
89
class CompatMetaTensor : public phi::MetaTensor {
C
Chen Weihang 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
 public:
  CompatMetaTensor(InferShapeVarPtr var, bool is_runtime)
      : var_(std::move(var)), is_runtime_(is_runtime) {}

  CompatMetaTensor() = default;
  CompatMetaTensor(const CompatMetaTensor&) = default;
  CompatMetaTensor(CompatMetaTensor&&) = default;
  CompatMetaTensor& operator=(const CompatMetaTensor&) = delete;
  CompatMetaTensor& operator=(CompatMetaTensor&&) = delete;

  int64_t numel() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
      return var->Get<Tensor>().numel();
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
      return var->ElementSize();
    }
  }

  DDim dims() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
113 114 115 116
      if (var->IsType<phi::DenseTensor>()) {
        return var->Get<phi::DenseTensor>().dims();
      } else if (var->IsType<phi::SelectedRows>()) {
        return var->Get<phi::SelectedRows>().dims();
117 118 119 120
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can get dims from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
121 122
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
123
      return phi::make_ddim(var->GetShape());
C
Chen Weihang 已提交
124 125 126
    }
  }

127
  phi::DataType dtype() const override {
C
Chen Weihang 已提交
128 129
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
130 131 132 133
      if (var->IsType<phi::DenseTensor>()) {
        return var->Get<phi::DenseTensor>().dtype();
      } else if (var->IsType<phi::SelectedRows>()) {
        return var->Get<phi::SelectedRows>().dtype();
134 135 136 137
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can get dtype from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
138 139
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
140
      return paddle::framework::TransToPtenDataType(var->GetDataType());
C
Chen Weihang 已提交
141 142 143 144 145 146 147 148
    }
  }

  DataLayout layout() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
      return var->Get<LoDTensor>().layout();
    } else {
149 150 151
      // NOTE(chenweihang): do nothing
      // Unsupported get layout for VarDesc now
      return DataLayout::UNDEFINED;
C
Chen Weihang 已提交
152 153 154 155 156 157
    }
  }

  void set_dims(const DDim& dims) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
158 159 160 161 162 163
      if (var->IsType<phi::DenseTensor>()) {
        auto* tensor = var->GetMutable<phi::DenseTensor>();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
      } else if (var->IsType<phi::SelectedRows>()) {
        auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
164 165 166 167
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can set dims from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
168 169 170 171 172 173
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
      var->SetShape(vectorize(dims));
    }
  }

174
  void set_dtype(phi::DataType dtype) override {
C
Chen Weihang 已提交
175 176
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
177 178 179 180 181 182
      if (var->IsType<phi::DenseTensor>()) {
        auto* tensor = var->GetMutable<phi::DenseTensor>();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
      } else if (var->IsType<phi::SelectedRows>()) {
        auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
183 184 185 186
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can set dtype from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
187 188
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
189
      var->SetDataType(paddle::framework::TransToProtoVarType(dtype));
C
Chen Weihang 已提交
190 191 192 193 194 195 196
    }
  }

  void set_layout(DataLayout layout) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
197 198
      phi::DenseTensorUtils::GetMutableMeta(
          static_cast<phi::DenseTensor*>(tensor))
C
Chen Weihang 已提交
199 200
          ->layout = layout;
    } else {
201 202
      // NOTE(chenweihang): do nothing
      // Unsupported set layout for VarDesc now
C
Chen Weihang 已提交
203 204 205 206 207 208
    }
  }

  void share_lod(const MetaTensor& meta_tensor) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
209 210 211
      if (var->IsType<phi::DenseTensor>()) {
        auto* tensor = var->GetMutable<phi::DenseTensor>();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->lod =
212 213 214 215 216
            static_cast<const CompatMetaTensor&>(meta_tensor).GetRuntimeLoD();
      } else {
        // NOTE(chenweihang): do nothing
        // only LoDTensor need to share lod
      }
C
Chen Weihang 已提交
217 218 219 220 221 222 223
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
      var->SetLoDLevel(static_cast<const CompatMetaTensor&>(meta_tensor)
                           .GetCompileTimeLoD());
    }
  }

224 225 226 227 228
  void share_meta(const MetaTensor& meta_tensor) override {
    set_dims(meta_tensor.dims());
    set_dtype(meta_tensor.dtype());
    // VarDesc doesn't contains layout, so we cannot share layout
    // set_layout(meta_tensor.layout());
229 230

    // special case 1: share lod of LoDTensor
231
    share_lod(meta_tensor);
232 233 234 235

    // special case 2: share height and rows of SelectedRows in runtime
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
236 237
      if (var->IsType<phi::SelectedRows>()) {
        auto* selected_rows = var->GetMutable<phi::SelectedRows>();
238 239 240 241 242 243
        auto& input_selected_rows =
            static_cast<const CompatMetaTensor&>(meta_tensor).GetSelectedRows();
        selected_rows->set_rows(input_selected_rows.rows());
        selected_rows->set_height(input_selected_rows.height());
      }
    }
244 245
  }

C
Chen Weihang 已提交
246 247 248 249 250
 private:
  const LoD& GetRuntimeLoD() const {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    return var->Get<LoDTensor>().lod();
  }
251

C
Chen Weihang 已提交
252 253 254 255 256
  int32_t GetCompileTimeLoD() const {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);
    return var->GetLoDLevel();
  }

257
  const phi::SelectedRows& GetSelectedRows() const {
258 259 260 261
    PADDLE_ENFORCE_EQ(is_runtime_, true,
                      platform::errors::Unavailable(
                          "Only can get Tensor from MetaTensor in rumtime."));
    auto* var = BOOST_GET_CONST(Variable*, var_);
262
    PADDLE_ENFORCE_EQ(var->IsType<phi::SelectedRows>(), true,
263 264
                      platform::errors::Unavailable(
                          "The Tensor in MetaTensor is not SelectedRows."));
265
    return var->Get<phi::SelectedRows>();
266 267
  }

C
Chen Weihang 已提交
268 269 270 271
  InferShapeVarPtr var_;
  bool is_runtime_;
};

272 273
phi::InferMetaContext BuildInferMetaContext(InferShapeContext* ctx,
                                            const std::string& op_type) {
274 275
  // 1. get kernel args
  InitDefaultKernelSignatureMap();
276
  auto arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_type);
277 278 279 280 281 282 283 284
  PADDLE_ENFORCE_NOT_NULL(
      arg_map_fn, platform::errors::NotFound(
                      "The ArgumentMappingFn of %s op is not found.", op_type));
  InferShapeArgumentMappingContext arg_map_context(*ctx);
  auto signature = arg_map_fn(arg_map_context);
  VLOG(3) << "BuildInferMetaContext: op kernel signature - " << signature;

  // 2. build infermeta context
285
  phi::InferMetaContext infer_meta_context(ctx->IsRuntime());
286 287

  auto& input_names = std::get<0>(signature.args);
288
  auto& attr_names = std::get<1>(signature.args);
289 290
  auto& output_names = std::get<2>(signature.args);

291
  // TODO(chenweihang): support multiple inputs and outputs later
292
  phi::InferMetaContext infer_mete_context;
293
  for (auto& in_name : input_names) {
294 295 296 297 298 299
    if (ctx->HasInput(in_name)) {
      infer_meta_context.EmplaceBackInput(std::make_shared<CompatMetaTensor>(
          ctx->GetInputVarPtrs(in_name)[0], ctx->IsRuntime()));
    } else {
      infer_meta_context.EmplaceBackInput({nullptr});
    }
300
  }
301 302 303 304 305 306 307

  auto attr_reader = ctx->Attrs();
  for (auto& attr_name : attr_names) {
    if (ctx->HasAttr(attr_name)) {
      auto& attr = attr_reader.GetAttr(attr_name);
      if (std::type_index(attr.type()) == std::type_index(typeid(bool))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
308 309 310 311 312
      } else if (std::type_index(attr.type()) == std::type_index(typeid(int))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int, attr));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(int64_t))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr));
313 314 315
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(float))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(float, attr));
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::string))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(std::string, attr));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<bool>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<bool>, attr));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<int>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<int>, attr));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<int64_t>, attr));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<float>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<float>, attr));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<double>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<double>, attr));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<std::string>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr));
343
      } else {
344 345 346
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported attribute type is received when call "
            "InferShapeFunctor."));
347 348 349 350 351 352
      }
    } else {
      // do nothing
    }
  }

353
  for (auto& out_name : output_names) {
354 355 356 357 358 359
    if (ctx->HasOutput(out_name)) {
      infer_meta_context.EmplaceBackOutput(std::make_shared<CompatMetaTensor>(
          ctx->GetOutputVarPtrs(out_name)[0], ctx->IsRuntime()));
    } else {
      infer_meta_context.EmplaceBackOutput({nullptr});
    }
360 361 362 363 364
  }

  return infer_meta_context;
}

C
Chen Weihang 已提交
365 366
}  // namespace framework
}  // namespace paddle