infershape_utils.cc 25.6 KB
Newer Older
C
Chen Weihang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/infershape_utils.h"

17 18
#include <string>

19
#include "paddle/fluid/framework/convert_utils.h"
C
Chen Weihang 已提交
20
#include "paddle/fluid/framework/framework.pb.h"
21
#include "paddle/fluid/framework/phi_utils.h"
C
Chen Weihang 已提交
22
#include "paddle/fluid/platform/enforce.h"
23
#include "paddle/phi/common/scalar.h"
24
#include "paddle/phi/common/scalar_array.h"
25 26 27 28 29 30 31
#include "paddle/phi/core/compat/arg_map_context.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/core/meta_tensor.h"
#include "paddle/phi/core/tensor_utils.h"
C
Chen Weihang 已提交
32 33 34 35

namespace paddle {
namespace framework {

36
class InferShapeArgumentMappingContext : public phi::ArgumentMappingContext {
C
Chen Weihang 已提交
37 38 39 40 41 42 43 44 45 46 47 48
 public:
  explicit InferShapeArgumentMappingContext(const InferShapeContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
    return ctx_.HasInput(name);
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

49 50 51 52
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

C
Chen Weihang 已提交
53 54 55 56 57 58
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.Attrs().GetAttr(name);
    return GetAttrValue(attr);
  }

  size_t InputSize(const std::string& name) const override {
59 60 61 62 63 64
    if (ctx_.HasInputs(name)) {
      return ctx_.Inputs(name).size();
    } else if (ctx_.HasInput(name)) {
      return 1;
    }
    return 0;
C
Chen Weihang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  }

  size_t OutputSize(const std::string& name) const override {
    return ctx_.Outputs(name).size();
  }

  bool IsDenseTensorInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
    return var_types[0] == proto::VarType::LOD_TENSOR;
  }

  bool IsSelectedRowsInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
    return var_types[0] == proto::VarType::SELECTED_ROWS;
  }

81 82 83 84 85
  bool IsDenseTensorVectorInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
    return var_types[0] == proto::VarType::LOD_TENSOR_ARRAY;
  }

86 87 88 89 90 91 92 93 94 95
  bool IsDenseTensorOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
    return var_types[0] == proto::VarType::LOD_TENSOR;
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
    return var_types[0] == proto::VarType::SELECTED_ROWS;
  }

96 97
  bool IsForInferShape() const override { return true; }

98 99
  bool IsRuntime() const override { return ctx_.IsRuntime(); }

C
Chen Weihang 已提交
100 101 102 103 104
 private:
  const InferShapeContext& ctx_;
};

// TODO(chenweihang): Support TensorArray later
105
class CompatMetaTensor : public phi::MetaTensor {
C
Chen Weihang 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
 public:
  CompatMetaTensor(InferShapeVarPtr var, bool is_runtime)
      : var_(std::move(var)), is_runtime_(is_runtime) {}

  CompatMetaTensor() = default;
  CompatMetaTensor(const CompatMetaTensor&) = default;
  CompatMetaTensor(CompatMetaTensor&&) = default;
  CompatMetaTensor& operator=(const CompatMetaTensor&) = delete;
  CompatMetaTensor& operator=(CompatMetaTensor&&) = delete;

  int64_t numel() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
      return var->Get<Tensor>().numel();
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
      return var->ElementSize();
    }
  }

  DDim dims() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
129 130 131 132
      if (var->IsType<phi::DenseTensor>()) {
        return var->Get<phi::DenseTensor>().dims();
      } else if (var->IsType<phi::SelectedRows>()) {
        return var->Get<phi::SelectedRows>().dims();
133 134 135 136
      } else if (var->IsType<framework::LoDTensorArray>()) {
        // use tensor array size as dims
        auto& tensor_array = var->Get<framework::LoDTensorArray>();
        return phi::make_ddim({static_cast<int64_t>(tensor_array.size())});
137 138
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
139 140
            "Currently, only can get dims from DenseTensor or SelectedRows or "
            "DenseTensorArray."));
141
      }
C
Chen Weihang 已提交
142 143
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
144 145 146

      return var->GetShape().empty() ? phi::make_ddim({0UL})
                                     : phi::make_ddim(var->GetShape());
C
Chen Weihang 已提交
147 148 149
    }
  }

150
  phi::DataType dtype() const override {
C
Chen Weihang 已提交
151 152
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
153 154 155 156
      if (var->IsType<phi::DenseTensor>()) {
        return var->Get<phi::DenseTensor>().dtype();
      } else if (var->IsType<phi::SelectedRows>()) {
        return var->Get<phi::SelectedRows>().dtype();
157 158 159 160
      } else if (var->IsType<framework::LoDTensorArray>()) {
        // NOTE(chenweihang): do nothing
        // Unsupported get dtype from LoDTensorArray now
        return phi::DataType::UNDEFINED;
161 162 163 164
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can get dtype from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
165 166
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
167
      return paddle::framework::TransToPhiDataType(var->GetDataType());
C
Chen Weihang 已提交
168 169 170 171 172 173
    }
  }

  DataLayout layout() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
174 175 176 177 178 179 180 181 182 183 184 185 186
      if (var->IsType<phi::DenseTensor>()) {
        return var->Get<phi::DenseTensor>().layout();
      } else if (var->IsType<phi::SelectedRows>()) {
        return var->Get<phi::SelectedRows>().layout();
      } else if (var->IsType<framework::LoDTensorArray>()) {
        // NOTE(chenweihang): do nothing
        // Unsupported get layout from LoDTensorArray now
        return phi::DataLayout::UNDEFINED;
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can get layout from DenseTensor or "
            "SelectedRows."));
      }
C
Chen Weihang 已提交
187
    } else {
188 189 190
      // NOTE(chenweihang): do nothing
      // Unsupported get layout for VarDesc now
      return DataLayout::UNDEFINED;
C
Chen Weihang 已提交
191 192 193 194 195 196
    }
  }

  void set_dims(const DDim& dims) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
197 198 199 200 201 202
      if (var->IsType<phi::DenseTensor>()) {
        auto* tensor = var->GetMutable<phi::DenseTensor>();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
      } else if (var->IsType<phi::SelectedRows>()) {
        auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
203 204 205 206 207 208 209 210 211 212
      } else if (var->IsType<framework::LoDTensorArray>()) {
        auto* tensor_array = var->GetMutable<framework::LoDTensorArray>();
        // Note: Here I want enforce `tensor_array->size() == 0UL`, because
        // inplace using on LoDTensorArray is dangerous, but the unittest
        // `test_list` contains this behavior
        PADDLE_ENFORCE_EQ(dims.size(), 1UL,
                          platform::errors::InvalidArgument(
                              "LoDTensorArray can only have one dimension."));
        // only set the array size for LoDTensorArray input
        tensor_array->resize(dims[0]);
213 214 215 216
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can set dims from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
217 218 219 220 221 222
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
      var->SetShape(vectorize(dims));
    }
  }

223
  void set_dtype(phi::DataType dtype) override {
C
Chen Weihang 已提交
224 225
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
226 227 228 229 230 231
      if (var->IsType<phi::DenseTensor>()) {
        auto* tensor = var->GetMutable<phi::DenseTensor>();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
      } else if (var->IsType<phi::SelectedRows>()) {
        auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
232 233 234
      } else if (var->IsType<framework::LoDTensorArray>()) {
        // NOTE(chenweihang): do nothing
        // Unsupported set dtype for LoDTensorArray now
235 236 237 238
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can set dtype from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
239 240
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
241
      var->SetDataType(paddle::framework::TransToProtoVarType(dtype));
C
Chen Weihang 已提交
242 243 244 245 246 247
    }
  }

  void set_layout(DataLayout layout) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
248 249 250 251 252 253 254 255 256 257 258 259 260 261
      if (var->IsType<phi::DenseTensor>()) {
        auto* tensor = var->GetMutable<phi::DenseTensor>();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->layout = layout;
      } else if (var->IsType<phi::SelectedRows>()) {
        auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->layout = layout;
      } else if (var->IsType<framework::LoDTensorArray>()) {
        // NOTE(chenweihang): do nothing
        // Unsupported set dtype for LoDTensorArray now
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can set layout from DenseTensor or "
            "SelectedRows."));
      }
C
Chen Weihang 已提交
262
    } else {
263 264
      // NOTE(chenweihang): do nothing
      // Unsupported set layout for VarDesc now
C
Chen Weihang 已提交
265 266 267 268 269 270
    }
  }

  void share_lod(const MetaTensor& meta_tensor) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
271 272 273
      if (var->IsType<phi::DenseTensor>()) {
        auto* tensor = var->GetMutable<phi::DenseTensor>();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->lod =
274 275 276 277 278
            static_cast<const CompatMetaTensor&>(meta_tensor).GetRuntimeLoD();
      } else {
        // NOTE(chenweihang): do nothing
        // only LoDTensor need to share lod
      }
C
Chen Weihang 已提交
279 280 281 282 283 284 285
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
      var->SetLoDLevel(static_cast<const CompatMetaTensor&>(meta_tensor)
                           .GetCompileTimeLoD());
    }
  }

Y
YuanRisheng 已提交
286
  void share_dims(const MetaTensor& meta_tensor) override {
287
    set_dims(meta_tensor.dims());
288 289
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
290 291
      if (var->IsType<phi::SelectedRows>()) {
        auto* selected_rows = var->GetMutable<phi::SelectedRows>();
292 293 294 295 296 297
        auto& input_selected_rows =
            static_cast<const CompatMetaTensor&>(meta_tensor).GetSelectedRows();
        selected_rows->set_rows(input_selected_rows.rows());
        selected_rows->set_height(input_selected_rows.height());
      }
    }
298 299
  }

Y
YuanRisheng 已提交
300
  void share_meta(const MetaTensor& meta_tensor) override {
C
Chen Weihang 已提交
301
    share_dims(meta_tensor);
Y
YuanRisheng 已提交
302
    set_dtype(meta_tensor.dtype());
303
    set_layout(meta_tensor.layout());
C
Chen Weihang 已提交
304
    // special case: share lod of LoDTensor
Y
YuanRisheng 已提交
305 306 307
    share_lod(meta_tensor);
  }

C
Chen Weihang 已提交
308 309 310 311 312
 private:
  const LoD& GetRuntimeLoD() const {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    return var->Get<LoDTensor>().lod();
  }
313

C
Chen Weihang 已提交
314 315 316 317 318
  int32_t GetCompileTimeLoD() const {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);
    return var->GetLoDLevel();
  }

319
  const phi::SelectedRows& GetSelectedRows() const {
320 321 322 323
    PADDLE_ENFORCE_EQ(is_runtime_, true,
                      platform::errors::Unavailable(
                          "Only can get Tensor from MetaTensor in rumtime."));
    auto* var = BOOST_GET_CONST(Variable*, var_);
324
    PADDLE_ENFORCE_EQ(var->IsType<phi::SelectedRows>(), true,
325 326
                      platform::errors::Unavailable(
                          "The Tensor in MetaTensor is not SelectedRows."));
327
    return var->Get<phi::SelectedRows>();
328 329
  }

C
Chen Weihang 已提交
330 331 332 333
  InferShapeVarPtr var_;
  bool is_runtime_;
};

334 335
phi::InferMetaContext BuildInferMetaContext(InferShapeContext* ctx,
                                            const std::string& op_type) {
336 337
  // 1. get kernel args
  InitDefaultKernelSignatureMap();
338
  auto arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_type);
339 340 341 342 343 344 345 346
  PADDLE_ENFORCE_NOT_NULL(
      arg_map_fn, platform::errors::NotFound(
                      "The ArgumentMappingFn of %s op is not found.", op_type));
  InferShapeArgumentMappingContext arg_map_context(*ctx);
  auto signature = arg_map_fn(arg_map_context);
  VLOG(3) << "BuildInferMetaContext: op kernel signature - " << signature;

  // 2. build infermeta context
F
From00 已提交
347 348
  phi::InferMetaContext infer_meta_context(
      {ctx->IsRuntime(), ctx->IsRunMKLDNNKernel()});
349 350

  auto& input_names = std::get<0>(signature.args);
351
  auto& attr_names = std::get<1>(signature.args);
352 353
  auto& output_names = std::get<2>(signature.args);

354 355 356 357 358 359 360 361 362 363
  auto kernels_map =
      phi::KernelFactory::Instance().SelectKernelMap(signature.name);
  if (kernels_map.size() == 0) {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not find `%s` kernels when construct "
                                        "InferMetaContext.",
                                        signature.name));
  }
  auto attr_defs = kernels_map.cbegin()->second.args_def().attribute_defs();

364
  // TODO(chenweihang): support multiple inputs and outputs later
365
  phi::InferMetaContext infer_mete_context;
366
  for (auto& in_name : input_names) {
367 368 369 370 371 372 373 374 375 376 377 378 379 380
    if (ctx->HasInputs(in_name)) {
      auto input_var = ctx->GetInputVarPtrs(in_name);
      if (input_var.size() == 1) {
        infer_meta_context.EmplaceBackInput(
            std::make_shared<CompatMetaTensor>(input_var[0], ctx->IsRuntime()));
      } else {
        paddle::SmallVector<std::shared_ptr<phi::MetaTensor>> inputs;
        inputs.reserve(input_var.size());
        for (const auto& in : input_var) {
          inputs.push_back(
              std::make_shared<CompatMetaTensor>(in, ctx->IsRuntime()));
        }
        infer_meta_context.EmplaceBackInputs(std::move(inputs));
      }
381 382 383
    } else {
      infer_meta_context.EmplaceBackInput({nullptr});
    }
384
  }
385 386

  auto attr_reader = ctx->Attrs();
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
  for (size_t i = 0; i < attr_names.size(); ++i) {
    auto attr_name = attr_names[i];
    if (attr_defs[i].type_index == std::type_index(typeid(phi::ScalarArray))) {
      // When attr is a vector_tensor or tensor, transform it to ScalarArray
      if (ctx->HasInputs(attr_name) || ctx->HasInput(attr_name)) {
        const auto& infershape_inputs = ctx->GetInputVarPtrs(attr_name);
        if (ctx->IsRuntime()) {
          // If is in runtime, we will get tensor's value for ScalarArray
          // and push it into attrs
          std::vector<Variable*> vars;
          vars.reserve(infershape_inputs.size());
          for (size_t i = 0; i < infershape_inputs.size(); i++) {
            vars.push_back(BOOST_GET_CONST(Variable*, infershape_inputs[i]));
          }
          if (infershape_inputs.size() != 1) {
            infer_meta_context.EmplaceBackAttr(
403
                std::move(experimental::MakePhiScalarArrayFromVarList(vars)));
404 405
          } else {
            infer_meta_context.EmplaceBackAttr(
406
                std::move(experimental::MakePhiScalarArrayFromVar(*vars[0])));
407 408 409 410 411
          }
        } else {
          // If is not in runtime, we will set default value(-1) for ScalarArray
          std::vector<VarDesc*> vars;
          vars.reserve(infershape_inputs.size());
412
          for (size_t i = 0; i < infershape_inputs.size(); ++i) {
413 414
            vars.push_back(BOOST_GET_CONST(VarDesc*, infershape_inputs[i]));
          }
415

416
          int64_t num_ele = 0;
417 418 419
          if (vars.size() == 1) {
            num_ele = 1;
            const auto& tensor_dims = vars[0]->GetShape();
420 421 422
            for (size_t i = 0; i < tensor_dims.size(); ++i) {
              num_ele *= tensor_dims[i];
            }
423
          } else {
424
            num_ele = vars.size();
425 426 427 428 429 430 431 432 433 434 435
          }
          phi::ScalarArray tensor_attr(std::vector<int32_t>(num_ele, -1));
          tensor_attr.SetFromTensor(true);
          infer_meta_context.EmplaceBackAttr(std::move(tensor_attr));
        }
      } else if (ctx->HasAttr(attr_name)) {
        auto& attr = attr_reader.GetAttr(attr_name);
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int32_t>))) {
          infer_meta_context.EmplaceBackAttr(std::move(
              phi::ScalarArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
436 437 438 439
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::vector<int64_t>))) {
          infer_meta_context.EmplaceBackAttr(std::move(
              phi::ScalarArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
440 441 442 443
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          infer_meta_context.EmplaceBackAttr(
              phi::ScalarArray({BOOST_GET_CONST(int, attr)}));
444 445 446
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to ScalarArray when "
447
              "construct InferMetaContext.",
448 449 450
              attr_name));
        }
      }
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(phi::Scalar))) {
      if (ctx->HasAttr(attr_name)) {
        // TODO(chentianyu03): support other attrs later
        auto& attr = attr_reader.GetAttr(attr_name);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(float, attr)));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(std::string, attr)));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(int, attr)));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "InferMetaContext.",
              attr_name));
        }
      } else if (ctx->HasInput(attr_name)) {
        const auto& infershape_input = ctx->GetInputVarPtrs(attr_name);
        if (infershape_input.size() == 1) {
          if (ctx->IsRuntime()) {
            Variable* var = BOOST_GET_CONST(Variable*, infershape_input[0]);
            infer_meta_context.EmplaceBackAttr(
479
                std::move(experimental::MakePhiScalarFromVar(*var)));
480 481 482 483 484 485 486 487 488 489 490 491
          } else {
            phi::Scalar tensor_scalar(-1);
            tensor_scalar.SetFromTensor(true);
            infer_meta_context.EmplaceBackAttr(std::move(tensor_scalar));
          }
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Invalid input.size() when cast op attribute `%s` to Scalar, "
              "expected 1, but actually is %d .",
              attr_name, infershape_input.size()));
        }
      }
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(std::vector<phi::Scalar>))) {
      auto& attr = attr_reader.GetAttr(attr_name);
      if (std::type_index(attr.type()) ==
          std::type_index(typeid(std::vector<int32_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<float>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<double>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` to vector<Scalar> when "
            "construct InferMetaContext.",
            attr_names[i]));
      }
537 538
    } else if (ctx->HasAttr(attr_name)) {
      // Emplace Back Attr according to the type of attr.
539
      auto& attr = attr_reader.GetAttr(attr_name);
540
      if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
541
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
542
      } else if (attr_defs[i].type_index == std::type_index(typeid(int))) {
543
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int, attr));
544
      } else if (attr_defs[i].type_index == std::type_index(typeid(int64_t))) {
545
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr));
546
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
547
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(float, attr));
548
      } else if (attr_defs[i].type_index ==
549 550
                 std::type_index(typeid(std::string))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(std::string, attr));
551
      } else if (attr_defs[i].type_index ==
552 553 554
                 std::type_index(typeid(std::vector<bool>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<bool>, attr));
555
      } else if (attr_defs[i].type_index ==
556 557 558
                 std::type_index(typeid(std::vector<int>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<int>, attr));
559
      } else if (attr_defs[i].type_index ==
560
                 std::type_index(typeid(std::vector<int64_t>))) {
561 562 563 564 565 566 567 568 569 570 571 572
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Phi_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          infer_meta_context.EmplaceBackAttr(vector_int64_attr);
        } else {
          infer_meta_context.EmplaceBackAttr(
              BOOST_GET_CONST(std::vector<int64_t>, attr));
        }
      } else if (attr_defs[i].type_index ==
573 574 575
                 std::type_index(typeid(std::vector<float>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<float>, attr));
576
      } else if (attr_defs[i].type_index ==
577 578 579
                 std::type_index(typeid(std::vector<double>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<double>, attr));
580
      } else if (attr_defs[i].type_index ==
581 582 583
                 std::type_index(typeid(std::vector<std::string>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr));
584 585
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(phi::DataType))) {
586
        auto data_type = paddle::framework::TransToPhiDataType(
587 588 589
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        infer_meta_context.EmplaceBackAttr(data_type);
590
      } else {
591 592 593
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported attribute type is received when call "
            "InferShapeFunctor."));
594
      }
H
hong 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
    } else if (ctx->HasInput(attr_name)) {
      // convert from data
      if (attr_defs[i].type_index == std::type_index(typeid(int32_t))) {
        if (ctx->IsRuntime()) {
          const auto& infershape_inputs = ctx->GetInputVarPtrs(attr_name);
          auto var_temp = BOOST_GET_CONST(Variable*, infershape_inputs[i]);
          auto val = experimental::MakePhiScalarFromVar(*var_temp);
          int32_t val_int = val.template to<int32_t>();
          infer_meta_context.EmplaceBackAttr(val_int);
        } else {
          infer_meta_context.EmplaceBackAttr(-1);
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Get value from variable only support int yet"));
      }
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
    }
  }

  for (auto& out_name : output_names) {
    if (ctx->HasOutputs(out_name)) {
      auto output_var = ctx->GetOutputVarPtrs(out_name);
      if (output_var.size() == 1) {
        infer_meta_context.EmplaceBackOutput(std::make_shared<CompatMetaTensor>(
            output_var[0], ctx->IsRuntime()));
      } else {
        paddle::SmallVector<std::shared_ptr<phi::MetaTensor>> outputs;
        outputs.reserve(output_var.size());
        for (const auto& out : output_var) {
          outputs.emplace_back(
              std::make_shared<CompatMetaTensor>(out, ctx->IsRuntime()));
        }
        infer_meta_context.EmplaceBackOutputs(std::move(outputs));
      }
    } else {
      infer_meta_context.EmplaceBackOutput({nullptr});
631
    }
632 633 634 635 636
  }

  return infer_meta_context;
}

C
Chen Weihang 已提交
637 638
}  // namespace framework
}  // namespace paddle