infershape_utils.cc 11.5 KB
Newer Older
C
Chen Weihang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/infershape_utils.h"

17
#include "paddle/fluid/framework/convert_utils.h"
C
Chen Weihang 已提交
18
#include "paddle/fluid/framework/framework.pb.h"
19
#include "paddle/fluid/framework/pten_utils.h"
C
Chen Weihang 已提交
20 21
#include "paddle/fluid/platform/enforce.h"
#include "paddle/pten/core/compat/arg_map_context.h"
22
#include "paddle/pten/core/compat/convert_utils.h"
23
#include "paddle/pten/core/compat/op_utils.h"
C
Chen Weihang 已提交
24
#include "paddle/pten/core/dense_tensor.h"
25
#include "paddle/pten/core/infermeta_utils.h"
C
Chen Weihang 已提交
26
#include "paddle/pten/core/meta_tensor.h"
27
#include "paddle/pten/core/tensor_utils.h"
C
Chen Weihang 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

namespace paddle {
namespace framework {

class InferShapeArgumentMappingContext : public pten::ArgumentMappingContext {
 public:
  explicit InferShapeArgumentMappingContext(const InferShapeContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
    return ctx_.HasInput(name);
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

45 46 47 48
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

C
Chen Weihang 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.Attrs().GetAttr(name);
    return GetAttrValue(attr);
  }

  size_t InputSize(const std::string& name) const override {
    return ctx_.Inputs(name).size();
  }

  size_t OutputSize(const std::string& name) const override {
    return ctx_.Outputs(name).size();
  }

  bool IsDenseTensorInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
    return var_types[0] == proto::VarType::LOD_TENSOR;
  }

  bool IsSelectedRowsInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
    return var_types[0] == proto::VarType::SELECTED_ROWS;
  }

72 73 74 75 76 77 78 79 80 81
  bool IsDenseTensorOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
    return var_types[0] == proto::VarType::LOD_TENSOR;
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
    return var_types[0] == proto::VarType::SELECTED_ROWS;
  }

C
Chen Weihang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
 private:
  const InferShapeContext& ctx_;
};

// TODO(chenweihang): Support TensorArray later
class CompatMetaTensor : public pten::MetaTensor {
 public:
  CompatMetaTensor(InferShapeVarPtr var, bool is_runtime)
      : var_(std::move(var)), is_runtime_(is_runtime) {}

  CompatMetaTensor() = default;
  CompatMetaTensor(const CompatMetaTensor&) = default;
  CompatMetaTensor(CompatMetaTensor&&) = default;
  CompatMetaTensor& operator=(const CompatMetaTensor&) = delete;
  CompatMetaTensor& operator=(CompatMetaTensor&&) = delete;

  int64_t numel() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
      return var->Get<Tensor>().numel();
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
      return var->ElementSize();
    }
  }

  DDim dims() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
111 112 113 114 115 116 117 118
      if (var->IsType<pten::DenseTensor>()) {
        return var->Get<pten::DenseTensor>().dims();
      } else if (var->IsType<pten::SelectedRows>()) {
        return var->Get<pten::SelectedRows>().dims();
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can get dims from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
119 120 121 122 123 124 125 126 127
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
      return make_ddim(var->GetShape());
    }
  }

  pten::DataType dtype() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
128 129 130 131 132 133 134 135
      if (var->IsType<pten::DenseTensor>()) {
        return var->Get<pten::DenseTensor>().dtype();
      } else if (var->IsType<pten::SelectedRows>()) {
        return var->Get<pten::SelectedRows>().dtype();
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can get dtype from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
136 137
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
138
      return paddle::framework::TransToPtenDataType(var->GetDataType());
C
Chen Weihang 已提交
139 140 141 142 143 144 145 146
    }
  }

  DataLayout layout() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
      return var->Get<LoDTensor>().layout();
    } else {
147 148 149
      // NOTE(chenweihang): do nothing
      // Unsupported get layout for VarDesc now
      return DataLayout::UNDEFINED;
C
Chen Weihang 已提交
150 151 152 153 154 155
    }
  }

  void set_dims(const DDim& dims) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
156 157 158 159 160 161 162 163 164 165
      if (var->IsType<pten::DenseTensor>()) {
        auto* tensor = var->GetMutable<pten::DenseTensor>();
        pten::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
      } else if (var->IsType<pten::SelectedRows>()) {
        auto* tensor = var->GetMutable<pten::SelectedRows>()->mutable_value();
        pten::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can set dims from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
166 167 168 169 170 171 172 173 174
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
      var->SetShape(vectorize(dims));
    }
  }

  void set_dtype(pten::DataType dtype) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
175 176 177 178 179 180 181 182 183 184
      if (var->IsType<pten::DenseTensor>()) {
        auto* tensor = var->GetMutable<pten::DenseTensor>();
        pten::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
      } else if (var->IsType<pten::SelectedRows>()) {
        auto* tensor = var->GetMutable<pten::SelectedRows>()->mutable_value();
        pten::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can set dtype from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
185 186
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
187
      var->SetDataType(paddle::framework::TransToProtoVarType(dtype));
C
Chen Weihang 已提交
188 189 190 191 192 193 194
    }
  }

  void set_layout(DataLayout layout) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
195
      pten::DenseTensorUtils::GetMutableMeta(
C
Chen Weihang 已提交
196 197 198
          static_cast<pten::DenseTensor*>(tensor))
          ->layout = layout;
    } else {
199 200
      // NOTE(chenweihang): do nothing
      // Unsupported set layout for VarDesc now
C
Chen Weihang 已提交
201 202 203 204 205 206
    }
  }

  void share_lod(const MetaTensor& meta_tensor) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
207 208 209 210 211 212 213 214
      if (var->IsType<pten::DenseTensor>()) {
        auto* tensor = var->GetMutable<pten::DenseTensor>();
        pten::DenseTensorUtils::GetMutableMeta(tensor)->lod =
            static_cast<const CompatMetaTensor&>(meta_tensor).GetRuntimeLoD();
      } else {
        // NOTE(chenweihang): do nothing
        // only LoDTensor need to share lod
      }
C
Chen Weihang 已提交
215 216 217 218 219 220 221
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
      var->SetLoDLevel(static_cast<const CompatMetaTensor&>(meta_tensor)
                           .GetCompileTimeLoD());
    }
  }

222 223 224 225 226
  void share_meta(const MetaTensor& meta_tensor) override {
    set_dims(meta_tensor.dims());
    set_dtype(meta_tensor.dtype());
    // VarDesc doesn't contains layout, so we cannot share layout
    // set_layout(meta_tensor.layout());
227 228

    // special case 1: share lod of LoDTensor
229
    share_lod(meta_tensor);
230 231 232 233 234 235 236 237 238 239 240 241

    // special case 2: share height and rows of SelectedRows in runtime
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
      if (var->IsType<pten::SelectedRows>()) {
        auto* selected_rows = var->GetMutable<pten::SelectedRows>();
        auto& input_selected_rows =
            static_cast<const CompatMetaTensor&>(meta_tensor).GetSelectedRows();
        selected_rows->set_rows(input_selected_rows.rows());
        selected_rows->set_height(input_selected_rows.height());
      }
    }
242 243
  }

C
Chen Weihang 已提交
244 245 246 247 248
 private:
  const LoD& GetRuntimeLoD() const {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    return var->Get<LoDTensor>().lod();
  }
249

C
Chen Weihang 已提交
250 251 252 253 254
  int32_t GetCompileTimeLoD() const {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);
    return var->GetLoDLevel();
  }

255 256 257 258 259 260 261 262 263 264 265
  const pten::SelectedRows& GetSelectedRows() const {
    PADDLE_ENFORCE_EQ(is_runtime_, true,
                      platform::errors::Unavailable(
                          "Only can get Tensor from MetaTensor in rumtime."));
    auto* var = BOOST_GET_CONST(Variable*, var_);
    PADDLE_ENFORCE_EQ(var->IsType<pten::SelectedRows>(), true,
                      platform::errors::Unavailable(
                          "The Tensor in MetaTensor is not SelectedRows."));
    return var->Get<pten::SelectedRows>();
  }

C
Chen Weihang 已提交
266 267 268 269
  InferShapeVarPtr var_;
  bool is_runtime_;
};

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
pten::InferMetaContext BuildInferMetaContext(InferShapeContext* ctx,
                                             const std::string& op_type) {
  // 1. get kernel args
  InitDefaultKernelSignatureMap();
  auto arg_map_fn = pten::OpUtilsMap::Instance().GetArgumentMappingFn(op_type);
  PADDLE_ENFORCE_NOT_NULL(
      arg_map_fn, platform::errors::NotFound(
                      "The ArgumentMappingFn of %s op is not found.", op_type));
  InferShapeArgumentMappingContext arg_map_context(*ctx);
  auto signature = arg_map_fn(arg_map_context);
  VLOG(3) << "BuildInferMetaContext: op kernel signature - " << signature;

  // 2. build infermeta context
  pten::InferMetaContext infer_meta_context(ctx->IsRuntime());

  auto& input_names = std::get<0>(signature.args);
286
  auto& attr_names = std::get<1>(signature.args);
287 288
  auto& output_names = std::get<2>(signature.args);

289
  // TODO(chenweihang): support multiple inputs and outputs later
290 291
  pten::InferMetaContext infer_mete_context;
  for (auto& in_name : input_names) {
292 293 294 295 296 297
    if (ctx->HasInput(in_name)) {
      infer_meta_context.EmplaceBackInput(std::make_shared<CompatMetaTensor>(
          ctx->GetInputVarPtrs(in_name)[0], ctx->IsRuntime()));
    } else {
      infer_meta_context.EmplaceBackInput({nullptr});
    }
298
  }
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

  auto attr_reader = ctx->Attrs();
  for (auto& attr_name : attr_names) {
    if (ctx->HasAttr(attr_name)) {
      auto& attr = attr_reader.GetAttr(attr_name);
      if (std::type_index(attr.type()) == std::type_index(typeid(bool))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(float))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(float, attr));
      } else {
        // do nothing, skip useless attrs now
        // TODO(chenweihang): support other attr type later and throw error
        // if attr is cannot parsed
      }
    } else {
      // do nothing
    }
  }

319
  for (auto& out_name : output_names) {
320 321 322 323 324 325
    if (ctx->HasOutput(out_name)) {
      infer_meta_context.EmplaceBackOutput(std::make_shared<CompatMetaTensor>(
          ctx->GetOutputVarPtrs(out_name)[0], ctx->IsRuntime()));
    } else {
      infer_meta_context.EmplaceBackOutput({nullptr});
    }
326 327 328 329 330
  }

  return infer_meta_context;
}

C
Chen Weihang 已提交
331 332
}  // namespace framework
}  // namespace paddle