infershape_utils.cc 20.4 KB
Newer Older
C
Chen Weihang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/infershape_utils.h"

17 18
#include <string>

19
#include "paddle/fluid/framework/convert_utils.h"
C
Chen Weihang 已提交
20
#include "paddle/fluid/framework/framework.pb.h"
21
#include "paddle/fluid/framework/phi_utils.h"
C
Chen Weihang 已提交
22
#include "paddle/fluid/platform/enforce.h"
23
#include "paddle/phi/common/scalar.h"
24
#include "paddle/phi/common/scalar_array.h"
25 26 27 28 29 30 31
#include "paddle/phi/core/compat/arg_map_context.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/core/meta_tensor.h"
#include "paddle/phi/core/tensor_utils.h"
C
Chen Weihang 已提交
32 33 34 35

namespace paddle {
namespace framework {

36
class InferShapeArgumentMappingContext : public phi::ArgumentMappingContext {
C
Chen Weihang 已提交
37 38 39 40 41 42 43 44 45 46 47 48
 public:
  explicit InferShapeArgumentMappingContext(const InferShapeContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
    return ctx_.HasInput(name);
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

49 50 51 52
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

C
Chen Weihang 已提交
53 54 55 56 57 58
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.Attrs().GetAttr(name);
    return GetAttrValue(attr);
  }

  size_t InputSize(const std::string& name) const override {
59 60 61 62 63 64
    if (ctx_.HasInputs(name)) {
      return ctx_.Inputs(name).size();
    } else if (ctx_.HasInput(name)) {
      return 1;
    }
    return 0;
C
Chen Weihang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  }

  size_t OutputSize(const std::string& name) const override {
    return ctx_.Outputs(name).size();
  }

  bool IsDenseTensorInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
    return var_types[0] == proto::VarType::LOD_TENSOR;
  }

  bool IsSelectedRowsInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
    return var_types[0] == proto::VarType::SELECTED_ROWS;
  }

81 82 83 84 85 86 87 88 89 90
  bool IsDenseTensorOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
    return var_types[0] == proto::VarType::LOD_TENSOR;
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
    return var_types[0] == proto::VarType::SELECTED_ROWS;
  }

91 92
  bool IsForInferShape() const override { return true; }

C
Chen Weihang 已提交
93 94 95 96 97
 private:
  const InferShapeContext& ctx_;
};

// TODO(chenweihang): Support TensorArray later
98
class CompatMetaTensor : public phi::MetaTensor {
C
Chen Weihang 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
 public:
  CompatMetaTensor(InferShapeVarPtr var, bool is_runtime)
      : var_(std::move(var)), is_runtime_(is_runtime) {}

  CompatMetaTensor() = default;
  CompatMetaTensor(const CompatMetaTensor&) = default;
  CompatMetaTensor(CompatMetaTensor&&) = default;
  CompatMetaTensor& operator=(const CompatMetaTensor&) = delete;
  CompatMetaTensor& operator=(CompatMetaTensor&&) = delete;

  int64_t numel() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
      return var->Get<Tensor>().numel();
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
      return var->ElementSize();
    }
  }

  DDim dims() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
122 123 124 125
      if (var->IsType<phi::DenseTensor>()) {
        return var->Get<phi::DenseTensor>().dims();
      } else if (var->IsType<phi::SelectedRows>()) {
        return var->Get<phi::SelectedRows>().dims();
126 127 128 129
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can get dims from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
130 131
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
132 133 134

      return var->GetShape().empty() ? phi::make_ddim({0UL})
                                     : phi::make_ddim(var->GetShape());
C
Chen Weihang 已提交
135 136 137
    }
  }

138
  phi::DataType dtype() const override {
C
Chen Weihang 已提交
139 140
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
141 142 143 144
      if (var->IsType<phi::DenseTensor>()) {
        return var->Get<phi::DenseTensor>().dtype();
      } else if (var->IsType<phi::SelectedRows>()) {
        return var->Get<phi::SelectedRows>().dtype();
145 146 147 148
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can get dtype from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
149 150
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
151
      return paddle::framework::TransToPhiDataType(var->GetDataType());
C
Chen Weihang 已提交
152 153 154 155 156 157 158 159
    }
  }

  DataLayout layout() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
      return var->Get<LoDTensor>().layout();
    } else {
160 161 162
      // NOTE(chenweihang): do nothing
      // Unsupported get layout for VarDesc now
      return DataLayout::UNDEFINED;
C
Chen Weihang 已提交
163 164 165 166 167 168
    }
  }

  void set_dims(const DDim& dims) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
169 170 171 172 173 174
      if (var->IsType<phi::DenseTensor>()) {
        auto* tensor = var->GetMutable<phi::DenseTensor>();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
      } else if (var->IsType<phi::SelectedRows>()) {
        auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
175 176 177 178
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can set dims from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
179 180 181 182 183 184
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
      var->SetShape(vectorize(dims));
    }
  }

185
  void set_dtype(phi::DataType dtype) override {
C
Chen Weihang 已提交
186 187
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
188 189 190 191 192 193
      if (var->IsType<phi::DenseTensor>()) {
        auto* tensor = var->GetMutable<phi::DenseTensor>();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
      } else if (var->IsType<phi::SelectedRows>()) {
        auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
194 195 196 197
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can set dtype from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
198 199
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
200
      var->SetDataType(paddle::framework::TransToProtoVarType(dtype));
C
Chen Weihang 已提交
201 202 203 204 205 206 207
    }
  }

  void set_layout(DataLayout layout) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
208 209
      phi::DenseTensorUtils::GetMutableMeta(
          static_cast<phi::DenseTensor*>(tensor))
C
Chen Weihang 已提交
210 211
          ->layout = layout;
    } else {
212 213
      // NOTE(chenweihang): do nothing
      // Unsupported set layout for VarDesc now
C
Chen Weihang 已提交
214 215 216 217 218 219
    }
  }

  void share_lod(const MetaTensor& meta_tensor) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
220 221 222
      if (var->IsType<phi::DenseTensor>()) {
        auto* tensor = var->GetMutable<phi::DenseTensor>();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->lod =
223 224 225 226 227
            static_cast<const CompatMetaTensor&>(meta_tensor).GetRuntimeLoD();
      } else {
        // NOTE(chenweihang): do nothing
        // only LoDTensor need to share lod
      }
C
Chen Weihang 已提交
228 229 230 231 232 233 234
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
      var->SetLoDLevel(static_cast<const CompatMetaTensor&>(meta_tensor)
                           .GetCompileTimeLoD());
    }
  }

Y
YuanRisheng 已提交
235
  void share_dims(const MetaTensor& meta_tensor) override {
236
    set_dims(meta_tensor.dims());
237 238
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
239 240
      if (var->IsType<phi::SelectedRows>()) {
        auto* selected_rows = var->GetMutable<phi::SelectedRows>();
241 242 243 244 245 246
        auto& input_selected_rows =
            static_cast<const CompatMetaTensor&>(meta_tensor).GetSelectedRows();
        selected_rows->set_rows(input_selected_rows.rows());
        selected_rows->set_height(input_selected_rows.height());
      }
    }
247 248
  }

Y
YuanRisheng 已提交
249 250 251 252 253 254 255 256 257 258
  void share_meta(const MetaTensor& meta_tensor) override {
    set_dtype(meta_tensor.dtype());
    // VarDesc doesn't contains layout, so we cannot share layout
    // set_layout(meta_tensor.layout());

    // special case 1: share lod of LoDTensor
    share_lod(meta_tensor);
    share_dims(meta_tensor);
  }

C
Chen Weihang 已提交
259 260 261 262 263
 private:
  const LoD& GetRuntimeLoD() const {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    return var->Get<LoDTensor>().lod();
  }
264

C
Chen Weihang 已提交
265 266 267 268 269
  int32_t GetCompileTimeLoD() const {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);
    return var->GetLoDLevel();
  }

270
  const phi::SelectedRows& GetSelectedRows() const {
271 272 273 274
    PADDLE_ENFORCE_EQ(is_runtime_, true,
                      platform::errors::Unavailable(
                          "Only can get Tensor from MetaTensor in rumtime."));
    auto* var = BOOST_GET_CONST(Variable*, var_);
275
    PADDLE_ENFORCE_EQ(var->IsType<phi::SelectedRows>(), true,
276 277
                      platform::errors::Unavailable(
                          "The Tensor in MetaTensor is not SelectedRows."));
278
    return var->Get<phi::SelectedRows>();
279 280
  }

C
Chen Weihang 已提交
281 282 283 284
  InferShapeVarPtr var_;
  bool is_runtime_;
};

285 286
phi::InferMetaContext BuildInferMetaContext(InferShapeContext* ctx,
                                            const std::string& op_type) {
287 288
  // 1. get kernel args
  InitDefaultKernelSignatureMap();
289
  auto arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_type);
290 291 292 293 294 295 296 297
  PADDLE_ENFORCE_NOT_NULL(
      arg_map_fn, platform::errors::NotFound(
                      "The ArgumentMappingFn of %s op is not found.", op_type));
  InferShapeArgumentMappingContext arg_map_context(*ctx);
  auto signature = arg_map_fn(arg_map_context);
  VLOG(3) << "BuildInferMetaContext: op kernel signature - " << signature;

  // 2. build infermeta context
298
  phi::InferMetaContext infer_meta_context(ctx->IsRuntime());
299 300

  auto& input_names = std::get<0>(signature.args);
301
  auto& attr_names = std::get<1>(signature.args);
302 303
  auto& output_names = std::get<2>(signature.args);

304 305 306 307 308 309 310 311 312 313
  auto kernels_map =
      phi::KernelFactory::Instance().SelectKernelMap(signature.name);
  if (kernels_map.size() == 0) {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not find `%s` kernels when construct "
                                        "InferMetaContext.",
                                        signature.name));
  }
  auto attr_defs = kernels_map.cbegin()->second.args_def().attribute_defs();

314
  // TODO(chenweihang): support multiple inputs and outputs later
315
  phi::InferMetaContext infer_mete_context;
316
  for (auto& in_name : input_names) {
317 318 319 320 321 322 323 324 325 326 327 328 329 330
    if (ctx->HasInputs(in_name)) {
      auto input_var = ctx->GetInputVarPtrs(in_name);
      if (input_var.size() == 1) {
        infer_meta_context.EmplaceBackInput(
            std::make_shared<CompatMetaTensor>(input_var[0], ctx->IsRuntime()));
      } else {
        paddle::SmallVector<std::shared_ptr<phi::MetaTensor>> inputs;
        inputs.reserve(input_var.size());
        for (const auto& in : input_var) {
          inputs.push_back(
              std::make_shared<CompatMetaTensor>(in, ctx->IsRuntime()));
        }
        infer_meta_context.EmplaceBackInputs(std::move(inputs));
      }
331 332 333
    } else {
      infer_meta_context.EmplaceBackInput({nullptr});
    }
334
  }
335 336

  auto attr_reader = ctx->Attrs();
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
  for (size_t i = 0; i < attr_names.size(); ++i) {
    auto attr_name = attr_names[i];
    if (attr_defs[i].type_index == std::type_index(typeid(phi::ScalarArray))) {
      // When attr is a vector_tensor or tensor, transform it to ScalarArray
      if (ctx->HasInputs(attr_name) || ctx->HasInput(attr_name)) {
        const auto& infershape_inputs = ctx->GetInputVarPtrs(attr_name);
        if (ctx->IsRuntime()) {
          // If is in runtime, we will get tensor's value for ScalarArray
          // and push it into attrs
          std::vector<Variable*> vars;
          vars.reserve(infershape_inputs.size());
          for (size_t i = 0; i < infershape_inputs.size(); i++) {
            vars.push_back(BOOST_GET_CONST(Variable*, infershape_inputs[i]));
          }
          if (infershape_inputs.size() != 1) {
            infer_meta_context.EmplaceBackAttr(
353
                std::move(experimental::MakePhiScalarArrayFromVarList(vars)));
354 355
          } else {
            infer_meta_context.EmplaceBackAttr(
356
                std::move(experimental::MakePhiScalarArrayFromVar(*vars[0])));
357 358 359 360 361
          }
        } else {
          // If is not in runtime, we will set default value(-1) for ScalarArray
          std::vector<VarDesc*> vars;
          vars.reserve(infershape_inputs.size());
362
          for (size_t i = 0; i < infershape_inputs.size(); ++i) {
363 364
            vars.push_back(BOOST_GET_CONST(VarDesc*, infershape_inputs[i]));
          }
365

366
          int64_t num_ele = 0;
367 368 369
          if (vars.size() == 1) {
            num_ele = 1;
            const auto& tensor_dims = vars[0]->GetShape();
370 371 372
            for (size_t i = 0; i < tensor_dims.size(); ++i) {
              num_ele *= tensor_dims[i];
            }
373
          } else {
374
            num_ele = vars.size();
375 376 377 378 379 380 381 382 383 384 385
          }
          phi::ScalarArray tensor_attr(std::vector<int32_t>(num_ele, -1));
          tensor_attr.SetFromTensor(true);
          infer_meta_context.EmplaceBackAttr(std::move(tensor_attr));
        }
      } else if (ctx->HasAttr(attr_name)) {
        auto& attr = attr_reader.GetAttr(attr_name);
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int32_t>))) {
          infer_meta_context.EmplaceBackAttr(std::move(
              phi::ScalarArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
386 387 388 389
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::vector<int64_t>))) {
          infer_meta_context.EmplaceBackAttr(std::move(
              phi::ScalarArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
390 391 392 393
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          infer_meta_context.EmplaceBackAttr(
              phi::ScalarArray({BOOST_GET_CONST(int, attr)}));
394 395 396
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to ScalarArray when "
397
              "construct InferMetaContext.",
398 399 400
              attr_name));
        }
      }
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(phi::Scalar))) {
      if (ctx->HasAttr(attr_name)) {
        // TODO(chentianyu03): support other attrs later
        auto& attr = attr_reader.GetAttr(attr_name);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(float, attr)));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(std::string, attr)));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(int, attr)));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "InferMetaContext.",
              attr_name));
        }
      } else if (ctx->HasInput(attr_name)) {
        const auto& infershape_input = ctx->GetInputVarPtrs(attr_name);
        if (infershape_input.size() == 1) {
          if (ctx->IsRuntime()) {
            Variable* var = BOOST_GET_CONST(Variable*, infershape_input[0]);
            infer_meta_context.EmplaceBackAttr(
429
                std::move(experimental::MakePhiScalarFromVar(*var)));
430 431 432 433 434 435 436 437 438 439 440 441
          } else {
            phi::Scalar tensor_scalar(-1);
            tensor_scalar.SetFromTensor(true);
            infer_meta_context.EmplaceBackAttr(std::move(tensor_scalar));
          }
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Invalid input.size() when cast op attribute `%s` to Scalar, "
              "expected 1, but actually is %d .",
              attr_name, infershape_input.size()));
        }
      }
442 443
    } else if (ctx->HasAttr(attr_name)) {
      // Emplace Back Attr according to the type of attr.
444
      auto& attr = attr_reader.GetAttr(attr_name);
445
      if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
446
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
447
      } else if (attr_defs[i].type_index == std::type_index(typeid(int))) {
448
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int, attr));
449
      } else if (attr_defs[i].type_index == std::type_index(typeid(int64_t))) {
450
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr));
451
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
452
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(float, attr));
453
      } else if (attr_defs[i].type_index ==
454 455
                 std::type_index(typeid(std::string))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(std::string, attr));
456
      } else if (attr_defs[i].type_index ==
457 458 459
                 std::type_index(typeid(std::vector<bool>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<bool>, attr));
460
      } else if (attr_defs[i].type_index ==
461 462 463
                 std::type_index(typeid(std::vector<int>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<int>, attr));
464
      } else if (attr_defs[i].type_index ==
465
                 std::type_index(typeid(std::vector<int64_t>))) {
466 467 468 469 470 471 472 473 474 475 476 477
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Phi_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          infer_meta_context.EmplaceBackAttr(vector_int64_attr);
        } else {
          infer_meta_context.EmplaceBackAttr(
              BOOST_GET_CONST(std::vector<int64_t>, attr));
        }
      } else if (attr_defs[i].type_index ==
478 479 480
                 std::type_index(typeid(std::vector<float>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<float>, attr));
481
      } else if (attr_defs[i].type_index ==
482 483 484
                 std::type_index(typeid(std::vector<double>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<double>, attr));
485
      } else if (attr_defs[i].type_index ==
486 487 488
                 std::type_index(typeid(std::vector<std::string>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr));
489 490
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(phi::DataType))) {
491
        auto data_type = paddle::framework::TransToPhiDataType(
492 493 494
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        infer_meta_context.EmplaceBackAttr(data_type);
495
      } else {
496 497 498
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported attribute type is received when call "
            "InferShapeFunctor."));
499
      }
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    } else {
      // do nothing
    }
  }

  for (auto& out_name : output_names) {
    if (ctx->HasOutputs(out_name)) {
      auto output_var = ctx->GetOutputVarPtrs(out_name);
      if (output_var.size() == 1) {
        infer_meta_context.EmplaceBackOutput(std::make_shared<CompatMetaTensor>(
            output_var[0], ctx->IsRuntime()));
      } else {
        paddle::SmallVector<std::shared_ptr<phi::MetaTensor>> outputs;
        outputs.reserve(output_var.size());
        for (const auto& out : output_var) {
          outputs.emplace_back(
              std::make_shared<CompatMetaTensor>(out, ctx->IsRuntime()));
        }
        infer_meta_context.EmplaceBackOutputs(std::move(outputs));
      }
    } else {
      infer_meta_context.EmplaceBackOutput({nullptr});
522
    }
523 524 525 526 527
  }

  return infer_meta_context;
}

C
Chen Weihang 已提交
528 529
}  // namespace framework
}  // namespace paddle