infershape_utils.cc 10.5 KB
Newer Older
C
Chen Weihang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/infershape_utils.h"

#include "paddle/fluid/framework/framework.pb.h"
18
#include "paddle/fluid/framework/pten_utils.h"
C
Chen Weihang 已提交
19 20
#include "paddle/fluid/platform/enforce.h"
#include "paddle/pten/core/compat/arg_map_context.h"
21
#include "paddle/pten/core/compat/convert_utils.h"
22
#include "paddle/pten/core/compat/op_utils.h"
C
Chen Weihang 已提交
23
#include "paddle/pten/core/dense_tensor.h"
24
#include "paddle/pten/core/infermeta_utils.h"
C
Chen Weihang 已提交
25
#include "paddle/pten/core/meta_tensor.h"
26
#include "paddle/pten/core/tensor_utils.h"
C
Chen Weihang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

namespace paddle {
namespace framework {

class InferShapeArgumentMappingContext : public pten::ArgumentMappingContext {
 public:
  explicit InferShapeArgumentMappingContext(const InferShapeContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
    return ctx_.HasInput(name);
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.Attrs().GetAttr(name);
    return GetAttrValue(attr);
  }

  size_t InputSize(const std::string& name) const override {
    return ctx_.Inputs(name).size();
  }

  size_t OutputSize(const std::string& name) const override {
    return ctx_.Outputs(name).size();
  }

  bool IsDenseTensorInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
    return var_types[0] == proto::VarType::LOD_TENSOR;
  }

  bool IsSelectedRowsInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
    return var_types[0] == proto::VarType::SELECTED_ROWS;
  }

67 68 69 70 71 72 73 74 75 76
  bool IsDenseTensorOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
    return var_types[0] == proto::VarType::LOD_TENSOR;
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
    return var_types[0] == proto::VarType::SELECTED_ROWS;
  }

C
Chen Weihang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
 private:
  const InferShapeContext& ctx_;
};

// TODO(chenweihang): Support TensorArray later
class CompatMetaTensor : public pten::MetaTensor {
 public:
  CompatMetaTensor(InferShapeVarPtr var, bool is_runtime)
      : var_(std::move(var)), is_runtime_(is_runtime) {}

  CompatMetaTensor() = default;
  CompatMetaTensor(const CompatMetaTensor&) = default;
  CompatMetaTensor(CompatMetaTensor&&) = default;
  CompatMetaTensor& operator=(const CompatMetaTensor&) = delete;
  CompatMetaTensor& operator=(CompatMetaTensor&&) = delete;

  int64_t numel() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
      return var->Get<Tensor>().numel();
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
      return var->ElementSize();
    }
  }

  DDim dims() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
106 107 108 109 110 111 112 113
      if (var->IsType<pten::DenseTensor>()) {
        return var->Get<pten::DenseTensor>().dims();
      } else if (var->IsType<pten::SelectedRows>()) {
        return var->Get<pten::SelectedRows>().dims();
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can get dims from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
114 115 116 117 118 119 120 121 122
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
      return make_ddim(var->GetShape());
    }
  }

  pten::DataType dtype() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
123 124 125 126 127 128 129 130
      if (var->IsType<pten::DenseTensor>()) {
        return var->Get<pten::DenseTensor>().dtype();
      } else if (var->IsType<pten::SelectedRows>()) {
        return var->Get<pten::SelectedRows>().dtype();
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can get dtype from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
131 132 133 134 135 136 137 138 139 140 141
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
      return pten::TransToPtenDataType(var->GetDataType());
    }
  }

  DataLayout layout() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
      return var->Get<LoDTensor>().layout();
    } else {
142 143 144
      // NOTE(chenweihang): do nothing
      // Unsupported get layout for VarDesc now
      return DataLayout::UNDEFINED;
C
Chen Weihang 已提交
145 146 147 148 149 150
    }
  }

  void set_dims(const DDim& dims) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
151 152 153 154 155 156 157 158 159 160
      if (var->IsType<pten::DenseTensor>()) {
        auto* tensor = var->GetMutable<pten::DenseTensor>();
        pten::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
      } else if (var->IsType<pten::SelectedRows>()) {
        auto* tensor = var->GetMutable<pten::SelectedRows>()->mutable_value();
        pten::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can set dims from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
161 162 163 164 165 166 167 168 169
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
      var->SetShape(vectorize(dims));
    }
  }

  void set_dtype(pten::DataType dtype) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
170 171 172 173 174 175 176 177 178 179
      if (var->IsType<pten::DenseTensor>()) {
        auto* tensor = var->GetMutable<pten::DenseTensor>();
        pten::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
      } else if (var->IsType<pten::SelectedRows>()) {
        auto* tensor = var->GetMutable<pten::SelectedRows>()->mutable_value();
        pten::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can set dtype from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
180 181 182 183 184 185 186 187 188 189
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
      var->SetDataType(pten::TransToProtoVarType(dtype));
    }
  }

  void set_layout(DataLayout layout) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
190
      pten::DenseTensorUtils::GetMutableMeta(
C
Chen Weihang 已提交
191 192 193
          static_cast<pten::DenseTensor*>(tensor))
          ->layout = layout;
    } else {
194 195
      // NOTE(chenweihang): do nothing
      // Unsupported set layout for VarDesc now
C
Chen Weihang 已提交
196 197 198 199 200 201
    }
  }

  void share_lod(const MetaTensor& meta_tensor) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
202 203 204 205 206 207 208 209
      if (var->IsType<pten::DenseTensor>()) {
        auto* tensor = var->GetMutable<pten::DenseTensor>();
        pten::DenseTensorUtils::GetMutableMeta(tensor)->lod =
            static_cast<const CompatMetaTensor&>(meta_tensor).GetRuntimeLoD();
      } else {
        // NOTE(chenweihang): do nothing
        // only LoDTensor need to share lod
      }
C
Chen Weihang 已提交
210 211 212 213 214 215 216
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
      var->SetLoDLevel(static_cast<const CompatMetaTensor&>(meta_tensor)
                           .GetCompileTimeLoD());
    }
  }

217 218 219 220 221
  void share_meta(const MetaTensor& meta_tensor) override {
    set_dims(meta_tensor.dims());
    set_dtype(meta_tensor.dtype());
    // VarDesc doesn't contains layout, so we cannot share layout
    // set_layout(meta_tensor.layout());
222 223

    // special case 1: share lod of LoDTensor
224
    share_lod(meta_tensor);
225 226 227 228 229 230 231 232 233 234 235 236

    // special case 2: share height and rows of SelectedRows in runtime
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
      if (var->IsType<pten::SelectedRows>()) {
        auto* selected_rows = var->GetMutable<pten::SelectedRows>();
        auto& input_selected_rows =
            static_cast<const CompatMetaTensor&>(meta_tensor).GetSelectedRows();
        selected_rows->set_rows(input_selected_rows.rows());
        selected_rows->set_height(input_selected_rows.height());
      }
    }
237 238
  }

C
Chen Weihang 已提交
239 240 241 242 243
 private:
  const LoD& GetRuntimeLoD() const {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    return var->Get<LoDTensor>().lod();
  }
244

C
Chen Weihang 已提交
245 246 247 248 249
  int32_t GetCompileTimeLoD() const {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);
    return var->GetLoDLevel();
  }

250 251 252 253 254 255 256 257 258 259 260
  const pten::SelectedRows& GetSelectedRows() const {
    PADDLE_ENFORCE_EQ(is_runtime_, true,
                      platform::errors::Unavailable(
                          "Only can get Tensor from MetaTensor in rumtime."));
    auto* var = BOOST_GET_CONST(Variable*, var_);
    PADDLE_ENFORCE_EQ(var->IsType<pten::SelectedRows>(), true,
                      platform::errors::Unavailable(
                          "The Tensor in MetaTensor is not SelectedRows."));
    return var->Get<pten::SelectedRows>();
  }

C
Chen Weihang 已提交
261 262 263 264
  InferShapeVarPtr var_;
  bool is_runtime_;
};

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
pten::InferMetaContext BuildInferMetaContext(InferShapeContext* ctx,
                                             const std::string& op_type) {
  // 1. get kernel args
  InitDefaultKernelSignatureMap();
  auto arg_map_fn = pten::OpUtilsMap::Instance().GetArgumentMappingFn(op_type);
  PADDLE_ENFORCE_NOT_NULL(
      arg_map_fn, platform::errors::NotFound(
                      "The ArgumentMappingFn of %s op is not found.", op_type));
  InferShapeArgumentMappingContext arg_map_context(*ctx);
  auto signature = arg_map_fn(arg_map_context);
  VLOG(3) << "BuildInferMetaContext: op kernel signature - " << signature;

  // 2. build infermeta context
  pten::InferMetaContext infer_meta_context(ctx->IsRuntime());

  auto& input_names = std::get<0>(signature.args);
  auto& output_names = std::get<2>(signature.args);
  // TODO(chenweihang): support attrs in next pr
  // auto& attr_names = std::get<1>(signature.args);

  // TODO(chenweihang): support multiple inputs and outputs
  pten::InferMetaContext infer_mete_context;
  for (auto& in_name : input_names) {
    infer_meta_context.EmplaceBackInput(std::make_shared<CompatMetaTensor>(
        ctx->GetInputVarPtrs(in_name)[0], ctx->IsRuntime()));
  }
  for (auto& out_name : output_names) {
    infer_meta_context.EmplaceBackOutput(std::make_shared<CompatMetaTensor>(
        ctx->GetOutputVarPtrs(out_name)[0], ctx->IsRuntime()));
  }
  // TODO(chenweihang): support attrs later

  return infer_meta_context;
}

C
Chen Weihang 已提交
300 301
}  // namespace framework
}  // namespace paddle