infershape_utils.cc 16.2 KB
Newer Older
C
Chen Weihang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/infershape_utils.h"

17 18
#include <string>

19
#include "paddle/fluid/framework/convert_utils.h"
C
Chen Weihang 已提交
20
#include "paddle/fluid/framework/framework.pb.h"
21
#include "paddle/fluid/framework/pten_utils.h"
C
Chen Weihang 已提交
22
#include "paddle/fluid/platform/enforce.h"
23
#include "paddle/phi/common/scalar_array.h"
24 25 26 27 28 29 30
#include "paddle/phi/core/compat/arg_map_context.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/core/meta_tensor.h"
#include "paddle/phi/core/tensor_utils.h"
C
Chen Weihang 已提交
31 32 33 34

namespace paddle {
namespace framework {

35
class InferShapeArgumentMappingContext : public phi::ArgumentMappingContext {
C
Chen Weihang 已提交
36 37 38 39 40 41 42 43 44 45 46 47
 public:
  explicit InferShapeArgumentMappingContext(const InferShapeContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
    return ctx_.HasInput(name);
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

48 49 50 51
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

C
Chen Weihang 已提交
52 53 54 55 56 57
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.Attrs().GetAttr(name);
    return GetAttrValue(attr);
  }

  size_t InputSize(const std::string& name) const override {
58 59 60 61 62 63
    if (ctx_.HasInputs(name)) {
      return ctx_.Inputs(name).size();
    } else if (ctx_.HasInput(name)) {
      return 1;
    }
    return 0;
C
Chen Weihang 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  }

  size_t OutputSize(const std::string& name) const override {
    return ctx_.Outputs(name).size();
  }

  bool IsDenseTensorInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
    return var_types[0] == proto::VarType::LOD_TENSOR;
  }

  bool IsSelectedRowsInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
    return var_types[0] == proto::VarType::SELECTED_ROWS;
  }

80 81 82 83 84 85 86 87 88 89
  bool IsDenseTensorOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
    return var_types[0] == proto::VarType::LOD_TENSOR;
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
    return var_types[0] == proto::VarType::SELECTED_ROWS;
  }

C
Chen Weihang 已提交
90 91 92 93 94
 private:
  const InferShapeContext& ctx_;
};

// TODO(chenweihang): Support TensorArray later
95
class CompatMetaTensor : public phi::MetaTensor {
C
Chen Weihang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
 public:
  CompatMetaTensor(InferShapeVarPtr var, bool is_runtime)
      : var_(std::move(var)), is_runtime_(is_runtime) {}

  CompatMetaTensor() = default;
  CompatMetaTensor(const CompatMetaTensor&) = default;
  CompatMetaTensor(CompatMetaTensor&&) = default;
  CompatMetaTensor& operator=(const CompatMetaTensor&) = delete;
  CompatMetaTensor& operator=(CompatMetaTensor&&) = delete;

  int64_t numel() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
      return var->Get<Tensor>().numel();
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
      return var->ElementSize();
    }
  }

  DDim dims() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
119 120 121 122
      if (var->IsType<phi::DenseTensor>()) {
        return var->Get<phi::DenseTensor>().dims();
      } else if (var->IsType<phi::SelectedRows>()) {
        return var->Get<phi::SelectedRows>().dims();
123 124 125 126
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can get dims from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
127 128
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
129
      return phi::make_ddim(var->GetShape());
C
Chen Weihang 已提交
130 131 132
    }
  }

133
  phi::DataType dtype() const override {
C
Chen Weihang 已提交
134 135
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
136 137 138 139
      if (var->IsType<phi::DenseTensor>()) {
        return var->Get<phi::DenseTensor>().dtype();
      } else if (var->IsType<phi::SelectedRows>()) {
        return var->Get<phi::SelectedRows>().dtype();
140 141 142 143
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can get dtype from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
144 145
    } else {
      auto* var = BOOST_GET_CONST(VarDesc*, var_);
146
      return paddle::framework::TransToPtenDataType(var->GetDataType());
C
Chen Weihang 已提交
147 148 149 150 151 152 153 154
    }
  }

  DataLayout layout() const override {
    if (is_runtime_) {
      auto* var = BOOST_GET_CONST(Variable*, var_);
      return var->Get<LoDTensor>().layout();
    } else {
155 156 157
      // NOTE(chenweihang): do nothing
      // Unsupported get layout for VarDesc now
      return DataLayout::UNDEFINED;
C
Chen Weihang 已提交
158 159 160 161 162 163
    }
  }

  void set_dims(const DDim& dims) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
164 165 166 167 168 169
      if (var->IsType<phi::DenseTensor>()) {
        auto* tensor = var->GetMutable<phi::DenseTensor>();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
      } else if (var->IsType<phi::SelectedRows>()) {
        auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
170 171 172 173
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can set dims from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
174 175 176 177 178 179
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
      var->SetShape(vectorize(dims));
    }
  }

180
  void set_dtype(phi::DataType dtype) override {
C
Chen Weihang 已提交
181 182
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
183 184 185 186 187 188
      if (var->IsType<phi::DenseTensor>()) {
        auto* tensor = var->GetMutable<phi::DenseTensor>();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
      } else if (var->IsType<phi::SelectedRows>()) {
        auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
189 190 191 192
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Currently, only can set dtype from DenseTensor or SelectedRows."));
      }
C
Chen Weihang 已提交
193 194
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
195
      var->SetDataType(paddle::framework::TransToProtoVarType(dtype));
C
Chen Weihang 已提交
196 197 198 199 200 201 202
    }
  }

  void set_layout(DataLayout layout) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
203 204
      phi::DenseTensorUtils::GetMutableMeta(
          static_cast<phi::DenseTensor*>(tensor))
C
Chen Weihang 已提交
205 206
          ->layout = layout;
    } else {
207 208
      // NOTE(chenweihang): do nothing
      // Unsupported set layout for VarDesc now
C
Chen Weihang 已提交
209 210 211 212 213 214
    }
  }

  void share_lod(const MetaTensor& meta_tensor) override {
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
215 216 217
      if (var->IsType<phi::DenseTensor>()) {
        auto* tensor = var->GetMutable<phi::DenseTensor>();
        phi::DenseTensorUtils::GetMutableMeta(tensor)->lod =
218 219 220 221 222
            static_cast<const CompatMetaTensor&>(meta_tensor).GetRuntimeLoD();
      } else {
        // NOTE(chenweihang): do nothing
        // only LoDTensor need to share lod
      }
C
Chen Weihang 已提交
223 224 225 226 227 228 229
    } else {
      auto* var = BOOST_GET(VarDesc*, var_);
      var->SetLoDLevel(static_cast<const CompatMetaTensor&>(meta_tensor)
                           .GetCompileTimeLoD());
    }
  }

230 231 232 233 234
  void share_meta(const MetaTensor& meta_tensor) override {
    set_dims(meta_tensor.dims());
    set_dtype(meta_tensor.dtype());
    // VarDesc doesn't contains layout, so we cannot share layout
    // set_layout(meta_tensor.layout());
235 236

    // special case 1: share lod of LoDTensor
237
    share_lod(meta_tensor);
238 239 240 241

    // special case 2: share height and rows of SelectedRows in runtime
    if (is_runtime_) {
      auto* var = BOOST_GET(Variable*, var_);
242 243
      if (var->IsType<phi::SelectedRows>()) {
        auto* selected_rows = var->GetMutable<phi::SelectedRows>();
244 245 246 247 248 249
        auto& input_selected_rows =
            static_cast<const CompatMetaTensor&>(meta_tensor).GetSelectedRows();
        selected_rows->set_rows(input_selected_rows.rows());
        selected_rows->set_height(input_selected_rows.height());
      }
    }
250 251
  }

C
Chen Weihang 已提交
252 253 254 255 256
 private:
  const LoD& GetRuntimeLoD() const {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    return var->Get<LoDTensor>().lod();
  }
257

C
Chen Weihang 已提交
258 259 260 261 262
  int32_t GetCompileTimeLoD() const {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);
    return var->GetLoDLevel();
  }

263
  const phi::SelectedRows& GetSelectedRows() const {
264 265 266 267
    PADDLE_ENFORCE_EQ(is_runtime_, true,
                      platform::errors::Unavailable(
                          "Only can get Tensor from MetaTensor in rumtime."));
    auto* var = BOOST_GET_CONST(Variable*, var_);
268
    PADDLE_ENFORCE_EQ(var->IsType<phi::SelectedRows>(), true,
269 270
                      platform::errors::Unavailable(
                          "The Tensor in MetaTensor is not SelectedRows."));
271
    return var->Get<phi::SelectedRows>();
272 273
  }

C
Chen Weihang 已提交
274 275 276 277
  InferShapeVarPtr var_;
  bool is_runtime_;
};

278 279
phi::InferMetaContext BuildInferMetaContext(InferShapeContext* ctx,
                                            const std::string& op_type) {
280 281
  // 1. get kernel args
  InitDefaultKernelSignatureMap();
282
  auto arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_type);
283 284 285 286 287 288 289 290
  PADDLE_ENFORCE_NOT_NULL(
      arg_map_fn, platform::errors::NotFound(
                      "The ArgumentMappingFn of %s op is not found.", op_type));
  InferShapeArgumentMappingContext arg_map_context(*ctx);
  auto signature = arg_map_fn(arg_map_context);
  VLOG(3) << "BuildInferMetaContext: op kernel signature - " << signature;

  // 2. build infermeta context
291
  phi::InferMetaContext infer_meta_context(ctx->IsRuntime());
292 293

  auto& input_names = std::get<0>(signature.args);
294
  auto& attr_names = std::get<1>(signature.args);
295 296
  auto& output_names = std::get<2>(signature.args);

297 298 299 300 301 302 303 304 305 306
  auto kernels_map =
      phi::KernelFactory::Instance().SelectKernelMap(signature.name);
  if (kernels_map.size() == 0) {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not find `%s` kernels when construct "
                                        "InferMetaContext.",
                                        signature.name));
  }
  auto attr_defs = kernels_map.cbegin()->second.args_def().attribute_defs();

307
  // TODO(chenweihang): support multiple inputs and outputs later
308
  phi::InferMetaContext infer_mete_context;
309
  for (auto& in_name : input_names) {
310 311 312 313 314 315
    if (ctx->HasInput(in_name)) {
      infer_meta_context.EmplaceBackInput(std::make_shared<CompatMetaTensor>(
          ctx->GetInputVarPtrs(in_name)[0], ctx->IsRuntime()));
    } else {
      infer_meta_context.EmplaceBackInput({nullptr});
    }
316
  }
317

318 319 320 321 322 323 324 325
  for (auto& out_name : output_names) {
    if (ctx->HasOutput(out_name)) {
      infer_meta_context.EmplaceBackOutput(std::make_shared<CompatMetaTensor>(
          ctx->GetOutputVarPtrs(out_name)[0], ctx->IsRuntime()));
    } else {
      infer_meta_context.EmplaceBackOutput({nullptr});
    }
  }
326
  auto attr_reader = ctx->Attrs();
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
  for (size_t i = 0; i < attr_names.size(); ++i) {
    auto attr_name = attr_names[i];
    if (attr_defs[i].type_index == std::type_index(typeid(phi::ScalarArray))) {
      // When attr is a vector_tensor or tensor, transform it to ScalarArray
      if (ctx->HasInputs(attr_name) || ctx->HasInput(attr_name)) {
        const auto& infershape_inputs = ctx->GetInputVarPtrs(attr_name);
        if (ctx->IsRuntime()) {
          // If is in runtime, we will get tensor's value for ScalarArray
          // and push it into attrs
          std::vector<Variable*> vars;
          vars.reserve(infershape_inputs.size());
          for (size_t i = 0; i < infershape_inputs.size(); i++) {
            vars.push_back(BOOST_GET_CONST(Variable*, infershape_inputs[i]));
          }
          if (infershape_inputs.size() != 1) {
            infer_meta_context.EmplaceBackAttr(
                std::move(experimental::MakePtenScalarArrayFromVarList(vars)));
          } else {
            infer_meta_context.EmplaceBackAttr(
                std::move(experimental::MakePtenScalarArrayFromVar(*vars[0])));
          }
        } else {
          // If is not in runtime, we will set default value(-1) for ScalarArray
          int64_t num_ele = 1;
          std::vector<VarDesc*> vars;
          vars.reserve(infershape_inputs.size());
          for (size_t i = 0; i < infershape_inputs.size(); i++) {
            vars.push_back(BOOST_GET_CONST(VarDesc*, infershape_inputs[i]));
          }
          for (auto& var : vars) {
            const auto& tensor_dims = var->GetShape();
            for (size_t i = 0; i < tensor_dims.size(); ++i) {
              num_ele *= tensor_dims[i];
            }
          }
          phi::ScalarArray tensor_attr(std::vector<int32_t>(num_ele, -1));
          tensor_attr.SetFromTensor(true);
          infer_meta_context.EmplaceBackAttr(std::move(tensor_attr));
        }
      } else if (ctx->HasAttr(attr_name)) {
        auto& attr = attr_reader.GetAttr(attr_name);
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int32_t>))) {
          infer_meta_context.EmplaceBackAttr(std::move(
              phi::ScalarArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to ScalarArray when "
              "construct KernelContext.",
              attr_name));
        }
      }

    } else if (ctx->HasAttr(attr_name)) {
      // Emplace Back Attr according to the type of attr.
382 383 384
      auto& attr = attr_reader.GetAttr(attr_name);
      if (std::type_index(attr.type()) == std::type_index(typeid(bool))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
385 386 387 388 389
      } else if (std::type_index(attr.type()) == std::type_index(typeid(int))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int, attr));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(int64_t))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr));
390 391 392
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(float))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(float, attr));
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::string))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(std::string, attr));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<bool>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<bool>, attr));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<int>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<int>, attr));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<int64_t>, attr));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<float>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<float>, attr));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<double>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<double>, attr));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<std::string>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr));
420
      } else {
421 422 423
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported attribute type is received when call "
            "InferShapeFunctor."));
424 425
      }
    }
426 427 428 429 430
  }

  return infer_meta_context;
}

C
Chen Weihang 已提交
431 432
}  // namespace framework
}  // namespace paddle