parallel_executor.cc 52.3 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
16

D
dzhwinter 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <memory>
C
chengduoZH 已提交
19
#include <string>
20
#include <tuple>
Q
Qiao Longfei 已提交
21
#include <utility>
Q
qiaolongfei 已提交
22
#include <vector>
23

Q
Qiao Longfei 已提交
24
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
25
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
26
#include "paddle/fluid/framework/details/multi_devices_helper.h"
27
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
28
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
29
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31 32
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
33
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
34
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
35
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/set_reader_device_info_utils.h"
W
wangchaochaohu 已提交
36
#include "paddle/fluid/platform/event.h"
37
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
38

39 40 41 42
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif

43 44
DECLARE_double(eager_delete_tensor_gb);

Y
Yu Yang 已提交
45
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
46
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
47
#endif
Y
Yu Yang 已提交
48
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
49 50
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
51
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
52
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
53

Y
Yang Yang 已提交
54
namespace paddle {
Y
Yu Yang 已提交
55 56
namespace framework {

Y
Yu Yang 已提交
57
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
58
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
59
static bool gProfileStarted = false;
Y
Yu Yang 已提交
60
#endif
61

62 63 64 65
#ifdef PADDLE_WITH_CUDA
std::once_flag p2p_init_flag;
#endif

Y
Yu Yang 已提交
66 67
class ParallelExecutorPrivate {
 public:
68 69 70
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
71
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
72 73
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
74
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
75 76 77
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
78
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
79 80 81 82
#endif
      });
    }
  }
Y
Yu Yang 已提交
83

84 85 86 87 88 89 90 91 92 93 94
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
95

96 97
  bool IsUseCUDA(DeviceType use_device);

98 99 100 101
  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

102
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
103 104 105

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

106
  /**
T
tianshuo78520a 已提交
107 108
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
109 110 111 112 113 114
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
115
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
116 117
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
118
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
119 120 121 122
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
123 124 125 126 127
    if (mem_opt_var_infos_.size() == 0) {
      VLOG(4) << "The mem_opt_var_infos_ is empty, maybe no memory "
                 "optimization strategy is enabled";
      return;
    }
128 129 130 131 132 133
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

134
#if defined(PADDLE_WITH_NCCL)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
151 152
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
153 154 155 156 157 158 159 160 161 162 163 164
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
165
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
166 167
      } else {
        nccl_id = new ncclUniqueId();
168 169
        PADDLE_ENFORCE_EQ(
            platform::dynload::ncclGetUniqueId(nccl_id), ncclSuccess,
170 171 172
            platform::errors::PreconditionNotMet(
                "PaddlePaddle failed to get NCCL unique ID. It may due to your "
                "system settings or NCCL library error, please debug on NCCL"));
173 174
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
175 176 177 178
      }

      flat_nccl_ids.push_back(nccl_id);

179 180
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
181 182 183 184 185 186
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
187 188
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
189 190 191 192 193 194
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
195 196 197
      PADDLE_ENFORCE_NOT_NULL(
          nccl_id_var,
          platform::errors::NotFound("Can't find nccl_id_var '%s'.", var_name));
198 199 200 201
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

202 203
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
204 205

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
206 207 208 209
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
210 211 212
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
G
gongweibao 已提交
213 214 215
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
216 217 218 219 220

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
221 222 223
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
224 225 226
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
227

228 229 230 231
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
232 233
    }
  }
234

235
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
236 237 238
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
239 240 241
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
242 243 244 245 246 247
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

248
    if (bst->use_hierarchical_allreduce_) {
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
      PADDLE_ENFORCE_GT(
          bst->num_trainers_, 1,
          platform::errors::PreconditionNotMet(
              "The num_trainers should be greater than 1, but received %llu.",
              bst->num_trainers_));
      PADDLE_ENFORCE_GT(
          bst->hierarchical_allreduce_inter_nranks_, 1,
          platform::errors::PreconditionNotMet(
              "The inter_nranks should be greater than 1, but received %d.",
              bst->hierarchical_allreduce_inter_nranks_));
      PADDLE_ENFORCE_EQ(
          bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_, 0,
          platform::errors::PreconditionNotMet(
              "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
              bst->hierarchical_allreduce_inter_nranks_));
264 265 266 267 268

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

269 270
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
271
    InitNCCLCtxs(scope, *bst);
272
  }
273 274
#endif

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
#if defined(PADDLE_WITH_XPU_BKCL)
  void InitBKCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "bkcl comm num:" << bst.bkcl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    PADDLE_ENFORCE_EQ(bst.use_hierarchical_allreduce_, false,
                      platform::errors::Unimplemented(
                          "xpu doesn't support use_hierarchical_allreduce"));

    std::vector<BKCLUniqueId *> flat_bkcl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create bkclid when nranks==1
      bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                               bst.trainer_id_);
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one bkclid in pg model";

      BKCLUniqueId *bkcl_id = nullptr;

      std::string var_name = platform::GetFlatBKCLVarName(0);
      auto bkcl_id_var = scope->FindVar(var_name);
      std::unique_ptr<BKCLUniqueId> id(new BKCLUniqueId());
      if (bkcl_id_var) {
        bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      } else {
        PADDLE_ENFORCE_EQ(
            bkcl_get_unique_id(id.get()), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl get unique id failed"));
        bkcl_id = id.get();
      }

      flat_bkcl_ids.push_back(bkcl_id);

      bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                               bst.trainer_id_);
      VLOG(1) << "init bst bkcl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
      bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                               bst.trainer_id_);
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.bkcl_comm_num_); i++) {
      std::string var_name = platform::GetFlatBKCLVarName(i);
      auto bkcl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE_NOT_NULL(
          bkcl_id_var,
          platform::errors::NotFound("can't find %s bkcl_id_var", var_name));
      auto bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      flat_bkcl_ids.push_back(bkcl_id);
    }

    bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                             bst.trainer_id_);
  }

  void InitOrGetBKCLCommunicator(framework::Scope *scope,
                                 const BuildStrategy &bst) {
    const std::string var_name = "BKCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      bkcl_ctxs_ = var->GetMutable<platform::BKCLCommunicator>();
      return;
    }

    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    bkcl_ctxs_ = scope->Var(var_name)->GetMutable<platform::BKCLCommunicator>();
    InitBKCLCtxs(scope, bst);
  }
#endif

359 360 361 362 363
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
364
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
365 366
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
367
  std::vector<Scope *> local_exec_scopes_;
368
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
369
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
370

371 372
  std::unordered_map<std::string, bool> is_persistable_;

373
#if defined(PADDLE_WITH_NCCL)
374
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
375 376
#elif defined(PADDLE_WITH_XPU_BKCL)
  platform::BKCLCommunicator *bkcl_ctxs_{nullptr};
Y
Yu Yang 已提交
377
#endif
C
chengduoZH 已提交
378
  bool own_local_scope_;
379
  DeviceType use_device_;
380
  bool use_all_reduce_;
381
  size_t nranks_;
S
sneaxiy 已提交
382

383
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
384
  ir::GarbageCollectorMap gcs_;
385 386

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
387 388
};

389 390 391 392
bool ParallelExecutorPrivate::IsUseCUDA(DeviceType use_device) {
  return use_device == p::kCUDA;
}

393 394 395 396 397 398 399 400 401 402
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

403
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
420
                      build_strategy_.enable_addto_ ||
Z
Zeng Jinle 已提交
421 422 423 424
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

425 426 427 428 429 430 431 432
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

433 434 435 436
  if (build_strategy_.enable_addto_) {
    auto addto_pass = ir::PassRegistry::Instance().Get("inplace_addto_op_pass");
    addto_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    addto_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
437
    addto_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
438 439 440 441 442
    VLOG(10) << "Start to apply inplace_addto_op_pass";
    graph = addto_pass->Apply(graph);
    VLOG(10) << "inplace_addto_op_pass Applied";
  }

443 444 445 446 447
  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
448
    inplace_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
449 450 451
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
452 453
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
454 455
  }

456
  if (build_strategy_.memory_optimize_.get()) {
457 458 459 460 461 462
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
463 464
    cross_op_memory_reuse_pass->Set(ir::kUseCuda,
                                    new bool(use_device_ == p::kCUDA));
465 466 467
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
468 469 470
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
471
  }
472

473
  if (!is_gc_enabled) {
474 475 476 477
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
478 479 480 481 482
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
483
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
484
    if (platform::is_gpu_place(place)) {
485
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
486
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
487
        gc.reset(new UnsafeFastGPUGarbageCollector(
488
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
489
      } else {
S
sneaxiy 已提交
490
        gc.reset(new StreamGarbageCollector(
491
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
492 493
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
494 495 496 497
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use CUDA device since it's not compiled with CUDA,"
          "Please recompile or reinstall Paddle with GPU support."));
S
sneaxiy 已提交
498
#endif
499 500 501 502 503 504 505 506 507
    } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU)
      gc.reset(new XPUGarbageCollector(
          BOOST_GET_CONST(platform::XPUPlace, place), max_memory_size));
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use XPU device since it's not compiled with XPU,"
          "Please recompile or reinstall Paddle with XPU support."));
S
sneaxiy 已提交
508
#endif
509 510 511 512 513 514 515 516
    } else if (platform::is_cpu_place(place)) {
      gc.reset(new CPUGarbageCollector(
          BOOST_GET_CONST(platform::CPUPlace, place), max_memory_size));
      VLOG(10) << "Created GarbageCollector at " << place;
    } else {
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "Unsupported place for garbage collection"));
    }
S
sneaxiy 已提交
517
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
518 519
  }

S
sneaxiy 已提交
520
  if (!gcs_.empty()) {
S
sneaxiy 已提交
521 522
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
523 524
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
525 526
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
527
                                     &last_live_ops_of_vars);
528
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
529
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
530
    VLOG(10) << "EagerDeletionPass Applied";
531 532 533
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
534 535 536 537
  }
  return graph;
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

553 554
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

555 556 557 558
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
void InitP2P(const std::vector<platform::Place> &places) {
#ifdef PADDLE_WITH_CUDA
  std::call_once(p2p_init_flag, [&]() {
    int count = places.size();
    if (count <= 1) return;

    std::vector<int> devices;
    for (int i = 0; i < count; i++) {
      if (!is_gpu_place(places[i])) return;

      platform::CUDAPlace device =
          BOOST_GET_CONST(platform::CUDAPlace, places[i]);
      devices.push_back(device.GetDeviceId());
    }

    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
        cudaError_t ret =
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != cudaSuccess || can_acess != 1) {
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
          platform::CUDADeviceGuard guard(devices[i]);
          cudaDeviceEnablePeerAccess(devices[j], 0);
        }
      }
    }
    VLOG(1) << "init p2p";
  });
#endif
}

Y
Yan Xu 已提交
608 609 610 611 612 613 614 615
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
616
    : member_(new ParallelExecutorPrivate(places, scope)) {
617
  InitP2P(places);
618 619
  ir::InitReaderQueueDeviceCount(graph, *(member_->global_scope_),
                                 member_->places_.size());
620
  member_->use_device_ = exec_strategy.use_device_;
D
dzhwinter 已提交
621
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
622 623
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
624
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
625 626 627 628 629 630 631
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
632
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
633
  if (member_->IsUseCUDA(member_->use_device_)) {
634 635 636
    PADDLE_ENFORCE_EQ(
        places.size(), 1,
        platform::errors::Unavailable("Windows can support Single GPU only."));
637 638
  }
#endif
Y
Yancey1989 已提交
639

640
#if defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_NCCL)
641 642 643 644 645 646 647 648 649
  if (member_->IsUseCUDA(member_->use_device_)) {
    PADDLE_ENFORCE_EQ(
        places.size(), 1,
        platform::errors::PermissionDenied(
            "Your machine has multiple cards, "
            "but the WITH_NCCL option is not turned on during compilation, "
            "and you cannot use multi-card training or prediction. "
            "Please recompile and turn on the WITH_NCCL option."));
  }
650 651
#endif

652 653 654 655 656 657 658 659 660
  std::string device_name;
  if (member_->use_device_ == p::kCPU) {
    device_name = "CPU";
  } else if (member_->use_device_ == p::kCUDA) {
    device_name = "CUDA";
  } else {
    device_name = "XPU";
  }

661
  VLOG(1) << string::Sprintf(
662 663
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
664
      device_name, places.size(), places.size());
C
chengduo 已提交
665

666
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
667
  // Create local scopes
668
  if (local_scopes.empty()) {
C
chengduoZH 已提交
669
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
670 671
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
672
      member_->local_scopes_.emplace_back(&scope->NewScope());
673 674
    }
  } else {
C
chengduoZH 已提交
675
    member_->own_local_scope_ = false;
676 677 678 679 680
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size(),
                      platform::errors::PreconditionNotMet(
                          "member_->places_.size() = %d is not equal to "
                          "local_scopes.size() = %d",
                          member_->places_.size(), local_scopes.size()));
681
    for (size_t i = 0; i < member_->places_.size(); ++i) {
682
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
683
    }
Y
Yu Yang 已提交
684 685
  }

Q
Qiao Longfei 已提交
686
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
687
  if (member_->build_strategy_.async_mode_) {
688
    PADDLE_ENFORCE_EQ(member_->IsUseCUDA(member_->use_device_), false,
689 690
                      platform::errors::Unavailable(
                          "gpu mode does not support async_mode_ now!"));
Q
Qiao Longfei 已提交
691
    graphs.push_back(graph);
D
dongdaxiang 已提交
692
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
693 694 695 696
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
697
  }
Q
Qiao Longfei 已提交
698

Y
Yancey1989 已提交
699 700 701
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
702 703 704 705
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
706 707 708 709
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
710

711
  if (member_->IsUseCUDA(member_->use_device_) && member_->nranks_ > 1) {
712
#if defined(PADDLE_WITH_NCCL)
713
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
714

W
Wu Yi 已提交
715 716 717
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
718
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
719 720 721
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
722 723
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
724
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
725 726 727
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
728
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
729
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
730
    }
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with CUDA."));
#endif
  }
  if (member_->use_device_ == p::kXPU && member_->nranks_ > 1) {
#if defined(PADDLE_WITH_XPU_BKCL)
    member_->InitOrGetBKCLCommunicator(scope, member_->build_strategy_);

    auto *bkcl_ctxs =
        member_->bkcl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
    auto &pool = platform::DeviceContextPool::Instance();
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::XPUDeviceContext *>(
          pool.Get(member_->places_[dev_id]));
      auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[dev_id]);
      dev_ctx->set_bkcl_context(bkcl_ctx.comm());
    }
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with XPU."));
Y
Yu Yang 已提交
752
#endif
C
chengduoZH 已提交
753
  }
Y
Yan Xu 已提交
754 755
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
756
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
757 758 759 760 761 762 763 764 765
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
766
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
767
  if (need_broadcast()) {
C
chengduo 已提交
768
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
769
  }
770

Q
Qiao Longfei 已提交
771
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
772

Q
Qiao Longfei 已提交
773 774 775
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
776
#if defined(PADDLE_WITH_NCCL)
C
chengduo 已提交
777
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
778
    VLOG(3) << "use local async mode";
C
chengduo 已提交
779 780
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
781
        {member_->local_scopes_[0]}, 1, member_->use_device_,
C
chengduo 已提交
782
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
783
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
784 785
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
786
          {member_->local_scopes_[i]}, 1, member_->use_device_,
C
chengduo 已提交
787
          member_->nccl_ctxs_);
788
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
789
    }
Q
Qiao Longfei 已提交
790
  } else {
C
chengduo 已提交
791 792
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
        member_->nranks_, member_->use_device_, member_->nccl_ctxs_);
  }
#elif defined(PADDLE_WITH_XPU_BKCL)
  if (member_->build_strategy_.async_mode_) {
    VLOG(3) << "use local async mode";
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_device_,
        member_->bkcl_ctxs_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_device_,
          member_->bkcl_ctxs_);
      async_graphs[i] = graphs[i];
    }
  } else {
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_device_, member_->bkcl_ctxs_);
Q
Qiao Longfei 已提交
813
  }
C
chengduoZH 已提交
814
#else
C
chengduo 已提交
815
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
816
    VLOG(3) << "use local async mode";
C
chengduo 已提交
817 818
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
819
        {member_->local_scopes_[0]}, 1, member_->use_device_);
820
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
821
      graphs[i] = member_->build_strategy_.Apply(
822
          graphs[i], {member_->places_[i]}, loss_var_name,
823
          {member_->local_scopes_[i]}, 1, member_->use_device_);
824
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
825
    }
Q
can run  
Qiao Longfei 已提交
826
  } else {
C
chengduo 已提交
827 828
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
829
        member_->nranks_, member_->use_device_);
Q
can run  
Qiao Longfei 已提交
830
  }
Y
Yu Yang 已提交
831
#endif
832

833
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
834

Q
Qiao Longfei 已提交
835 836
  async_graphs[0] = graph;

837 838
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
839
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
840 841 842 843 844 845
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
846 847 848

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
849 850
    }
  }
Y
Yancey1989 已提交
851

852 853 854 855 856 857 858 859 860 861 862
  if (graph->Has(details::kFusedVars)) {
    auto &fused_vars = graph->Get<details::FusedVars>(details::kFusedVars);
    for (auto &fused_var : fused_vars) {
      var_infos.emplace_back();
      var_infos.back() = fused_var.second;

      member_->is_persistable_.emplace(fused_var.first,
                                       fused_var.second.persistable_);
    }
  }

863 864 865 866 867 868 869
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

870 871 872 873 874 875
  PADDLE_ENFORCE_EQ(
      member_->local_scopes_.size(), member_->local_exec_scopes_.size(),
      platform::errors::PreconditionNotMet(
          "member_->local_scopes_.size() = %d is not equal to "
          "member_->local_exec_scopes_.size() = %d",
          member_->local_scopes_.size(), member_->local_exec_scopes_.size()));
876 877 878

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
879
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
880 881
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
882 883 884
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
885
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
886
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
887
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
888 889
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
890 891 892
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

893 894 895 896 897
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
898 899 900 901 902 903 904 905

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
Y
Yancey1989 已提交
906
#else
907 908
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Paddle should be compiled with CUDA for ParallelGraph Execution."));
Y
Yancey1989 已提交
909
#endif
Y
yuyang18 已提交
910
  } else {
911 912 913 914 915 916
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
917
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
918 919 920 921 922 923 924 925
          member_->places_, std::move(possible_inference_graphs));
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
Y
Yancey1989 已提交
926
    } else {
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      } else {
        VLOG(3) << "use FastThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      }
      final_graphs.emplace_back(graph);
Y
Yancey1989 已提交
942
    }
C
chengduoZH 已提交
943
  }
Y
yuyang18 已提交
944

Q
can run  
Qiao Longfei 已提交
945
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
946
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
947
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
948 949 950 951 952 953 954 955 956
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
957
  }
958 959 960 961 962 963 964 965

  if (final_graphs.size() == 1) {
    ir::SetReaderOpDeviceInfo(final_graphs[0], member_->places_.size());
  } else {
    for (size_t i = 0; i < final_graphs.size(); ++i) {
      ir::SetReaderOpDeviceInfo(final_graphs[i], member_->places_.size(), i);
    }
  }
Y
Yu Yang 已提交
966 967
}

Y
Yancey1989 已提交
968
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
969
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
970
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
971
  // the initializing bcast, all vars would be bcast from device(0).
972
  for (auto &var : vars) {
X
Xin Pan 已提交
973
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
974
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
975 976 977 978
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
979
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
980
      VLOG(3) << "one in var not inited, return!";
981 982
      continue;
    }
983 984
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
985
#if defined(PADDLE_WITH_NCCL)
986
      std::vector<void *> buffers;
C
chengduo 已提交
987
      buffers.reserve(member_->places_.size());
988 989 990 991 992
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
993

Y
Yan Xu 已提交
994
        if (i == 0 && trainer_id == 0) {
995 996
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
997
          auto local_scope = member_->local_scopes_[i];
998
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
999
          t->Resize(dims);
1000
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
1001
        }
1002
        buffers.push_back(buffer);
1003
      }
1004

1005
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
1006 1007 1008 1009
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
1010
      {
1011
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
1012 1013
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
1014
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
1015 1016
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
1017
        }
1018
        nccl_ctxs->WaitAll();
1019
      }
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
#endif
    } else if (paddle::platform::is_xpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_XPU_BKCL)
      std::vector<void *> buffers;
      buffers.reserve(member_->places_.size());
      size_t numel = main_tensor.numel();
      // TODO(liuyuhui): BKCL only support parameters using float type,
      // other parameters need to be strongly converted to float before
      // broadcasting,
      // but broadcast is equivalent to no type of operation, does not affect
      // correctness.
      BKCLDataType data_type = BKCL_FLOAT;
      // BKCLDataType data_type = platform::ToBKCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;

        if (i == 0 && trainer_id == 0) {
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
          auto local_scope = member_->local_scopes_[i];
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
          t->Resize(dims);
          buffer = t->mutable_data(place, main_tensor.type());
        }
        buffers.push_back(buffer);
      }

      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
      {
        auto *bkcl_ctxs = member_->bkcl_ctxs_->DefaultFlatCtx();

        PADDLE_ENFORCE_EQ(
            bkcl_group_start(), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl_group_start failed"));
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[i]);
          if (main_tensor.type() == framework::proto::VarType::INT64) {
            numel *= 2;
          }
          PADDLE_ENFORCE_EQ(
              bkcl_broadcast(bkcl_ctx.comm(), buffers[i], buffers[i], numel,
                             data_type, 0, NULL),
              BKCL_SUCCESS,
              platform::errors::Unavailable("bkcl_broadcast failed"));
        }
        PADDLE_ENFORCE_EQ(
            bkcl_group_end(), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl_group_end failed"));
      }
#else
      PADDLE_THROW(
          platform::errors::PreconditionNotMet("Not compiled with BKCL."));
C
chengduoZH 已提交
1077
#endif
1078 1079
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
1080
      for (size_t i = 1; i < member_->places_.size(); ++i) {
1081 1082
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
1083

Q
Qiao Longfei 已提交
1084
        auto copy_memory = [&] {
1085 1086 1087
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
1088 1089
        };

Q
Qiao Longfei 已提交
1090
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
1091 1092 1093 1094

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
1095 1096
        } else if (member_->use_all_reduce_ ||
                   member_->IsUseCUDA(member_->use_device_) ||
Q
can run  
Qiao Longfei 已提交
1097 1098
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
1099
        } else {
Q
can run  
Qiao Longfei 已提交
1100
          share_memory();
1101
        }
Y
Yu Yang 已提交
1102
      }
Y
Stash  
Yu Yang 已提交
1103 1104
    }
  }
Y
Yu Yang 已提交
1105
}
Y
Yu Yang 已提交
1106

Z
Zhen Wang 已提交
1107 1108
FetchResultType ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors, bool return_merged) {
1109
  VLOG(3) << "enter ParallelExecutor Run";
W
wangchaochaohu 已提交
1110 1111
  platform::RecordEvent parallel_executor_event(
      "ParallelExecutor::Run", paddle::platform::EventRole::kSpecial);
Y
Yu Yang 已提交
1112 1113 1114
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
1115 1116
  }
#endif
Y
Yu Yang 已提交
1117

X
Xin Pan 已提交
1118
  platform::RecordBlock b(0);
1119

1120 1121
  ResetHasFeedGuard reset_has_feed_guard(member_);

1122 1123
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
1124 1125

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
Z
Zhen Wang 已提交
1126
  auto fetch_data = member_->executor_->Run(fetch_tensors, return_merged);
1127
  return fetch_data;
Y
Yu Yang 已提交
1128
}
Y
Yu Yang 已提交
1129

Y
Yu Yang 已提交
1130 1131
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(tensors.size(), member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          tensors.size(), member_->local_scopes_.size()));
  } else {
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(), tensors.size(),
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
1147

1148
  size_t feed_num = 0;
Y
Yu Yang 已提交
1149 1150
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
1151 1152 1153 1154 1155 1156
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
1157
    for (auto &pair : map) {
1158
      bool is_persistable = member_->IsPersistable(pair.first);
1159 1160 1161
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
1162 1163 1164 1165 1166
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
1167 1168 1169 1170
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(feed_num, member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          feed_num, member_->local_scopes_.size()));
  }
Y
Yu Yang 已提交
1183 1184 1185 1186
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
1187
  size_t num_places = member_->places_.size();
1188 1189 1190 1191 1192
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

1193
  for (auto &pair : tensors) {
1194 1195 1196 1197
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
1198
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
1199
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
1200 1201
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
1202
      auto error_info = string::Sprintf(
1203 1204 1205
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
1206 1207 1208 1209 1210 1211
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
1212
      PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1213 1214 1215 1216
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
1217 1218 1219 1220 1221 1222
        PADDLE_ENFORCE_EQ(
            tensor.dims(), pair.second.dims(),
            platform::errors::PreconditionNotMet("The dim doesn't match."));
        PADDLE_ENFORCE_EQ(
            tensor.place(), member_->places_.at(0),
            platform::errors::PreconditionNotMet("The place doesn't match."));
1223 1224 1225 1226 1227 1228
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
1229
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
1230 1231 1232 1233 1234 1235 1236 1237 1238
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
1239
        PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1240
      }
C
chengduo 已提交
1241
    }
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              non_persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
1268 1269 1270 1271 1272
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
1273 1274
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
1275 1276
    }
  }
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
    PADDLE_ENFORCE_GE(persistable_feed_len, non_persistable_feed_len,
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
1293 1294
}

X
Xin Pan 已提交
1295 1296 1297 1298 1299 1300 1301
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

1302
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
1303
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
1304
    const BuildStrategy &build_strategy) const {
1305 1306 1307
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
1308

Y
Yancey1989 已提交
1309
  bool enable_parallel_graph = true;
1310

X
Xin Pan 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1324 1325 1326
    }
  }

1327
  if (!member_->use_all_reduce_ || !member_->IsUseCUDA(member_->use_device_)) {
Y
Yancey1989 已提交
1328
    if (build_strategy.enable_sequential_execution_ ||
1329
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1330
      enable_parallel_graph = false;
1331 1332 1333 1334 1335 1336 1337 1338 1339
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1340
  return enable_parallel_graph;
1341 1342
}

1343 1344 1345 1346
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

Y
Yu Yang 已提交
1347
}  // namespace framework
Y
Yang Yang 已提交
1348
}  // namespace paddle
S
sneaxiy 已提交
1349

S
sneaxiy 已提交
1350
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1351
USE_PASS(eager_deletion_pass);
1352
USE_PASS(buffer_shared_inplace_pass);
1353
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);
1354
USE_PASS(inplace_addto_op_pass);