nn.py 281.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
99
    'roi_align',
X
Xin Pan 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
113
    'margin_rank_loss',
X
Xin Pan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
W
whs 已提交
157
    'affine_grid',
S
sneaxiy 已提交
158
    'sequence_reverse',
159
    'affine_channel',
M
minqiyang 已提交
160
    'hash',
D
dengkaipeng 已提交
161
    'grid_sampler',
G
gmcather 已提交
162 163
    'log_loss',
    'add_position_encoding',
Y
Yu Yang 已提交
164 165 166 167 168 169 170 171 172
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
173
       is_test=False,
174
       name=None):
Y
Yu Yang 已提交
175
    """
176
    **Fully Connected Layer**
Y
Yu Yang 已提交
177

178 179 180 181 182 183 184 185
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
186
    to the output as well.
C
caoying03 已提交
187

C
caoying03 已提交
188
    This process can be formulated as follows:
189 190 191

    .. math::

192
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
193 194 195

    In the above equation:

C
caoying03 已提交
196 197 198 199
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
200
    * :math:`Act`: The activation function.
C
caoying03 已提交
201
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
202 203

    Args:
R
ranqiu 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
219 220
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
221
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
222
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
223
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
224

225
    Returns:
F
fengjiayi 已提交
226
        Variable: The transformation result.
227 228

    Raises:
C
caoying03 已提交
229
        ValueError: If rank of the input tensor is less than 2.
230 231 232 233

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
234
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
235
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
236
    """
C
caoying03 已提交
237

C
caoying03 已提交
238
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
239 240 241 242

    dtype = helper.input_dtype()

    mul_results = []
243 244
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
245 246 247
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
248

Y
Yu Yang 已提交
249
        w = helper.create_parameter(
250
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
251
        tmp = helper.create_variable_for_type_inference(dtype)
252
        helper.append_op(
253 254 255
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
256
            outputs={"Out": tmp},
M
mozga-intel 已提交
257 258
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
259 260 261 262
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
263
    else:
X
Xin Pan 已提交
264
        pre_bias = helper.create_variable_for_type_inference(dtype)
265
        helper.append_op(
266 267 268
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
269
            attrs={"use_mkldnn": False})
270 271 272 273
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
274 275


276 277 278
def embedding(input,
              size,
              is_sparse=False,
279
              is_distributed=False,
280 281 282
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
283
    """
284 285
    **Embedding Layer**

286
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
287 288
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
289 290 291

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
292 293

    Args:
294 295 296 297 298
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
299
        is_distributed(bool): Whether to run lookup table from remote parameter server.
300 301
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
302
            with zeros whenever lookup encounters it in :attr:`input`. If
303
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
304 305
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
306
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
307

308 309 310
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
311

312 313
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
314

C
chengduoZH 已提交
315
          dict_size = len(dataset.ids)
316
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
317
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
318 319 320 321 322
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
323
    tmp = helper.create_variable_for_type_inference(dtype)
324 325
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
326 327 328 329 330
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
331 332 333 334 335
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
336 337 338
    return tmp


Y
yi.wu 已提交
339
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
340 341
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
342 343
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
344 345 346 347 348 349 350
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
351 352
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
353
    """
Y
yi.wu 已提交
354
    ${comment}
Y
Yibing Liu 已提交
355 356

    Args:
Y
yi.wu 已提交
357 358
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
359 360 361 362 363 364
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
365
        param_attr(ParamAttr|None): The parameter attribute for the learnable
366
                               hidden-hidden weights.
Y
Yibing Liu 已提交
367 368 369

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
370 371
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
372 373 374 375 376

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
377
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
378 379 380
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
381

382
                              1. `use_peepholes = False`
Y
yi.wu 已提交
383 384
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
385
                              2. `use_peepholes = True`
Y
yi.wu 已提交
386
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
387
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
388
                                 - The shape is (1 x 7D).
C
chengduo 已提交
389 390 391 392 393

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
394 395 396 397 398 399 400 401
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
402 403

    Returns:
Y
Yibing Liu 已提交
404 405
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
406

Y
Yibing Liu 已提交
407
    Examples:
Y
Yibing Liu 已提交
408 409
        .. code-block:: python

Y
Yibing Liu 已提交
410 411
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
412
                                           bias_attr=False)
Y
Yibing Liu 已提交
413 414
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
415
    """
C
chengduo 已提交
416
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
417
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
418
    size = size // 4
Y
Yu Yang 已提交
419 420 421 422 423 424 425 426
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
427 428 429 430
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
431 432 433 434 435 436 437 438 439 440
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
441 442 443

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
444
        inputs=inputs,
Y
Yu Yang 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
461 462 463 464 465 466 467 468 469 470 471
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
472 473
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
474 475 476
    """
    **Dynamic LSTMP Layer**

477 478 479 480 481 482
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
483 484 485 486 487

    The formula is as follows:

    .. math::

488
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
489

490
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
491

492
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
493

494
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
495

496
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
497

498
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
499

500
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
501

Y
Yibing Liu 已提交
502 503 504 505 506 507
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
508
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
509
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
510
          bias vector).
Y
Yibing Liu 已提交
511 512 513
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
514
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
515
    * :math:`h`: The hidden state.
516
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
517 518
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
519
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
520
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
521
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
522 523
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
524 525 526 527

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
528

Y
Yibing Liu 已提交
529 530 531 532 533 534 535 536 537 538 539 540
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
541
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
542 543
                               hidden-hidden weight and projection weight.

544 545
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
546 547
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
548 549
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
550
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
551 552 553 554 555

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
556
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
557 558 559 560 561 562
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
563
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
564 565 566
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
567
                                - The shape is (1 x 7D).
C
chengduo 已提交
568 569 570 571 572

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
573 574 575 576 577 578 579 580 581
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
582
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
583 584
                              default "tanh".
        proj_activation(str): The activation for projection output.
585
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
586 587
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
588 589
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
590 591

    Returns:
592 593 594 595
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
596 597

    Examples:
598

Y
Yibing Liu 已提交
599 600
        .. code-block:: python

601 602 603 604
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
605
            hidden_dim, proj_dim = 512, 256
606
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
607
                                     act=None, bias_attr=None)
608 609 610
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
611 612 613 614
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
615
    """
616

C
chengduo 已提交
617
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
618
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
619
    size = size // 4
Y
Yibing Liu 已提交
620 621 622 623 624 625 626 627 628 629
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
630 631 632 633 634 635
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
664 665 666 667 668 669 670 671 672
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
673
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
674

675
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
676
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
677

G
guosheng 已提交
678 679 680 681 682 683 684 685 686
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
687

G
guosheng 已提交
688
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
689

G
guosheng 已提交
690
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
691 692
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
693 694 695 696
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
697
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
698 699

    Args:
700 701
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
702
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
703
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
704 705
            is the hidden size.
        size(int): The dimension of the gru cell.
706
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
707 708
            hidden-hidden weight matrix. Note:

709
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
710
              :math:`D` is the hidden size.
711
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
712
              The first part are weights of the update gate and reset gate with
713
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
714
              candidate hidden state with shape :math:`(D \\times D)`.
715 716 717 718 719 720 721 722 723 724 725 726

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, dynamic_gru will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
727
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
728 729 730
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
731
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
732
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
733 734 735 736
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
737 738

    Returns:
G
guosheng 已提交
739
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
740
            and sequence length is the same with the input.
741

G
guosheng 已提交
742
    Examples:
743

G
guosheng 已提交
744 745
        .. code-block:: python

746 747 748 749
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
750
            hidden_dim = 512
751
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
752 753 754 755 756 757 758 759 760 761
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
762
    batch_size = input.shape[0]
G
guosheng 已提交
763
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
764
    if h_0:
G
guosheng 已提交
765
        assert h_0.shape == (
Y
Yancey 已提交
766 767 768
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
769

X
Xin Pan 已提交
770 771 772 773
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
792 793 794
def gru_unit(input,
             hidden,
             size,
795 796
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
797
             activation='tanh',
798
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
799
    """
800
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
801

802 803
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
804

805
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
806

807
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
808

809
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
810 811

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
812 813 814
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
815 816
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

817 818
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
819 820 821
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
822 823 824

    Args:
        input (Variable): The fc transformed input value of current step.
825
        hidden (Variable): The hidden value of gru unit from previous step.
826
        size (integer): The input dimension value.
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, gru_unit will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
848 849 850 851
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
852

853 854 855 856 857 858
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
859

860
             # assuming we have x_t_data and prev_hidden of size=10
861
             x_t = fluid.layers.fc(input=x_t_data, size=30)
862 863
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
864 865 866 867 868 869 870 871 872 873 874 875

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
876
    size = size // 3
Y
Yu Yang 已提交
877 878

    # create weight
879 880
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
881

X
Xin Pan 已提交
882 883 884
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
885
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
886
    # create bias
887
    if helper.bias_attr:
Y
Yu Yang 已提交
888 889 890
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
891
        inputs['Bias'] = bias
Y
Yu Yang 已提交
892 893 894

    helper.append_op(
        type='gru_unit',
895
        inputs=inputs,
Y
Yu Yang 已提交
896 897 898 899 900 901
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
902 903
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
904 905 906 907 908
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
909
@templatedoc()
910
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
911 912 913 914 915 916 917
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
918
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
919 920 921 922
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
923 924 925
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
926 927

    """
Y
Yu Yang 已提交
928 929 930 931 932 933
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
934 935 936 937 938 939 940 941
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
957
@templatedoc()
958
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
959 960 961 962 963
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
964

Y
yuyang18 已提交
965
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
966

Y
yuyang18 已提交
967 968 969
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
970
        Variable: ${viterbi_path_comment}
971

Y
yi.wu 已提交
972 973 974 975 976
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
977
    """
Y
Yu Yang 已提交
978 979
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
980 981
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
982 983 984 985 986 987 988 989 990 991
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
992
@templatedoc()
F
fengjiayi 已提交
993
def cos_sim(X, Y):
Y
Yu Yang 已提交
994
    """
Y
yi.wu 已提交
995 996 997
    ${comment}

    Args:
998 999
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1000

Y
yi.wu 已提交
1001
    Returns:
1002
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1003
    """
F
fengjiayi 已提交
1004
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1005 1006 1007
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1018 1019 1020 1021 1022
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1023
            dropout_implementation="downgrade_in_infer"):
1024 1025 1026 1027 1028
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1029
    training. The dropout operator randomly sets (according to the given dropout
1030 1031 1032 1033
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1034 1035
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1036 1037 1038 1039 1040 1041 1042
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1057

1058 1059

    Returns:
1060
        Variable: A tensor variable is the shape with `x`.
1061 1062

    Examples:
1063

1064 1065
        .. code-block:: python

1066 1067
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1068 1069
    """

F
fengjiayi 已提交
1070
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1071 1072 1073
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1074 1075 1076 1077

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1078 1079 1080 1081 1082
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1083 1084 1085 1086
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1087 1088
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1089
        })
1090 1091 1092
    return out


1093
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1094
    """
Y
Yibing Liu 已提交
1095 1096
    **Cross Entropy Layer**

1097 1098 1099
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1100 1101

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1102
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1103

Y
Yibing Liu 已提交
1104
        .. math::
Y
yangyaming 已提交
1105

Y
Yibing Liu 已提交
1106 1107 1108
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1109 1110
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1111 1112 1113 1114 1115

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1116
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1117 1118 1119
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1120 1121
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1122
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1123

Y
Yibing Liu 已提交
1124
    Args:
Y
yangyaming 已提交
1125
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1126 1127 1128 1129
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1130
        label (Variable|list): the ground truth which is a 2-D tensor. When
1131 1132 1133 1134
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1135
        soft_label (bool): a flag indicating whether to
1136
                                           interpretate the given labels as soft
1137
                                           labels. Default: `False`.
M
minqiyang 已提交
1138 1139
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1140
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1141 1142 1143 1144 1145

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1146 1147 1148 1149 1150
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1151 1152 1153 1154 1155 1156

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1157
    """
F
fengjiayi 已提交
1158
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1159
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1160 1161 1162 1163 1164
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1165 1166
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1167 1168 1169
    return out


F
fengjiayi 已提交
1170
def square_error_cost(input, label):
Y
Yu Yang 已提交
1171
    """
1172 1173
    **Square error cost layer**

1174 1175
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1190 1191
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1192 1193

    Returns:
G
guosheng 已提交
1194
        Variable: The tensor variable storing the element-wise squared error \
1195
                  difference of input and label.
1196 1197 1198 1199 1200 1201 1202 1203

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1204
    """
F
fengjiayi 已提交
1205
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1206
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1207 1208 1209 1210 1211 1212
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1213
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1214
    helper.append_op(
F
fengjiayi 已提交
1215 1216
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1217 1218 1219
    return square_out


Y
yi.wu 已提交
1220
@templatedoc()
Y
Yu Yang 已提交
1221 1222 1223 1224
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1225
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1226
    """
Y
yi.wu 已提交
1227
    **Chunk Evaluator**
Y
yi.wu 已提交
1228

Y
yangyaming 已提交
1229
    This function computes and outputs the precision, recall and
1230
    F1-score of chunk detection.
Y
yi.wu 已提交
1231

Y
yi.wu 已提交
1232 1233 1234 1235 1236 1237 1238 1239
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1240

Y
yi.wu 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1266

Y
yi.wu 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1291
    Args:
1292 1293 1294 1295 1296
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1297

Y
yi.wu 已提交
1298
    Returns:
Y
update  
yi.wu 已提交
1299 1300 1301
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1302

Y
yi.wu 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1315
    """
F
fengjiayi 已提交
1316
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1317 1318

    # prepare output
X
Xin Pan 已提交
1319 1320 1321 1322 1323 1324 1325
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1326 1327 1328 1329 1330 1331 1332 1333

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1334 1335 1336 1337
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1338 1339 1340
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1341 1342
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1343
        })
1344 1345
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1346 1347


1348
@templatedoc()
Y
Yu Yang 已提交
1349 1350 1351 1352 1353 1354 1355
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1356 1357
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1358 1359 1360 1361
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1362 1363 1364 1365 1366 1367 1368

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1382

1383 1384
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1385 1386 1387 1388 1389 1390 1391
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1392
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1403
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1404 1405 1406 1407 1408 1409
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1410
def sequence_softmax(input, use_cudnn=False, name=None):
1411 1412 1413
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1414
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1431 1432 1433
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1434

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1446 1447
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1448
    softmax_out = helper.create_variable_for_type_inference(dtype)
1449 1450 1451 1452 1453 1454 1455 1456
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1457
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1458
    """
1459
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1460
    has the same shape as the input.
Q
qiaolongfei 已提交
1461

1462 1463 1464 1465 1466 1467
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1468
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1469 1470 1471 1472 1473 1474 1475

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1476
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1477 1478 1479 1480 1481 1482 1483 1484

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1485 1486 1487
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1500 1501
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1502
    softmax_out = helper.create_variable_for_type_inference(dtype)
1503 1504 1505 1506 1507 1508 1509 1510
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1511 1512 1513
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1514 1515
           stride=1,
           padding=0,
1516
           dilation=1,
Y
Yu Yang 已提交
1517 1518 1519
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1520
           use_cudnn=True,
1521 1522
           act=None,
           name=None):
Y
Yu Yang 已提交
1523
    """
C
chengduoZH 已提交
1524
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1525 1526
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1527
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1528 1529 1530 1531 1532 1533 1534
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1535 1536 1537
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1538

1539
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1540

C
chengduoZH 已提交
1541 1542
    .. math::

C
refine  
chengduoZH 已提交
1543
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1544

T
tensor-tang 已提交
1545
    Where:
C
chengduoZH 已提交
1546

1547 1548 1549 1550 1551
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1552
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1553 1554 1555

    Example:

1556 1557
        - Input:

W
weixing02 已提交
1558
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1559

W
weixing02 已提交
1560
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1561

1562
        - Output:
T
tensor-tang 已提交
1563

W
weixing02 已提交
1564
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1565

C
chengduoZH 已提交
1566
        Where
1567 1568

        .. math::
C
chengduoZH 已提交
1569

W
weixing02 已提交
1570 1571
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1572 1573

    Args:
1574
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1575
        num_filters(int): The number of filter. It is as same as the output
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1604 1605
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1606 1607
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1608
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1609
            will be named automatically. Default: None
C
chengduoZH 已提交
1610 1611

    Returns:
G
guosheng 已提交
1612
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1613 1614
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1615
    Raises:
1616 1617
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1618

C
chengduoZH 已提交
1619 1620 1621
    Examples:
        .. code-block:: python

1622 1623
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1624 1625 1626
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1627
    assert param_attr is not False, "param_attr should not be False here."
1628
    l_type = 'conv2d'
X
xzl 已提交
1629 1630
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1631
        l_type = 'depthwise_conv2d'
1632 1633 1634 1635

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1636 1637 1638 1639 1640
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1641
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1642

C
chengduoZH 已提交
1643 1644 1645
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1646
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1647

C
chengduoZH 已提交
1648 1649
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1650 1651

    input_shape = input.shape
M
minqiyang 已提交
1652
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1653 1654

    def _get_default_param_initializer():
C
chengduo 已提交
1655 1656
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1657 1658 1659 1660 1661 1662 1663 1664
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1665
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1666 1667

    helper.append_op(
1668
        type=l_type,
Y
Yu Yang 已提交
1669 1670 1671 1672 1673
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1674 1675 1676
        attrs={
            'strides': stride,
            'paddings': padding,
1677
            'dilations': dilation,
C
chengduoZH 已提交
1678
            'groups': groups,
1679
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1680
            'use_mkldnn': False
C
chengduoZH 已提交
1681
        })
Y
Yu Yang 已提交
1682 1683 1684 1685 1686 1687

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1705 1706 1707 1708 1709 1710
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1720 1721
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1722 1723 1724
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1725
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1751
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1752 1753
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1754
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1755 1756
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1757
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1758 1759
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1760
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1761 1762 1763 1764 1765 1766
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1777 1778
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1779 1780
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1781
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1782
            will be named automatically. Default: None.
C
chengduoZH 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1795 1796
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1797 1798 1799
    """

    l_type = 'conv3d'
C
chengduo 已提交
1800
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1811
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1825 1826 1827
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1828 1829 1830 1831 1832 1833 1834 1835
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1836
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1851
            'use_mkldnn': False
C
chengduoZH 已提交
1852 1853
        })

1854
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1855 1856 1857 1858

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1859
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1860
    """
Y
yangyaming 已提交
1861 1862 1863
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1875
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1876 1877 1878 1879 1880
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1881
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1882 1883 1884 1885 1886 1887 1888

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1889 1890
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1891

L
Luo Tao 已提交
1892 1893
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1894
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1895
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1896
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1897 1898 1899 1900 1901 1902 1903

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1904

Y
yangyaming 已提交
1905
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1906 1907 1908 1909 1910
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1911 1912
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1913
    """
F
fengjiayi 已提交
1914
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1915
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1916 1917
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1918 1919 1920 1921 1922 1923

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1924 1925
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1926

Y
yangyaming 已提交
1927 1928 1929 1930 1931
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1932 1933 1934
    return pool_out


C
add doc  
chengduoZH 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1954
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1955 1956 1957 1958 1959
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1960
def sequence_first_step(input):
L
Luo Tao 已提交
1961
    """
L
Luo Tao 已提交
1962
    This function gets the first step of sequence.
L
Luo Tao 已提交
1963 1964 1965 1966

    .. code-block:: text

       x is a 1-level LoDTensor:
1967
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1968 1969 1970 1971 1972
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1973
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1974
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1975

L
Luo Tao 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1985

Y
yangyaming 已提交
1986
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1987 1988 1989
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1990 1991 1992
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1993
def sequence_last_step(input):
L
Luo Tao 已提交
1994
    """
L
Luo Tao 已提交
1995
    This function gets the last step of sequence.
L
Luo Tao 已提交
1996 1997 1998 1999

    .. code-block:: text

       x is a 1-level LoDTensor:
2000
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2001 2002 2003 2004 2005
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2006
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2007
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2008

L
Luo Tao 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2018

Y
yangyaming 已提交
2019
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2020 2021 2022
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2023 2024 2025
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2026 2027 2028 2029
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2030
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2031 2032 2033 2034 2035
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2036

Y
Yibing Liu 已提交
2037 2038
	- Case:

2039
            Given the input Variable **input**:
2040

2041 2042 2043
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2044

2045
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2046

2047
            the output Variable will be
2048

2049 2050 2051
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2052 2053

    NOTE: The first dimension size of **input**, **offset** and **length**
2054
          should be equal. The **offset** should start from 0.
2055

Y
Yibing Liu 已提交
2056
    Args:
2057
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2058
                         sequences.
Y
Yibing Liu 已提交
2059 2060 2061 2062 2063 2064
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2065
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2076
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2077 2078 2079 2080
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2081
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2096
@templatedoc()
Y
Yu Yang 已提交
2097
def pool2d(input,
C
chengduoZH 已提交
2098 2099
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2100 2101
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2102
           global_pooling=False,
C
chengduoZH 已提交
2103
           use_cudnn=True,
2104
           ceil_mode=False,
C
caoying03 已提交
2105
           name=None):
Y
Yu Yang 已提交
2106
    """
F
fengjiayi 已提交
2107
    ${comment}
2108 2109

    Args:
2110 2111 2112
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2113
                          feature, and W is the width of the feature.
2114
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2115
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2116
        pool_type: ${pooling_type_comment}
2117 2118
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2119 2120 2121
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2122
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2123 2124
                        layer will be named automatically.

2125
    Returns:
F
fengjiayi 已提交
2126
        Variable: The pooling result.
F
fengjiayi 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2140 2141 2142 2143
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2144
                            global_pooling=False)
Y
Yu Yang 已提交
2145 2146 2147 2148 2149
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2150

C
chengduoZH 已提交
2151 2152 2153 2154 2155
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2156 2157 2158 2159
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2160 2161
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2162

C
Add doc  
chengduoZH 已提交
2163
    l_type = 'pool2d'
2164 2165

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2166
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2167
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2168 2169

    helper.append_op(
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2181
            "use_mkldnn": False
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2198
    pooling configurations mentioned in input parameters.
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2211

2212
    Returns:
2213
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2214 2215 2216 2217 2218
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2219

C
chengduoZH 已提交
2220 2221 2222 2223 2224
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2225 2226 2227
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2228

C
chengduoZH 已提交
2229 2230
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2231

2232 2233
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2234
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2235
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2236 2237

    helper.append_op(
2238
        type=l_type,
Y
Yu Yang 已提交
2239 2240 2241 2242 2243 2244 2245
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2246
            "paddings": pool_padding,
2247
            "use_cudnn": use_cudnn,
2248
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2249
            "use_mkldnn": False
Y
Yu Yang 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2262
               data_layout='NCHW',
Y
Yang Yang 已提交
2263
               in_place=False,
2264 2265
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2266
               moving_variance_name=None,
2267 2268
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2269
    """
Q
qiaolongfei 已提交
2270 2271 2272 2273
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2274

Q
qiaolongfei 已提交
2275
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2276

Q
qiaolongfei 已提交
2277 2278
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2279 2280 2281
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2294 2295

    Args:
Q
qiaolongfei 已提交
2296
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2297 2298 2299 2300
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2301 2302 2303 2304 2305 2306 2307 2308
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2309
        data_layout(string, default NCHW): NCHW|NHWC
2310
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2311 2312 2313 2314
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2315
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2316
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2317 2318

    Returns:
Q
qiaolongfei 已提交
2319
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2320 2321 2322 2323 2324 2325 2326

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2327
    """
C
chengduo 已提交
2328
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2351
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2352

2353 2354
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2355 2356 2357
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2358
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2359
        shape=param_shape,
2360 2361 2362 2363 2364 2365 2366
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2367
            trainable=False,
W
wanghaoshuang 已提交
2368
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2369
        shape=param_shape,
2370 2371
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2372 2373 2374 2375 2376 2377

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2378 2379 2380 2381
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2382

X
Xin Pan 已提交
2383 2384
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2402 2403 2404 2405
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2406
            "use_mkldnn": False,
2407
            "fuse_with_relu": fuse_with_relu
2408
        })
Y
Yu Yang 已提交
2409 2410 2411 2412

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2413
@templatedoc()
G
guosheng 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2424
    ${comment}
G
guosheng 已提交
2425 2426 2427

    The formula is as follows:

Y
yuyang18 已提交
2428
    ..  math::
G
guosheng 已提交
2429 2430 2431 2432 2433 2434 2435

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2436 2437 2438 2439 2440 2441 2442 2443
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2444

G
guosheng 已提交
2445 2446
    Args:
        input(Variable): The input tensor variable.
2447
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2448
            normalization. Default True.
2449
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2450 2451
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2452
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2453
            Default 1.
2454
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2455
            division by zero. Default 1e-05.
G
guosheng 已提交
2456
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2457 2458
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2459 2460
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2461
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2462 2463
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2464
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2465
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2466
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2467 2468 2469
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2470 2471

    Returns:
Y
yuyang18 已提交
2472
        ${y_comment}
G
guosheng 已提交
2473 2474 2475

    Examples:

Y
yuyang18 已提交
2476 2477 2478
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2494
    if shift:
G
guosheng 已提交
2495 2496 2497 2498 2499 2500
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2501 2502 2503 2504 2505
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2521 2522 2523 2524
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2525 2526 2527
                     padding=0,
                     stride=1,
                     dilation=1,
2528
                     groups=None,
C
caoying03 已提交
2529
                     param_attr=None,
2530
                     bias_attr=None,
C
chengduoZH 已提交
2531
                     use_cudnn=True,
2532
                     act=None,
C
caoying03 已提交
2533
                     name=None):
Y
Yu Yang 已提交
2534
    """
2535 2536 2537 2538 2539 2540 2541 2542
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2543 2544
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2545 2546 2547
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2548 2549 2550 2551 2552

    For each input :math:`X`, the equation is:

    .. math::

2553
        Out = \sigma (W \\ast X + b)
2554

2555
    Where:
2556 2557 2558

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2559 2560 2561 2562
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2563

2564 2565 2566 2567
    Example:

        - Input:

2568
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2569

2570
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2571 2572 2573

        - Output:

2574
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2575 2576

        Where
Y
Yu Yang 已提交
2577

2578 2579
        .. math::

2580 2581 2582 2583
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2584 2585

    Args:
2586 2587 2588 2589
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2590 2591 2592 2593
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2622
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2623 2624 2625
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2626
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2627
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2628 2629

    Returns:
2630
        Variable: The tensor variable storing the convolution transpose result.
2631 2632

    Raises:
2633 2634
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2635 2636 2637 2638

    Examples:
       .. code-block:: python

2639 2640
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2641
    """
C
chengduo 已提交
2642
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2643 2644 2645 2646 2647 2648 2649 2650
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2651 2652 2653
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2654 2655 2656
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2657

C
chengduoZH 已提交
2658 2659
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2660

Y
Yu Yang 已提交
2661 2662 2663 2664 2665
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2666

Y
Yu Yang 已提交
2667 2668
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2669

C
chengduoZH 已提交
2670
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2671
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2672
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2673
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2674
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2675 2676 2677
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2678

2679 2680 2681 2682 2683 2684 2685
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2686
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2687
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2688

Y
Yu Yang 已提交
2689 2690 2691
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2692
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2693
    helper.append_op(
2694
        type=op_type,
Y
Yu Yang 已提交
2695 2696
        inputs={'Input': [input],
                'Filter': [img_filter]},
2697
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2698
        attrs={
2699
            'output_size': output_size,
2700 2701 2702 2703 2704
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2705 2706
        })

2707 2708 2709
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2710 2711


2712
def conv3d_transpose(input,
Y
Yu Yang 已提交
2713 2714 2715
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2716 2717 2718
                     padding=0,
                     stride=1,
                     dilation=1,
2719
                     groups=None,
C
caoying03 已提交
2720
                     param_attr=None,
2721
                     bias_attr=None,
C
chengduoZH 已提交
2722
                     use_cudnn=True,
2723
                     act=None,
C
caoying03 已提交
2724
                     name=None):
Y
Yu Yang 已提交
2725
    """
2726
    **Convlution3D transpose layer**
2727

2728
    The convolution3D transpose layer calculates the output based on the input,
2729
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2730 2731 2732 2733 2734 2735
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2736 2737 2738
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2739 2740 2741 2742 2743

    For each input :math:`X`, the equation is:

    .. math::

2744
        Out = \sigma (W \\ast X + b)
2745 2746 2747

    In the above equation:

2748 2749
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2750 2751 2752 2753
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2754

2755 2756 2757 2758
    Example:

        - Input:

2759
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2760

2761
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2762 2763 2764

        - Output:

2765
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2766 2767

        Where
Y
Yu Yang 已提交
2768

2769 2770
        .. math::

2771 2772 2773
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2774 2775

    Args:
2776
        input(Variable): The input image with [N, C, D, H, W] format.
2777 2778 2779
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2780
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2781 2782
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2783
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2784 2785 2786
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2787 2788
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2789
        stride(int|tuple): The stride size. If stride is a tuple, it must
2790 2791
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2792
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2793 2794 2795
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2796 2797 2798 2799 2800
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2801 2802 2803 2804 2805 2806 2807 2808 2809
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2810 2811
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2812 2813
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2814 2815
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2816 2817

    Returns:
2818
        Variable: The tensor variable storing the convolution transpose result.
2819 2820

    Raises:
2821 2822
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2823 2824 2825 2826

    Examples:
       .. code-block:: python

2827 2828
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2829
    """
C
chengduo 已提交
2830
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2831 2832
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2833
    if not isinstance(input, Variable):
2834
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2835 2836
    input_channel = input.shape[1]

2837 2838 2839
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2840

C
chengduoZH 已提交
2841 2842 2843
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2844 2845 2846 2847 2848 2849
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2850 2851 2852
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2853

2854
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2855
                         padding[0] - 1) // dilation[0] + 1
2856
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2857
                         padding[1] - 1) // dilation[1] + 1
2858
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2859
                         padding[2] - 1) // dilation[2] + 1
2860
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2861
    else:
2862 2863
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2864

2865
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2866
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2867 2868 2869
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2870
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2871
    helper.append_op(
2872
        type=l_type,
Y
Yu Yang 已提交
2873 2874
        inputs={'Input': [input],
                'Filter': [img_filter]},
2875
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2876 2877 2878 2879
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2880
            'groups': groups,
C
chengduoZH 已提交
2881 2882
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2883

2884 2885
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2886
    return out
Y
yangyaming 已提交
2887 2888


Y
yangyaming 已提交
2889
def sequence_expand(x, y, ref_level=-1, name=None):
2890
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2891 2892 2893 2894
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2895 2896 2897 2898 2899

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2900
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2901
                x.data = [[a], [b], [c], [d]]
2902 2903 2904
                x.dims = [4, 1]

            y is a LoDTensor:
2905 2906
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2907

Y
yangyaming 已提交
2908
            ref_level: 0
2909

Y
yangyaming 已提交
2910
            then output is a 1-level LoDTensor:
2911
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2912
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2913 2914 2915 2916
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2917
                x.data = [[a], [b], [c]]
2918 2919 2920
                x.dims = [3, 1]

            y is a LoDTensor:
2921
                y.lod = [[2, 0, 3]]
2922

Y
yangyaming 已提交
2923
            ref_level: -1
2924

Y
yangyaming 已提交
2925 2926 2927
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2928 2929 2930
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2931 2932
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2933
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2934
                        will be named automatically.
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2945
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2946
    """
Y
yangyaming 已提交
2947
    helper = LayerHelper('sequence_expand', input=x, **locals())
2948
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2949
    tmp = helper.create_variable_for_type_inference(dtype)
2950
    helper.append_op(
Y
yangyaming 已提交
2951 2952 2953 2954 2955
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2956
    return tmp
2957 2958


C
chengduo 已提交
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3015
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3016 3017 3018 3019 3020 3021 3022 3023
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3024
@templatedoc()
3025
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3026 3027 3028 3029 3030
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3031 3032 3033
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3034
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3035 3036 3037 3038
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3039 3040 3041
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3042

F
fengjiayi 已提交
3043
    Returns:
M
minqiyang 已提交
3044
        Variable: The padded sequence batch and the original lengths before
3045
                  padding. All sequences has the same length.
M
minqiyang 已提交
3046

F
fengjiayi 已提交
3047 3048 3049 3050 3051 3052 3053
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3054 3055
            pad_value = fluid.layers.assign(
                input=numpy.array([0], dtype=numpy.float32))
F
fengjiayi 已提交
3056 3057 3058 3059 3060
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3061 3062
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3063 3064 3065 3066

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3067 3068 3069 3070 3071 3072
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3073 3074
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3075
        attrs={'padded_length': maxlen})
3076
    return out, length
F
fengjiayi 已提交
3077 3078


3079
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3080
    """
3081
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3082

3083 3084
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3094 3095 3096
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3097
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3098 3099 3100 3101 3102 3103

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3104
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3105 3106 3107 3108 3109 3110

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3111 3112
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3127
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3139 3140 3141 3142 3143 3144 3145 3146 3147
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3148 3149
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3150 3151 3152

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3153 3154

    This layer does the search in beams for one time step. Specifically, it
3155 3156 3157 3158 3159 3160
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3161

3162 3163 3164 3165 3166 3167 3168 3169
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3170

3171
    Args:
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3197

3198
    Returns:
3199 3200
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3201 3202 3203 3204

    Examples:
        .. code-block:: python

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3222 3223 3224 3225
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3226 3227 3228
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3229 3230 3231 3232 3233

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3234
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3252 3253 3254 3255 3256 3257 3258
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3259

3260 3261 3262 3263 3264 3265 3266 3267 3268
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3269

3270 3271 3272 3273 3274 3275
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3276

3277 3278 3279 3280 3281 3282 3283 3284
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3285 3286
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3302 3303 3304 3305
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3306
              param_attr=None,
C
caoying03 已提交
3307 3308
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3309 3310 3311 3312
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3313
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3314

3315
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3316

3317
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3318

3319
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3320 3321 3322

            h_t & = o_t tanh(c_t)

3323 3324 3325 3326 3327 3328
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3329 3330 3331

        .. math::

3332
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3333 3334 3335 3336 3337 3338 3339 3340

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3341
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3342 3343

    Args:
Y
yangyaming 已提交
3344 3345 3346 3347 3348 3349
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3350
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3363 3364
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3365 3366

    Returns:
Y
yangyaming 已提交
3367
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3368 3369

    Raises:
3370 3371 3372 3373
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3374 3375 3376 3377 3378 3379

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3380
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3381
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3382
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3399
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3400 3401 3402 3403
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3404 3405
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3406 3407 3408
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3409
    size = cell_t_prev.shape[1]
3410
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3411 3412
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3413
                param_attr=param_attr,
3414
                bias_attr=bias_attr)
Y
yangyaming 已提交
3415
    dtype = x_t.dtype
X
Xin Pan 已提交
3416 3417
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3427
    return h, c
G
guosheng 已提交
3428 3429


C
caoying03 已提交
3430
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3431
    """
Y
yangyaming 已提交
3432
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3433 3434 3435

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3436
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3437 3438
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3439 3440
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3441
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3442
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3443
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3444 3445
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3446 3447 3448

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3449

G
guosheng 已提交
3450 3451 3452 3453 3454 3455
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3456
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3457 3458 3459 3460
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3461 3462 3463 3464

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3465
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3466 3467 3468
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3469 3470
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3471
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3472 3473
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3474 3475 3476 3477 3478
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3479
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3480 3481 3482 3483
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3484 3485


C
caoying03 已提交
3486
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3487
    """
Y
Yibing Liu 已提交
3488
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3489 3490 3491

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3492 3493 3494
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3495
            must be in the range :math:`[-rank(input), rank(input))`. If
3496
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3497
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3498 3499
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3500
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3501
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3502
                       will be named automatically.
G
guosheng 已提交
3503 3504

    Returns:
Y
Yibing Liu 已提交
3505
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3506

G
guosheng 已提交
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3517 3518
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3519 3520 3521 3522 3523 3524 3525

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3526 3527
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3528
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3529 3530
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3531 3532 3533 3534 3535
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3536
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3537 3538 3539 3540
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3541 3542


C
caoying03 已提交
3543
def reduce_max(input, dim=None, keep_dim=False, name=None):
3544
    """
Y
yangyaming 已提交
3545
    Computes the maximum of tensor elements over the given dimension.
3546 3547 3548

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3549
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3550 3551 3552
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3553
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3554 3555
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3556
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3557 3558
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3559 3560 3561

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3562

3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3574 3575 3576 3577 3578 3579 3580

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3581 3582
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3583
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3584 3585
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3586 3587 3588 3589 3590
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3591
            'dim': dim if dim != None else [0],
3592 3593 3594 3595 3596 3597
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3598
def reduce_min(input, dim=None, keep_dim=False, name=None):
3599
    """
Y
yangyaming 已提交
3600
    Computes the minimum of tensor elements over the given dimension.
3601 3602 3603

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3604
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3605 3606 3607
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3608
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3609 3610
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3611
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3612 3613
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3614 3615 3616

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3617

3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3629 3630 3631 3632 3633 3634 3635

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3636 3637
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3638
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3639 3640
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3641 3642 3643 3644 3645
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3646
            'dim': dim if dim != None else [0],
3647 3648 3649 3650
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3651 3652


3653 3654 3655 3656 3657 3658
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3659
        dim (list|int|None): The dimensions along which the product is performed. If
3660 3661
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3662 3663
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3664 3665 3666
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3667
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3668
            layer will be named automatically.
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3683
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3684
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3685 3686 3687 3688 3689 3690 3691

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3692 3693
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3694
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3695 3696
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3697 3698 3699 3700 3701
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3702
            'dim': dim if dim != None else [0],
3703 3704 3705 3706 3707 3708
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3709
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3710
    """
C
caoying03 已提交
3711
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3712 3713 3714

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3715 3716 3717 3718 3719
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3720
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3721
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3722
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3723 3724
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3725 3726

    Returns:
D
dzhwinter 已提交
3727
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3728 3729 3730 3731 3732 3733 3734 3735 3736

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3737 3738
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3754
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3777
    .. math::
3778 3779

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3780 3781 3782 3783 3784

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3785
        x(Variable|list): The input tensor to l2_normalize layer.
3786
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3787 3788
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3789
        epsilon(float): The epsilon value is used to avoid division by zero, \
3790
            the defalut value is 1e-10.
3791
        name(str|None): A name for this layer(optional). If set None, the layer \
3792
            will be named automatically.
C
caoying03 已提交
3793 3794

    Returns:
3795
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3796 3797

    Examples:
3798

C
caoying03 已提交
3799 3800
        .. code-block:: python

3801 3802 3803 3804
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3805 3806
    """

F
fengjiayi 已提交
3807 3808
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3809 3810
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3811 3812
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3813
    helper.append_op(
3814 3815 3816 3817
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3818
        attrs={
3819 3820
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3821 3822
        })
    return out
3823 3824


S
sneaxiy 已提交
3825
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3826
    """
Y
ying 已提交
3827 3828 3829 3830
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3831

C
chengduoZH 已提交
3832
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3833
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3834

3835 3836 3837 3838 3839
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3840
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3841

C
chengduoZH 已提交
3842
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3843
      performs in the following way.
G
guosheng 已提交
3844

3845
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3846
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3847
        last two dimensions and a batched matrix multiply supporting broadcast
3848
        applies on the two tensors.
G
guosheng 已提交
3849

Y
ying 已提交
3850 3851
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3852
    removed after matrix multiplication.
G
guosheng 已提交
3853 3854 3855

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3856 3857 3858
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3859
        alpha (float): The scale of output. Default 1.0.
3860
        name(str|None): A name for this layer(optional). If set None, the layer
3861
            will be named automatically.
G
guosheng 已提交
3862 3863

    Returns:
3864
        Variable: The product Tensor variable.
G
guosheng 已提交
3865

G
guosheng 已提交
3866 3867 3868
    Examples:
        .. code-block:: python

3869
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3870 3871
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3872

3873 3874
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3875

3876 3877
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3878

3879 3880
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3881 3882 3883 3884

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3885 3886
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3887

Y
ying 已提交
3888
            # x: [M], y: [N]
3889
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3890
    """
Y
ying 已提交
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3903
            y_shape = y_shape + [1]
Y
ying 已提交
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3920
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3921
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3922
    helper.append_op(
3923 3924 3925 3926
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3927 3928 3929
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3930
            'alpha': float(alpha),
S
sneaxiy 已提交
3931
        })
3932
    return out
3933 3934


3935
def topk(input, k, name=None):
Q
qingqing01 已提交
3936 3937 3938 3939
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3940
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3941 3942 3943 3944 3945 3946
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3968 3969 3970
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3971
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3972
                 of input.
3973
        name(str|None): A name for this layer(optional). If set None, the layer
3974
                       will be named automatically.
F
fengjiayi 已提交
3975
                       Default: None
Q
qingqing01 已提交
3976 3977

    Returns:
3978 3979 3980
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3981
        within the last dimension of input.
Q
qingqing01 已提交
3982

F
fengjiayi 已提交
3983 3984
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3985 3986 3987 3988 3989 3990 3991

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
3992 3993
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4005
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4006
    """
Y
ying 已提交
4007 4008 4009 4010 4011 4012 4013 4014 4015
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4016

Y
ying 已提交
4017
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4018

4019
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4020 4021
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4022
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4023

4024
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4025 4026
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4027

4028 4029 4030
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4031
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4032
                          the length of reference string.
4033
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4034
                                     calculating edit distance.
4035
        name (str): The name of this layer. It is optional.
4036

W
wanghaoshuang 已提交
4037
    Returns:
W
wanghaoshuang 已提交
4038
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4039 4040 4041 4042 4043

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4044
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4045
            cost = fluid.layers.edit_distance(input=x,label=y)
4046
    """
4047
    helper = LayerHelper("edit_distance", **locals())
4048

4049
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4050
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4051 4052
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4053 4054 4055 4056 4057

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4058
            attrs={"tokens": ignored_tokens})
4059 4060 4061 4062 4063
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4064
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4065
            attrs={"tokens": ignored_tokens})
4066 4067
        label = erased_label

4068
    # edit distance op
X
Xin Pan 已提交
4069 4070
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4071 4072 4073 4074
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4075 4076
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4077 4078
        attrs={"normalized": normalized})

4079
    return edit_distance_out, sequence_num
4080 4081 4082 4083 4084


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4085

Y
ying 已提交
4086 4087 4088 4089
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4107
        input.lod = [[4, 4]]
4108 4109 4110 4111 4112 4113 4114

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4115
        output.lod = [[2, 1]]
4116 4117 4118

    Args:

Y
ying 已提交
4119 4120 4121 4122 4123 4124 4125 4126 4127
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4128
        name (str): The name of this layer. It is optional.
4129 4130

    Returns:
4131
        Variable: CTC greedy decode result. If all the sequences in result were
4132
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4133 4134 4135 4136 4137

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4138

4139
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4140
    """
4141
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4142
    _, topk_indices = topk(input, k=1)
4143 4144

    # ctc align op
X
Xin Pan 已提交
4145
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4146 4147 4148
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4149
        outputs={"Output": [ctc_out]},
4150 4151
        attrs={"merge_repeated": True,
               "blank": blank})
4152
    return ctc_out
4153 4154


F
fengjiayi 已提交
4155
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4156
    """
4157 4158
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4159
    to compute Connectionist Temporal Classification (CTC) loss.
4160 4161
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4162 4163 4164
    input tensor.

    Args:
4165
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4166 4167 4168 4169
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4170
       label (Variable): The ground truth of variable-length sequence,
4171 4172 4173
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4174 4175
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4176 4177 4178
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4179
         follewed by a mean_op.
W
wanghaoshuang 已提交
4180 4181

    Returns:
4182 4183
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4184 4185

    Examples:
4186

W
wanghaoshuang 已提交
4187
        .. code-block:: python
4188

4189 4190 4191
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4192 4193

    """
F
fengjiayi 已提交
4194
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4195 4196
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4197 4198 4199 4200 4201 4202 4203 4204 4205
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4221 4222 4223
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4224 4225 4226 4227 4228
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4229

4230
            out.lod  = [[0, 1, 3]]
4231 4232 4233 4234

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4235 4236 4237 4238 4239 4240 4241
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4242 4243 4244

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4245 4246

    Returns:
4247

4248 4249 4250 4251 4252
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4253
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4254
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4255 4256
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4257
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4258 4259 4260 4261 4262 4263
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4264 4265


4266 4267 4268 4269
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4270 4271 4272 4273 4274 4275
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4276 4277
        num_neg_samples=None,
        name=None):
4278 4279 4280 4281 4282 4283 4284
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4285 4286
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4287
            sample is 1.0.
C
chengduo 已提交
4288 4289 4290 4291 4292 4293 4294 4295 4296
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4297
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4298 4299
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4300

4301
    Returns:
Y
Yibing Liu 已提交
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4329
    """
Y
Yang Yu 已提交
4330 4331 4332
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4333 4334

    dim = input.shape[1]
Y
Yang Yu 已提交
4335 4336 4337 4338 4339 4340
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4354 4355 4356
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4357

Y
Yang Yu 已提交
4358 4359 4360 4361 4362 4363 4364 4365 4366
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4367 4368 4369

    helper.append_op(
        type='nce',
C
chengduo 已提交
4370
        inputs=inputs,
Y
Yang Yu 已提交
4371 4372 4373 4374 4375 4376
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4377
    return cost / (num_neg_samples + 1)
4378 4379


C
chengduo 已提交
4380 4381 4382 4383 4384 4385
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4386 4387
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4388
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4389 4390 4391 4392 4393 4394 4395 4396 4397
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4398

W
weixing02 已提交
4399
    Args:
M
minqiyang 已提交
4400
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4401 4402 4403 4404 4405
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4417 4418 4419 4420 4421 4422 4423 4424

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4425 4426 4427
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4428 4429 4430 4431
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4432 4433
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4434 4435
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4436
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4437 4438 4439 4440 4441
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4442 4443 4444 4445 4446 4447 4448 4449
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4450 4451
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4452
        inputs=inputs,
W
weixing02 已提交
4453 4454 4455 4456 4457 4458
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4459
def transpose(x, perm, name=None):
Y
ying 已提交
4460 4461 4462 4463 4464 4465 4466
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4467 4468 4469
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4470 4471 4472 4473 4474 4475 4476

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4477 4478 4479 4480
            # use append_batch_size=False to avoid prepending extra 
            # batch size in shape
            x = fluid.layers.data(name='x', shape=[5, 10, 15], 
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4481
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4482 4483
    """

Y
fix ci.  
ying 已提交
4484
    if len(perm) != len(x.shape):
Y
ying 已提交
4485 4486 4487
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4488 4489 4490 4491 4492 4493
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4494 4495

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4496 4497
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4498
    helper.append_op(
4499
        type='transpose2',
Y
fix ci.  
ying 已提交
4500
        inputs={'X': [x]},
4501 4502
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4503 4504
        attrs={'axis': perm})
    return out
4505 4506


4507 4508 4509 4510 4511 4512 4513
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4514
    """
4515 4516 4517 4518 4519 4520 4521
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4550 4551 4552 4553 4554 4555 4556 4557 4558
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4559 4560 4561
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4562 4563 4564 4565 4566
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4594 4595 4596
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4609
            output.dims = {8, 8}
4610

4611
            output.lod = [[4, 4]]
4612

D
dzhwinter 已提交
4613
     Examples:
4614 4615 4616

        .. code-block:: python

4617 4618
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4619 4620

    """
W
wanghaoshuang 已提交
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4631 4632 4633 4634 4635 4636 4637
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4638
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4639
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4640
    helper.append_op(
4641
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4642
    return out
4643 4644


Y
yuyang18 已提交
4645
@templatedoc()
4646
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4647 4648
    """
    ${comment}
4649 4650

    Args:
Y
yuyang18 已提交
4651
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4652 4653
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4654 4655 4656 4657 4658
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4659
        ${out_comment}.
4660 4661

    Examples:
Y
yuyang18 已提交
4662 4663 4664 4665
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4666 4667 4668 4669 4670 4671
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4672
    out = helper.create_variable_for_type_inference(dtype)
4673 4674 4675 4676 4677
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4678
    return helper.append_activation(out)
4679 4680


Y
yuyang18 已提交
4681
@templatedoc()
4682 4683
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4684 4685 4686 4687 4688 4689 4690
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4691 4692

    Args:
Y
yuyang18 已提交
4693 4694
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4695 4696

    Returns:
Y
yuyang18 已提交
4697
        ${out_comment}.
4698 4699
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4700 4701 4702 4703 4704

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4705
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4706 4707 4708 4709 4710 4711
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4712 4713


4714 4715 4716 4717
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4718 4719
    """
    **Softmax With Cross Entropy Operator.**
4720

4721 4722 4723 4724
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4725

4726 4727 4728
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4729

4730 4731 4732
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4733

4734
    The equation is as follows:
4735

4736
    1) Hard label (one-hot label, so every sample has exactly one class)
4737

4738 4739 4740 4741
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4742

4743 4744 4745
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4746

4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4759 4760
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4761 4762
                            if soft_label is set to False. Default: -100

4763 4764 4765 4766 4767 4768 4769 4770 4771
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4772 4773
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4774 4775
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4776 4777
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4778 4779 4780 4781 4782 4783
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4784 4785
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4786 4787 4788 4789 4790
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4791 4792
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4793
    For each instance, it computes the smooth L1 loss element by element first
4794
    and then sums all the losses. So the shape of ouput Variable is
4795
    [batch_size, 1].
4796

4797 4798
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4799
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4800
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4801
            L1 loss op with same shape as :attr:`x`.
4802
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4803 4804
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4805
            by this tensor element by element.
4806
        outside_weight (Variable|None): A tensor with rank at least 2. This
4807 4808
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4809
            element by element.
4810
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4811 4812
           scalar with default value 1.0.

4813
    Returns:
4814
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4815 4816 4817 4818 4819

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4820 4821
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4822
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4823
            out = fluid.layers.smooth_l1(x=fc, y=label)
4824
    """
4825

4826
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4827 4828
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4841 4842 4843 4844


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4845
    This layer creates the one-hot representations for input indices.
4846 4847

    Args:
Y
Yibing Liu 已提交
4848 4849
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4850 4851

    Returns:
Y
Yibing Liu 已提交
4852
        Variable: The one-hot representations of input.
4853 4854

    Examples:
C
caoying03 已提交
4855
        .. code-block:: python
4856

Y
Yibing Liu 已提交
4857 4858
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4859 4860
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4861
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4862 4863 4864 4865 4866 4867
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4868 4869


Y
Yu Yang 已提交
4870
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4871
    """
Y
yi.wu 已提交
4872 4873 4874
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4875 4876 4877 4878 4879 4880

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4881 4882
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4883 4884 4885 4886 4887 4888

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4889 4890
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4891 4892
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4893 4894 4895 4896 4897
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4898
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4899
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4900 4901
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4902 4903
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4904 4905 4906
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4907 4908


4909
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4910
    """
C
caoying03 已提交
4911 4912
    Gives a new shape to the input Tensor without changing its data.

4913 4914 4915 4916 4917
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4918

4919
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4920

4921 4922 4923 4924
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4925
    2. 0 means the actual dimension value is going to be copied from the
4926 4927 4928 4929
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4930 4931

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4932
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4933
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4934

4935
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4936 4937
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4938 4939
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4940
    dimensions.
C
caoying03 已提交
4941

4942
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4943 4944 4945 4946
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4947 4948

    Args:
4949
        x(variable): The input tensor.
C
caoying03 已提交
4950 4951
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4952 4953 4954 4955 4956
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
4957 4958
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
4959 4960 4961 4962 4963 4964 4965
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
4966
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4967

4968
    Returns:
G
guosheng 已提交
4969 4970 4971 4972
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
4973

X
Xin Pan 已提交
4974 4975 4976
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4977 4978
    Examples:
        .. code-block:: python
G
guosheng 已提交
4979

4980
            data = fluid.layers.data(
4981
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4982
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
4983
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
4984 4985 4986
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4987
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4988 4989 4990 4991 4992
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4993

4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5009
    helper = LayerHelper("reshape2", **locals())
5010 5011
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5012
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5013
    helper.append_op(
5014
        type="reshape2",
X
Xin Pan 已提交
5015
        inputs=inputs,
D
dzhwinter 已提交
5016
        attrs={"shape": shape},
5017 5018
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5019

D
dzhwinter 已提交
5020
    return helper.append_activation(out)
5021

5022

5023
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5024
    """
M
minqiyang 已提交
5025 5026 5027
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5028
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5029

Y
Yibing Liu 已提交
5030 5031
    Examples:
    Case 1:
M
minqiyang 已提交
5032
      Given
Y
Yibing Liu 已提交
5033 5034 5035 5036 5037 5038 5039 5040
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5041
        and
Y
Yibing Liu 已提交
5042 5043 5044
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5045

Y
Yibing Liu 已提交
5046
    Args:
5047
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5048
        axes (list): List of integers, indicating the dimensions to be squeezed.
5049
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5050 5051 5052 5053 5054 5055 5056 5057

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5058
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5059 5060
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5061 5062
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5063
    helper.append_op(
5064
        type="squeeze2",
5065
        inputs={"X": input},
Y
Yibing Liu 已提交
5066
        attrs={"axes": axes},
5067 5068
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5069

5070 5071 5072
    return out


5073
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5074
    """
M
minqiyang 已提交
5075 5076 5077
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5078

M
minqiyang 已提交
5079 5080
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5081
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5082

Y
Yibing Liu 已提交
5083
    Args:
5084
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5085
        axes (list): List of integers, indicating the dimensions to be inserted.
5086
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5087 5088 5089 5090 5091 5092 5093 5094

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5095
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5096 5097
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5098 5099
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5100
    helper.append_op(
5101
        type="unsqueeze2",
5102
        inputs={"X": input},
Y
Yibing Liu 已提交
5103
        attrs={"axes": axes},
5104 5105
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5106

5107 5108
    return out

5109

Y
yangyaming 已提交
5110
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5111
    """
Y
Yibing Liu 已提交
5112
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5113 5114 5115 5116
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5117
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5118 5119 5120 5121 5122 5123

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5124
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5125 5126 5127
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5128
            target_lod: [4, 2]
Y
yangyaming 已提交
5129 5130

            then we get a 1-level LoDTensor:
5131
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5132 5133 5134 5135 5136 5137
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5138
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5139 5140 5141 5142
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5143
                y.data = [[2, 4]]
Y
yangyaming 已提交
5144 5145 5146
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5147
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5148 5149 5150 5151 5152 5153
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5154
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5155 5156 5157 5158
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5159
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5160 5161 5162 5163
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5164
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5165 5166 5167 5168 5169
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5170
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5171
                           from :attr:`y`.
Y
yangyaming 已提交
5172
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5173
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5174 5175

    Returns:
Y
Yibing Liu 已提交
5176
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5177 5178

    Raises:
Y
Yibing Liu 已提交
5179
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5180 5181 5182 5183 5184 5185 5186 5187 5188

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5189
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5215
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5244 5245
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5258 5259 5260
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5274 5275 5276 5277


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5278
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5279
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5280

G
guosheng 已提交
5281 5282 5283 5284
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5307
                         The length of :attr:paddings must be
G
guosheng 已提交
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5318

G
guosheng 已提交
5319 5320 5321 5322 5323 5324
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5325
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5326 5327 5328 5329 5330 5331 5332
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5333 5334


C
chengduo 已提交
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5405
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5406 5407 5408 5409 5410 5411 5412 5413 5414
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5415 5416 5417 5418 5419 5420 5421
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5422 5423
    called label-smoothing regularization (LSR).

5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5447
                              be :math:`(1, class\_num)`.
5448 5449
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5450
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5470
    smooth_label = helper.create_variable_for_type_inference(dtype)
5471 5472 5473 5474 5475 5476 5477
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5478 5479


Y
yi.wu 已提交
5480
@templatedoc()
5481 5482
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5483
    ${comment}
5484 5485

    Args:
Y
yi.wu 已提交
5486 5487
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5488 5489 5490
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5491 5492

    Returns:
Y
update  
yi.wu 已提交
5493
        Variable: ${out_comment}.
5494 5495

    Examples:
5496 5497
        .. code-block:: python

5498
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5499 5500 5501
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5502 5503
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5516 5517


J
jerrywgz 已提交
5518 5519 5520 5521 5522 5523
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5524 5525
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5542 5543 5544
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5545 5546 5547 5548 5549 5550
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5551
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5592 5593
        .. code-block:: python

W
whs 已提交
5594 5595 5596 5597
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5598
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5599 5600 5601 5602 5603 5604
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5605 5606


5607 5608 5609 5610 5611
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5612
    """
Q
qiaolongfei 已提交
5613
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5614

5615
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5616 5617 5618
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5619

5620
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5621

5622
    Args:
5623
        input (Variable): The input tensor of image resize layer,
5624 5625
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5626
        out_shape(list|tuple|Variable|None): Output shape of image resize
5627 5628
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5629
        scale(float|None): The multiplier for the input height or width.
5630 5631 5632
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5633 5634
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5635 5636
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5637 5638

    Returns:
Q
update  
qiaolongfei 已提交
5639 5640
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5641

5642 5643 5644
    Examples:
        .. code-block:: python

5645
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5646
    """
5647 5648 5649 5650
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5651 5652
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5653 5654
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5655 5656 5657 5658

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5659 5660 5661
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5662
    if out_shape is not None:
B
baiyf 已提交
5663 5664 5665
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5666 5667 5668 5669 5670 5671
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5672 5673 5674 5675
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

X
Xin Pan 已提交
5676
    out = helper.create_variable_for_type_inference(dtype)
5677
    helper.append_op(
5678
        type=resample_methods[resample],
5679
        inputs=inputs,
5680 5681 5682 5683
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5684 5685


Y
yuyang18 已提交
5686
@templatedoc(op_type="bilinear_interp")
5687 5688
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5689 5690 5691 5692 5693 5694
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5695

Y
yuyang18 已提交
5696 5697 5698 5699 5700 5701 5702 5703
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5704 5705 5706 5707 5708 5709 5710
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5711 5712 5713
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5714 5715 5716 5717 5718 5719 5720
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5721
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5722

5723
    Returns:
Q
update  
qiaolongfei 已提交
5724
        Variable: The output is a 4-D tensor of the shape
5725
        (num_batches, channls, out_h, out_w).
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5736 5737 5738
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5739 5740 5741
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5742 5743
def gather(input, index):
    """
Q
qiaolongfei 已提交
5744 5745
    **Gather Layer**

5746
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5747 5748 5749 5750
    of X indexed by `index` and concatenate them together.

    .. math::

5751
        Out = X[Index]
W
whs 已提交
5752 5753 5754 5755 5756 5757 5758


    .. code-block:: text


                Given:

5759 5760
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5771
        input (Variable): The source input with rank>=1.
W
whs 已提交
5772 5773 5774 5775 5776 5777
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5778

W
whs 已提交
5779 5780 5781 5782 5783 5784
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5785
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5786 5787 5788 5789 5790 5791 5792 5793
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5825
    out = helper.create_variable_for_type_inference(dtype)
5826 5827 5828 5829 5830 5831 5832 5833 5834
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5885
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
5886 5887 5888 5889 5890 5891 5892 5893 5894
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5908

5909 5910 5911
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5912
    """
F
stash  
fengjiayi 已提交
5913
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5914
    dtype = x.dtype
X
Xin Pan 已提交
5915
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
5916
    if seed is None:
5917
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5918
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5919
    if isinstance(seed, int):
F
fengjiayi 已提交
5920 5921 5922 5923 5924
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5925 5926 5927 5928
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5929
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5930 5931
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5932 5933
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5934
    return out
W
whs 已提交
5935 5936


5937
def log(x, name=None):
W
wanghaoshuang 已提交
5938 5939 5940 5941 5942
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5943
        Out = \\ln(x)
W
wanghaoshuang 已提交
5944 5945

    Args:
5946
        x (Variable): Input tensor.
5947 5948
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5949 5950 5951 5952 5953 5954 5955 5956

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5957
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5958 5959
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5960
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5961
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5962
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5963 5964 5965
    return out


5966
def relu(x, name=None):
W
wanghaoshuang 已提交
5967 5968
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5969
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5970 5971 5972 5973
    the tensor elementwise.

    .. math::

5974
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5975 5976

    Args:
5977
        x (Variable): The input tensor.
5978 5979
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5980 5981 5982 5983 5984 5985 5986 5987

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5988
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5989 5990
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5991
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5992
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5993
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5994
    return out
5995 5996


W
whs 已提交
5997 5998 5999
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6000 6001 6002 6003
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6004
    .. math::
6005 6006

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6007

6008
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6009 6010 6011 6012 6013
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6014
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6015
                           Its shape should be the same as input.
6016
        num_classes (int): The possible number of labels.
W
whs 已提交
6017 6018 6019 6020

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6021
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6022 6023 6024 6025

    Examples:

        .. code-block:: python
6026

W
whs 已提交
6027 6028 6029 6030
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6031 6032 6033
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6034 6035
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6036 6037
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6038
        outputs={
W
whs 已提交
6039 6040 6041
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6042 6043 6044
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6119
                    isinstance(shape, Variable)):
6120 6121 6122 6123 6124
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6125
    out = helper.create_variable_for_type_inference(x.dtype)
6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6143 6144


W
whs 已提交
6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
      
              out_shape = [2, 3, 5, 5]
      
          Step 1:
      
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
      
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6263 6264 6265 6266 6267 6268 6269 6270
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6271

6272 6273
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6274

6275 6276 6277 6278
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6279

6280 6281 6282 6283 6284
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6285 6286 6287

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6323
    out = helper.create_variable_for_type_inference("float32")
6324 6325 6326 6327 6328 6329 6330 6331

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6332 6333


M
minqiyang 已提交
6334 6335
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6336
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6337
    which compares left score and right score passed in.
M
minqiyang 已提交
6338
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6339 6340 6341 6342 6343 6344

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6345
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6346 6347
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6348
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6349 6350 6351
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6352
       Variable: The ranking loss.
M
minqiyang 已提交
6353
    Raises:
M
minqiyang 已提交
6354
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6355 6356 6357 6358 6359 6360 6361
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6362
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6363 6364 6365 6366 6367 6368
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6369 6370
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6396

W
whs 已提交
6397 6398
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6399

W
whs 已提交
6400
      Case 0:
M
minqiyang 已提交
6401

W
whs 已提交
6402 6403 6404
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6405

W
whs 已提交
6406 6407 6408
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6409

W
whs 已提交
6410
      Case 1:
M
minqiyang 已提交
6411

W
whs 已提交
6412 6413
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6414

W
whs 已提交
6415 6416 6417
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6418

W
whs 已提交
6419
      Case 2:
M
minqiyang 已提交
6420

W
whs 已提交
6421 6422
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6423

W
whs 已提交
6424 6425 6426
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6427 6428


W
whs 已提交
6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6455
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6484
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6507
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6530
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6554
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6579
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6603
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6604 6605 6606 6607 6608 6609 6610 6611
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6626
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6627
                        will be named automatically.
J
jerrywgz 已提交
6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6655
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6656 6657 6658 6659 6660 6661 6662 6663 6664
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6679
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6702
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6724
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6725 6726 6727 6728 6729 6730 6731 6732
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6746

6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6757 6758
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6774
        ValueError: If axis is not in range [0, rank(x)].
6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6791 6792
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6793
    helper.append_op(
6794
        type='flatten2',
6795
        inputs={"X": x},
6796 6797
        outputs={'Out': out,
                 'XShape': x_shape},
6798 6799
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6800 6801


C
chenweihang 已提交
6802
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6803
    """
C
chenweihang 已提交
6804
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6805
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6806 6807
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6808

C
chenweihang 已提交
6809 6810 6811 6812
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6813
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6814 6815 6816 6817 6818 6819
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6820
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6821 6822 6823
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6824 6825 6826
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
6838 6839
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6840 6841 6842 6843 6844 6845
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6846
    return out
6847

6848

S
sneaxiy 已提交
6849 6850 6851 6852 6853 6854 6855 6856 6857
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6858

S
sneaxiy 已提交
6859
    .. math::
6860

S
sneaxiy 已提交
6861 6862 6863
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6864
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6865 6866 6867 6868
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6869 6870 6871
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6872 6873
    Returns:
        Variable: The output sequence mask.
6874

S
sneaxiy 已提交
6875 6876
    """

Q
qingqing01 已提交
6877
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6878
    if name is None:
X
Xin Pan 已提交
6879
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
6880
    else:
X
Xin Pan 已提交
6881
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
6882

Q
qingqing01 已提交
6883 6884 6885
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6886 6887
        outputs={'Y': out},
        attrs={
6888
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6889 6890 6891
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6892 6893


X
Xin Pan 已提交
6894
def stack(x, axis=0):
S
sneaxiy 已提交
6895 6896 6897 6898
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6899 6900 6901 6902 6903 6904 6905

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6906
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6907
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6908 6909

    Args:
6910
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6911
        axis (int|None): The axis along which all inputs are stacked.
6912

S
sneaxiy 已提交
6913 6914
    Returns:
        Variable: The stacked variable.
6915

S
sneaxiy 已提交
6916 6917
    """

X
Xin Pan 已提交
6918 6919 6920 6921 6922 6923
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
6924
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
6925
    helper.append_op(
S
sneaxiy 已提交
6926 6927
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6928

X
Xin Pan 已提交
6929
    return out
D
dzhwinter 已提交
6930 6931 6932 6933 6934 6935 6936


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6937

D
dzhwinter 已提交
6938 6939 6940
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6941
    raised.
D
dzhwinter 已提交
6942 6943

    Args:
M
minqiyang 已提交
6944
        x (Variable): Input variable.
D
dzhwinter 已提交
6945 6946
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6947

D
dzhwinter 已提交
6948 6949
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6950

D
dzhwinter 已提交
6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
6962
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
6963 6964 6965 6966 6967 6968 6969 6970

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6983

W
whs 已提交
6984 6985 6986 6987
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6988

W
whs 已提交
6989
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6990

W
whs 已提交
6991
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6992

W
whs 已提交
6993 6994 6995 6996
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6997

W
whs 已提交
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7014
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7015 7016 7017 7018 7019 7020
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7021 7022


G
fix  
gongweibao 已提交
7023 7024 7025
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7026
@templatedoc()
G
fix  
gongweibao 已提交
7027 7028 7029 7030 7031 7032 7033 7034 7035
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7036
    ${comment}
G
fix  
gongweibao 已提交
7037 7038

    Args:
G
gongweibao 已提交
7039 7040 7041
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7042
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7043 7044 7045
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7046 7047
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7048
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7049 7050 7051 7052

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7053
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7070 7071


G
gongweibao 已提交
7072
@templatedoc()
X
Xin Pan 已提交
7073
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7074
    """
G
gongweibao 已提交
7075
    ${comment}
G
fix  
gongweibao 已提交
7076 7077

    Args:
G
gongweibao 已提交
7078 7079 7080 7081
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7082 7083 7084
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7085
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7086 7087 7088 7089

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7090
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7101
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7102 7103 7104 7105 7106
        })

    return out


G
gongweibao 已提交
7107
@templatedoc()
G
fix  
gongweibao 已提交
7108
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7109
    """
G
gongweibao 已提交
7110
    ${comment}
G
fix  
gongweibao 已提交
7111 7112

    Args:
G
gongweibao 已提交
7113 7114 7115 7116
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7117
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7118 7119

    Returns:
G
gongweibao 已提交
7120
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7121 7122 7123 7124

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7125
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7137
@templatedoc()
G
fix  
gongweibao 已提交
7138 7139 7140 7141 7142 7143 7144 7145 7146
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7147
    ${comment}
G
fix  
gongweibao 已提交
7148 7149

    Args:
G
gongweibao 已提交
7150 7151
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7152
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7153 7154 7155 7156
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7157
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7158 7159

    Returns:
G
gongweibao 已提交
7160
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7161 7162 7163
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7164
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7183
@templatedoc()
X
Xin Pan 已提交
7184
def sum(x):
G
fix  
gongweibao 已提交
7185
    """
G
gongweibao 已提交
7186
    ${comment}
G
fix  
gongweibao 已提交
7187 7188

    Args:
G
gongweibao 已提交
7189
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7190 7191

    Returns:
G
gongweibao 已提交
7192
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7193 7194 7195
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7196 7197
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7198 7199 7200 7201
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7202
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7203 7204 7205 7206

    return out


G
gongweibao 已提交
7207
@templatedoc()
G
fix  
gongweibao 已提交
7208 7209
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7210
    ${comment}
G
fix  
gongweibao 已提交
7211 7212

    Args:
G
gongweibao 已提交
7213 7214 7215 7216
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7217 7218

    Returns:
G
gongweibao 已提交
7219
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7220 7221 7222 7223

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7224 7225
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7237
@templatedoc()
G
fix  
gongweibao 已提交
7238 7239
def shape(input):
    """
G
gongweibao 已提交
7240
    ${comment}
G
fix  
gongweibao 已提交
7241 7242

    Args:
G
gongweibao 已提交
7243
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7244 7245

    Returns:
G
gongweibao 已提交
7246
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7247 7248 7249 7250

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7251 7252
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7253
    helper.append_op(
G
fix  
gongweibao 已提交
7254
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7255 7256

    return out
G
merge  
gongweibao 已提交
7257 7258


S
sneaxiy 已提交
7259 7260 7261 7262 7263 7264 7265 7266
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7267 7268
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7269
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7270 7271 7272
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7273

S
sneaxiy 已提交
7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7285
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7286 7287 7288 7289 7290 7291 7292 7293
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7294
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7295
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7296 7297 7298 7299 7300 7301

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7302
    if name is None:
X
Xin Pan 已提交
7303
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7304 7305 7306
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7307 7308 7309 7310 7311 7312 7313 7314 7315 7316

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7317
    return helper.append_activation(out)
S
sneaxiy 已提交
7318 7319


X
Xin Pan 已提交
7320
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7321 7322 7323
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7324
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7325 7326 7327
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7328
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7329 7330 7331
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7332
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7333 7334 7335
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7336
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7337 7338 7339
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7340
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7341 7342 7343
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7344
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7356 7357
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7358
        ])
M
minqiyang 已提交
7359 7360


7361
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7362 7363
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7364 7365
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7366 7367 7368

    if out is None:
        if name is None:
X
Xin Pan 已提交
7369
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7385
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7404
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7423
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7442
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
X
Xin Pan 已提交
7477
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
X
Xin Pan 已提交
7509
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7539
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7569
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7570 7571 7572 7573 7574 7575 7576 7577 7578
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7579 7580
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7603
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7633
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7644 7645


S
sneaxiy 已提交
7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7660
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7661 7662 7663 7664 7665 7666 7667 7668 7669 7670
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7671 7672


7673 7674 7675 7676 7677 7678
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7679

7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7699
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7712 7713


M
minqiyang 已提交
7714 7715 7716 7717 7718 7719 7720
def hash(input, hash_size, num_hash=1, name=None):
    """
    hash the input
     Args:
        input (Variable): The input variable which is a one-hot word.
        hash_size (int): The space size for hash algorithm.
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
7721
        name (str, default None): The name of this layer.
M
minqiyang 已提交
7722 7723 7724 7725
     Returns:
        Variable: The hash result variable which is a LoDTensor.
     Examples:
        .. code-block:: python
M
minqiyang 已提交
7726
            word_dict = paddle.dataset.imdb.word_dict()
M
minqiyang 已提交
7727 7728 7729 7730
            x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
            out = fluid.layers.hash(input=x, len(word_dict))
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
7731 7732
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
7733 7734 7735 7736 7737 7738 7739
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
D
dengkaipeng 已提交
7740 7741 7742


@templatedoc()
7743 7744
def grid_sampler(x, grid, name=None):
    """
7745 7746 7747 7748 7749 7750 7751
    This operation samples input X by using bilinear interpolation based on 
    flow field grid, which is usually gennerated by affine_grid. The grid of
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
    (in width dimension) of input data x and grid_y is indexng the 3rd 
    dimention (in height dimension), finally results is the bilinear 
    interpolation value of 4 nearest corner points.
7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
7790 7791

    Args:
7792 7793 7794
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
7795 7796

    Returns:
7797 7798 7799 7800 7801 7802 7803 7804 7805 7806
        out(Variable): Output of shape [N, C, H, W] data samples input X 
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
7807 7808 7809 7810 7811 7812 7813 7814 7815
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

7816
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
7817 7818
    ipts = {'X': x, 'Grid': grid}

7819
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
7820 7821 7822
    return out


G
gmcather 已提交
7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.
D
dengkaipeng 已提交
7846

G
gmcather 已提交
7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915
    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
7916
    return out