jit.py 56.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import os
import pickle
19
import warnings
20
import functools
21
from collections import OrderedDict
22 23

import six
24
import paddle
25
from paddle.fluid import core
26 27
from paddle.fluid.compiler import BuildStrategy, CompiledProgram, ExecutionStrategy
from paddle.fluid.data_feeder import check_type
28
from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph
29
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
30
from paddle.fluid.dygraph.dygraph_to_static.logging_utils import set_code_level, set_verbosity
31
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, StaticLayer, unwrap_decorators
32
from paddle.fluid.dygraph.io import EXTRA_VAR_INFO_FILENAME, VARIABLE_FILENAME, TranslatedLayer
33 34
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
35 36 37
from paddle.fluid.framework import Block, ParamBase, Program, Variable
from paddle.fluid.framework import _current_expected_place, _dygraph_guard, _dygraph_tracer
from paddle.fluid.framework import dygraph_only, in_dygraph_mode
38
from paddle.fluid.wrapped_decorator import wrap_decorator
39

40 41
__all__ = [
    'TracedLayer', 'declarative', 'dygraph_to_static_func', 'set_code_level',
C
Chen Weihang 已提交
42
    'set_verbosity', 'save', 'load', 'SaveLoadConfig'
43
]
44 45 46 47 48 49 50 51 52 53 54 55


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


def _extract_vars(inputs, result_list):
    if isinstance(inputs, Variable):
56
        result_list.append(inputs)
57
    elif isinstance(inputs, (list, tuple)):
58 59
        for var in inputs:
            _extract_vars(var, result_list)
60 61 62 63
    else:
        raise TypeError(
            "The type of 'each element of inputs' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}.".
            format(type(inputs)))
64 65 66 67 68 69 70 71


def extract_vars(inputs):
    result_list = []
    _extract_vars(inputs, result_list)
    return result_list


72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import dygraph_to_static_func

          @dygraph_to_static_func
          def func(x):
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
121 122
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
123
        if in_dygraph_mode() or not program_translator.enable_to_static:
124
            logging_utils.warn(
125
                "The decorator 'dygraph_to_static_func' doesn't work in "
126
                "dygraph mode or set ProgramTranslator.enable to False. "
127 128 129 130
                "We will just return dygraph output.")
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
131 132 133 134

    return __impl__


135
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
136

137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
        decorated_obj(StaticLayer): the target decorated StaticLayer object.
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


def declarative(function=None, input_spec=None):
159 160 161
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
162 163 164 165
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
166

167
    Args:
168 169 170
        function (callable): callable imperative function.
        input_spec(list[InputSpec]): list of InputSpec to specific the shape/dtype/name
            information of each input Tensor.
171

172
    Returns:
173
        Tensor(s): containing the numerical result.
174

175 176
    Examples:
        .. code-block:: python
177

178 179 180
          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import declarative
181

182
          fluid.enable_dygraph()
183

184 185 186 187 188 189 190 191
          @declarative
          def func(x):
              x = fluid.dygraph.to_variable(x)
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1
              return x_v
192

193 194 195
          x = np.ones([1, 2])
          x_v = func(x)
          print(x_v.numpy()) # [[2. 2.]]
196

197
    """
198

199 200 201 202 203 204
    def decorated(python_func):
        """
        Decorates a python function into a StaticLayer object.
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
205

206 207 208 209 210 211 212
        # Step 2. copy some attributes from original python function.
        static_layer = copy_decorator_attrs(
            original_func=python_func,
            decorated_obj=StaticLayer(
                function=python_func, input_spec=input_spec))

        return static_layer
213

214 215
    # for usage: `declarative(foo, ...)`
    if function is not None:
216 217 218
        if isinstance(function, Layer):
            if isinstance(function.forward, StaticLayer):
                class_name = function.__class__.__name__
219
                logging_utils.warn(
220 221 222 223 224 225
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one.".
                    format(class_name))
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
226

227 228
    # for usage: `@declarative`
    return decorated
229 230


231 232 233
class SaveLoadConfig(object):
    """
    The additional configuration options may be used in function 
234
    ``paddle.jit.save/load`` and ``paddle.load`` .
235 236 237 238 239 240
    
    Examples:
        1. Using ``SaveLoadConfig`` when saving model

        .. code-block:: python

241 242 243
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
244

245
            class SimpleNet(nn.Layer):
246 247
                def __init__(self, in_size, out_size):
                    super(SimpleNet, self).__init__()
248
                    self._linear = nn.Linear(in_size, out_size)
249

250
                @paddle.jit.to_static
251 252 253 254 255 256
                def forward(self, x):
                    y = self._linear(x)
                    z = self._linear(y)
                    return z

            # enable dygraph mode
257
            paddle.disable_static() 
258 259 260

            # train model
            net = SimpleNet(8, 8)
261 262
            adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
            x = paddle.randn([4, 8], 'float32')
263 264
            for i in range(10):
                out = net(x)
265
                loss = paddle.tensor.mean(out)
266
                loss.backward()
267 268
                adam.step()
                adam.clear_grad()
269 270 271

            # use SaveLoadconfig when saving model
            model_path = "simplenet.example.model"
272 273 274
            config = paddle.SaveLoadConfig()
            config.model_filename = "__simplenet__"
            paddle.jit.save(
275 276
                layer=net,
                model_path=model_path,
277
                config=config)
278 279 280 281 282

        2. Using ``SaveLoadConfig`` when loading model

        .. code-block:: python

283
            import paddle
284 285

            # enable dygraph mode
286
            paddle.disable_static() 
287 288 289

            # use SaveLoadconfig when loading model
            model_path = "simplenet.example.model"
290 291 292
            config = paddle.SaveLoadConfig()
            config.model_filename = "__simplenet__"
            infer_net = paddle.jit.load(model_path, config=config)
293
            # inference
294
            x = paddle.randn([4, 8], 'float32')
295 296 297 298 299 300 301 302
            pred = infer_net(x)
    """

    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
303 304
        # used for `paddle.load`
        self._keep_name_table = False
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

        # If True, programs are modified to only support direct inference deployment. 
        # Otherwise,more information will be stored for flexible optimization and re-training. 
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False

    @property
    def output_spec(self):
        """
320
        Selects the output targets of the saved model ( ``paddle.jit.TranslatedLayer`` ).
321 322 323 324 325 326 327 328 329 330 331 332 333
        By default, all return variables of original Layer's forward function
        are kept as the output of the saved TranslatedLayer.

        The ``output_spec`` type should be list[Variable]. If the provided ``output_spec``
        list is not all output variables, the saved model will be pruned according to the
        given ``output_spec`` list.

        .. note::
            The ``output_spec`` is only used when saving model.

        Examples:
            .. code-block:: python

334 335 336
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
337

338
                class SimpleNet(nn.Layer):
339 340
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
341
                        self._linear = nn.Linear(in_size, out_size)
342

343
                    @paddle.jit.to_static
344 345 346
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
347
                        loss = paddle.tensor.mean(z)
348 349 350
                        return z, loss

                # enable dygraph mode
351
                paddle.disable_static() 
352 353 354

                # train model
                net = SimpleNet(8, 8)
355 356
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
357 358 359
                for i in range(10):
                    out, loss = net(x)
                    loss.backward()
360 361
                    adam.step()
                    adam.clear_grad()
362 363 364

                # use SaveLoadconfig.output_spec
                model_path = "simplenet.example.model.output_spec"
365 366 367
                config = paddle.SaveLoadConfig()
                config.output_spec = [out]
                paddle.jit.save(
368 369
                    layer=net,
                    model_path=model_path,
370
                    config=config)
371

372 373
                infer_net = paddle.jit.load(model_path)
                x = paddle.randn([4, 8], 'float32')
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
                pred = infer_net(x)
        """
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
        if not isinstance(spec, list):
            raise TypeError(
                "The SaveLoadConfig.output_spec should be 'list', but received input type is %s."
                % type(input))
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
                        "The element in SaveLoadConfig.output_spec list should be 'Variable', but received element's type is %s."
                        % type(var))
        self._output_spec = spec

    @property
    def model_filename(self):
        """
        The name of file to save the translated program of target Layer.
        Default filename is :code:`__model__` .

397
        Examples:
398 399
            .. code-block:: python

400 401 402
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
403

404
                class SimpleNet(nn.Layer):
405 406
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
407
                        self._linear = nn.Linear(in_size, out_size)
408

409
                    @paddle.jit.to_static
410 411 412 413 414 415
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
                        return z

                # enable dygraph mode
416
                paddle.disable_static() 
417 418 419

                # train model
                net = SimpleNet(8, 8)
420 421
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
422 423
                for i in range(10):
                    out = net(x)
424
                    loss = paddle.tensor.mean(out)
425
                    loss.backward()
426 427
                    adam.step()
                    adam.clear_grad()
428 429

                # saving with configs.model_filename
430 431 432 433
                model_path = "simplenet.example.model.model_filename"
                config = paddle.SaveLoadConfig()
                config.model_filename = "__simplenet__"
                paddle.jit.save(
434 435
                    layer=net,
                    model_path=model_path,
436
                    config=config)
437 438

                # loading with configs.model_filename
439 440
                infer_net = paddle.jit.load(model_path, config=config)
                x = paddle.randn([4, 8], 'float32')
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
                pred = infer_net(x)
        """
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
        if not isinstance(filename, six.string_types):
            raise TypeError(
                "The SaveLoadConfig.model_filename should be str, but received input's type is %s."
                % type(filename))
        if len(filename) == 0:
            raise ValueError(
                "The SaveLoadConfig.model_filename is empty string.")
        self._model_filename = filename

    @property
    def params_filename(self):
        """
        The name of file to save all persistable variables in target Layer. 
        Default file name is :code:`__variables__` .
        
462
        Examples:
463 464
            .. code-block:: python

465 466 467
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
468

469
                class SimpleNet(nn.Layer):
470 471
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
472
                        self._linear = nn.Linear(in_size, out_size)
473

474
                    @paddle.jit.to_static
475 476 477 478 479 480
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
                        return z

                # enable dygraph mode
481
                paddle.disable_static() 
482 483 484

                # train model
                net = SimpleNet(8, 8)
485 486
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
487 488
                for i in range(10):
                    out = net(x)
489
                    loss = paddle.tensor.mean(out)
490
                    loss.backward()
491 492
                    adam.step()
                    adam.clear_grad()
493 494

                model_path = "simplenet.example.model.params_filename"
495 496
                config = paddle.SaveLoadConfig()
                config.params_filename = "__params__"
497 498

                # saving with configs.params_filename
499
                paddle.jit.save(
500 501
                    layer=net,
                    model_path=model_path,
502
                    config=config)
503 504

                # loading with configs.params_filename
505 506
                infer_net = paddle.jit.load(model_path, config=config)
                x = paddle.randn([4, 8], 'float32')
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
                pred = infer_net(x)
        """
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
        if not isinstance(filename, six.string_types):
            raise TypeError(
                "The SaveLoadConfig.params_filename should be str, but received input's type is %s."
                % type(filename))
        if len(filename) == 0:
            raise ValueError(
                "The SaveLoadConfig.params_filename is empty string.")
        self._params_filename = filename

    # NOTE: [why not use params_filename=None control params saved separately]
    # The new save interface does not recommend parameters to be saved separately. 
    # Here, the concept should be separated as clearly as possible. 
    # Setting params_filename=None only means that the saved file name is set 
    # and without any other meaning. New separate_params control for file saved
    # separately can makes the concept clearer.
    @property
    def separate_params(self):
        """
        Configure whether to save the Layer parameters as separete files.
532
        (In order to be compatible with the behavior of ``paddle.static.save_inference_model`` )
533 534 535 536

        If True, each parameter will be saved to a file separately, the file name is the parameter name,
        and the SaveLoadConfig.params_filename configuration will not take effect. Default False.

537 538 539
        .. note::
            Only used for ``paddle.jit.save`` .

540 541 542
        Examples:
            .. code-block:: python

543 544 545
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
546

547
                class SimpleNet(nn.Layer):
548 549
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
550
                        self._linear = nn.Linear(in_size, out_size)
551

552
                    @paddle.jit.to_static
553 554 555 556 557 558
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
                        return z

                # enable dygraph mode
559
                paddle.disable_static() 
560 561 562

                # train model
                net = SimpleNet(8, 8)
563 564
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
565 566
                for i in range(10):
                    out = net(x)
567
                    loss = paddle.tensor.mean(out)
568
                    loss.backward()
569 570
                    adam.step()
                    adam.clear_grad()
571 572

                model_path = "simplenet.example.model.separate_params"
573
                config = paddle.SaveLoadConfig()
574
                config.separate_params = True
575 576

                # saving with configs.separate_params
577
                paddle.jit.save(
578 579
                    layer=net,
                    model_path=model_path,
580
                    config=config)
581 582 583 584
                # [result] the saved model directory contains:
                # linear_0.b_0  linear_0.w_0  __model__  __variables.info__

                # loading with configs.params_filename
585 586
                infer_net = paddle.jit.load(model_path, config=config)
                x = paddle.randn([4, 8], 'float32')
587 588 589 590 591 592 593 594 595 596 597 598
                pred = infer_net(x)
        """
        return self._separate_params

    @separate_params.setter
    def separate_params(self, value):
        if not isinstance(value, bool):
            raise TypeError(
                "The SaveLoadConfig.separate_params should be bool value, but received input's type is %s."
                % type(value))
        self._separate_params = value

599 600 601 602
    @property
    def keep_name_table(self):
        """
        Configures whether keep ``structured_name -> parameter_name`` dict in loaded state dict.
603
        This dict is the debugging information saved when call ``paddle.save`` . 
604
        It is generally only used for debugging and does not affect the actual training or inference. 
605
        By default, it will not be retained in ``paddle.load`` result. Default: False.
606 607
        
        .. note::
608
            Only used for ``paddle.load`` .
609 610 611 612 613 614 615 616 617 618 619

        Examples:
            .. code-block:: python

                import paddle
            
                paddle.disable_static()

                linear = paddle.nn.Linear(5, 1)

                state_dict = linear.state_dict()
620
                paddle.save(state_dict, "paddle_dy.pdparams")
621

622 623 624
                config = paddle.SaveLoadConfig()
                config.keep_name_table = True
                para_state_dict = paddle.load("paddle_dy.pdparams", config)
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

                print(para_state_dict)
                # the name_table is 'StructuredToParameterName@@'
                # {'bias': array([0.], dtype=float32), 
                #  'StructuredToParameterName@@': 
                #     {'bias': u'linear_0.b_0', 'weight': u'linear_0.w_0'}, 
                #  'weight': array([[ 0.04230034],
                #     [-0.1222527 ],
                #     [ 0.7392676 ],
                #     [-0.8136974 ],
                #     [ 0.01211023]], dtype=float32)}
        """
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
        if not isinstance(value, bool):
            raise TypeError(
                "The SaveLoadConfig.keep_name_table should be bool value, but received input's type is %s."
                % type(value))
        self._keep_name_table = value

647

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
def _get_input_var_names(inputs, input_spec):
    name_none_error = "The %s's name is None. " \
        "When using jit.save, please set InputSepc's name in " \
        "to_static(input_spec=[]) and jit.save(input_spec=[]) " \
        "and make sure they are consistent."
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of InputSpec or example Tensor " \
        "in input_spec is the same as the name of InputSpec in " \
        "`to_static` decorated on the Layer.forward method."
    result_list = []
    input_var_names = [var.name for var in inputs if isinstance(var, Variable)]
    if input_spec is None:
        # no prune
        result_list = input_var_names
    elif input_spec is not None and len(input_spec) == len(input_var_names):
        # no prune
        result_list = input_var_names
        # if input spec name not in input_var_names, only raise warning 
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


def _get_output_vars(outputs, output_spec):
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of example Tensor " \
        "in configs.output_spec is the output tensor of " \
        "Layer.forward method."
    result_list = []
    output_vars_dict = OrderedDict()
    for var in outputs:
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
        result_list = output_vars_dict.values()
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
        result_list = output_vars_dict.values()
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


715 716 717 718 719 720 721 722 723 724 725 726 727
# NOTE(chenweihang): change jit.save/load argument `configs` to `config`
def deprecate_save_load_configs(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'configs' in kwargs:
            kwargs['config'] = kwargs['configs']
            kwargs.pop('configs')
        return func(*args, **kwargs)

    return wrapper


@deprecate_save_load_configs
728
@switch_to_static_graph
729
def save(layer, model_path, input_spec=None, config=None):
730 731 732 733 734 735 736 737 738 739
    """
    Saves input declarative Layer as :ref:`api_imperative_TranslatedLayer` 
    format model, which can be used for inference or fine-tuning after loading.

    It will save the translated program and all related persistable 
    variables of input declarative Layer to given ``model_path``.
    
    The default saved translated program file name is ``__model__``,
    and the default saved persistable variables file name is ``__variables__``,
    and it also saved some additional variable description information to file 
740
    ``__variables.info__``, these additional information is used in fine-tuning.
741 742 743 744 745 746 747 748 749

    The saved model can be loaded by follow APIs:
      - :ref:`api_imperative_jit_load`
      - :ref:`api_fluid_io_load_inference_model` (need pass ``params_filename='__variables__'``)
      - Other C++ inference APIs

    Args:
        layer (Layer): the Layer to be saved. The Layer should be decorated by `@declarative`.
        model_path (str): the directory to save the model.
750
        input_spec (list[Variable], optional): Describes the input of the saved model. 
751 752 753
            It is the example inputs that will be passed to saved TranslatedLayer's forward
            function. If None, all input variables of the original Layer's forward function
            would be the inputs of the saved model. Default None.
754
        config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig` object
755 756 757 758 759 760 761 762
            that specifies additional configuration options. Default None.
    Returns:
        None

    Examples:
        .. code-block:: python

            import numpy as np
763 764 765
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
766

767 768 769
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
770

771 772 773 774 775 776 777
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
778

779 780 781 782
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
783

784 785
                def __len__(self):
                    return self.num_samples
786

787 788
            class LinearNet(nn.Layer):
                def __init__(self):
789
                    super(LinearNet, self).__init__()
790
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
791

792
                @paddle.jit.to_static
793 794 795
                def forward(self, x):
                    return self._linear(x)

796 797 798 799 800 801 802 803 804 805 806
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

807
            # enable dygraph mode
808 809
            place = paddle.CPUPlace()
            paddle.disable_static(place) 
810

811
            # 1. train & save model.
812

813 814 815 816
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
817

818 819 820 821 822 823 824 825
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
826

827 828
            # train
            train(layer, loader, loss_fn, adam)
829

830
            # save
831
            model_path = "linear.example.model"
832
            paddle.jit.save(layer, model_path)
833 834 835 836
    """

    # 1. input check
    prog_translator = ProgramTranslator()
837
    if not prog_translator.enable_to_static:
838
        raise RuntimeError(
839
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable to False."
840 841 842
        )
    if not isinstance(layer, Layer):
        raise TypeError(
843
            "The input layer of paddle.jit.save should be 'Layer', but received layer type is %s."
844 845
            % type(layer))

846
    configs = config
847 848 849
    if configs is None:
        configs = SaveLoadConfig()

850 851
    # avoid change user given input_spec
    inner_input_spec = None
852 853 854 855 856
    if input_spec is not None:
        if not isinstance(input_spec, list):
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
                % type(input_spec))
857
        inner_input_spec = []
858
        for var in input_spec:
859 860 861 862 863 864
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
            elif isinstance(var, (core.VarBase, Variable)):
                inner_input_spec.append(
                    paddle.static.InputSpec.from_tensor(var))
            else:
865
                raise TypeError(
866
                    "The element in input_spec list should be 'Variable' or `paddle.static.InputSpec`, but received element's type is %s."
867 868
                    % type(var))

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
    # 2. get program from Layer
    # TODO(chenweihang): add support for other method, not only forward
    if isinstance(layer.forward, StaticLayer):
        concrete_program = layer.forward.concrete_program
    else:
        # transform in jit.save, if input_spec is incomplete, declarative will throw error
        static_forward = declarative(layer.forward, input_spec=inner_input_spec)
        concrete_program = static_forward.concrete_program
        # the input_spec has been used in declarative, which is equal to 
        # @declarative with input_spec and jit.save without input_spec,
        # avoid needless warning
        inner_input_spec = None

    # 3. build input & output of save_infernece_model
    # NOTE(chenweihang): [ Get input variables name ]
    # There are two cases, whether to prune the inputs or not
    # - not prune inputs (recommend):
    #   - the len(input_spec) == len((concrete_program.inputs) - 1
    #   - here can use concrete_program.inputs directly
    # - prune inputs:
    #   - the input_spec length < len((concrete_program.inputs) - 1
    #   - the input_spec's name should be in concrete_program.inputs
    input_var_names = _get_input_var_names(concrete_program.inputs,
                                           inner_input_spec)

    # NOTE(chenweihang): [ Get output variables ]
    # the rule is like [ Get input variables name ]. For output var, 
    # we only support VarBase spec, and actually, we only need the 
    # var name of output, and we don't recommended to use output_spec
    output_vars = _get_output_vars(concrete_program.outputs,
                                   configs.output_spec)

    # NOTE(chenweihang): we maintain the mapping of variable name to
902 903 904 905
    # structured name, the buffer variable (non-persistable)
    # saved to inference program may not need by dygraph Layer, 
    # we only record the state_dict variable's structured name
    state_names_dict = dict()
906
    for structured_name, var in six.iteritems(layer.state_dict()):
907 908
        state_names_dict[var.name] = structured_name

909
    # 4. share parameters from Layer to scope & record var info
910 911
    scope = core.Scope()
    extra_var_info = dict()
912
    for param_or_buffer in concrete_program.parameters:
913 914 915 916 917 918
        # share to scope
        param_or_buffer_tensor = scope.var(param_or_buffer.name).get_tensor()
        src_tensor = param_or_buffer.value().get_tensor()
        param_or_buffer_tensor._share_data_with(src_tensor)
        # record var info
        extra_info_dict = dict()
919 920 921
        if param_or_buffer.name in state_names_dict:
            extra_info_dict['structured_name'] = state_names_dict[
                param_or_buffer.name]
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
        extra_info_dict['stop_gradient'] = param_or_buffer.stop_gradient
        if isinstance(param_or_buffer, ParamBase):
            extra_info_dict['trainable'] = param_or_buffer.trainable
        extra_var_info[param_or_buffer.name] = extra_info_dict

    # 5. save inference model
    from paddle.fluid.io import save_inference_model

    # VARIABLE_FILENAME keep nameing style consistent with '__model__'
    if configs.params_filename is None:
        configs.params_filename = VARIABLE_FILENAME

    with scope_guard(scope):
        save_inference_model(
            dirname=model_path,
            feeded_var_names=input_var_names,
            target_vars=output_vars,
            executor=Executor(_current_expected_place()),
            main_program=concrete_program.main_program.clone(),
            model_filename=configs.model_filename,
            params_filename=None
            if configs.separate_params else configs.params_filename,
            export_for_deployment=configs._export_for_deployment,
            program_only=configs._program_only)

947
        # NOTE(chenweihang): [ Save extra variable info ]
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
        # save_inference_model will lose some important variable information, including:
        #   - Variable name and correspondence (when saved variables as one file)
        #   - Variable.stop_gradient information
        #   - Which persistent variable are parameter and which are not
        #   - Parameter.trainable information
        #
        # The lost information cannot be recovered when it is loaded again, 
        # so if we want to perform fine-tune after loading, we may need to 
        # configure redundant information to proceed.
        #
        # Due to compatibility issues, we cannot change the original storage structure, 
        # but we can save these information in `jit.save` without changing the original 
        # storage to improve user experience. So we save extra information into
        # file `__variables.info__`
        extra_var_info_path = os.path.join(model_path, EXTRA_VAR_INFO_FILENAME)
        with open(extra_var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)


967
@deprecate_save_load_configs
968
@dygraph_only
969
def load(model_path, config=None):
970 971 972 973 974 975 976 977 978 979
    """
    :api_attr: imperative

    Load model saved by :ref:`api_imperative_jit_save` or :ref:`api_fluid_io_save_inference_model`
    as :ref:`api_imperative_TranslatedLayer`, then performing inference or fine-tune training.

    .. note::
        For some historical reasons, if you load model saved by :ref:`api_fluid_io_save_inference_model`,
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
980
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
981 982 983 984 985
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
        model_path (str): The directory path where the model is saved.
986
        config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig` object that specifies 
987 988 989 990 991 992 993 994 995 996 997
            additional configuration options. Default None.

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
        1. Load model saved by :ref:`api_imperative_jit_save` then performing inference and fine-tune training.

        .. code-block:: python

            import numpy as np
998 999 1000
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1001

1002 1003 1004
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1005

1006 1007
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1008

1009 1010 1011 1012
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1013

1014 1015 1016 1017
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1018

1019 1020 1021 1022 1023
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1024
                    super(LinearNet, self).__init__()
1025
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1026

1027
                @paddle.jit.to_static
1028 1029 1030
                def forward(self, x):
                    return self._linear(x)

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1042
            # enable dygraph mode
1043 1044
            place = paddle.CPUPlace()
            paddle.disable_static(place) 
1045 1046

            # 1. train & save model.
1047

1048
            # create network
1049 1050 1051 1052
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1053
            # create data loader
1054 1055 1056 1057 1058 1059 1060
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1061

1062 1063
            # train
            train(layer, loader, loss_fn, adam)
1064

1065 1066 1067
            # save
            model_path = "linear.example.model"
            paddle.jit.save(layer, model_path)
1068

1069
            # 2. load model
1070

1071 1072
            # load
            loaded_layer = paddle.jit.load(model_path)
1073 1074

            # inference
1075 1076 1077
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1078 1079

            # fine-tune
1080 1081 1082
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1083 1084 1085 1086 1087 1088 1089


        2. Load model saved by :ref:`api_fluid_io_save_inference_model` then performing and fine-tune training.

        .. code-block:: python

            import numpy as np
1090
            import paddle
1091
            import paddle.fluid as fluid
1092 1093
            import paddle.nn as nn
            import paddle.optimizer as opt
1094

1095 1096 1097
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1098

1099 1100 1101 1102 1103 1104 1105
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1106

1107 1108 1109 1110
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1111

1112 1113
                def __len__(self):
                    return self.num_samples
1114

1115
            image = fluid.data(name='image', shape=[None, 784], dtype='float32')
1116
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1117
            pred = fluid.layers.fc(input=image, size=10, act='softmax')
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
            loss = fluid.layers.cross_entropy(input=pred, label=label)
            avg_loss = fluid.layers.mean(loss)

            optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            optimizer.minimize(avg_loss)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

1128 1129 1130 1131 1132 1133 1134 1135 1136
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
                batch_size=BATCH_SIZE, 
                shuffle=True,
                drop_last=True,
                num_workers=2)
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

            # 1. train and save inference model
            for data in loader():
                exe.run(
                    fluid.default_main_program(),
                    feed=data, 
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
            fluid.io.save_inference_model(
1147 1148 1149
                model_path, ["image"], [pred], exe)

            # 2. load model
1150 1151

            # enable dygraph mode
1152 1153 1154 1155
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1156

1157 1158 1159
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1160 1161
            pred = fc(x)

1162
            # fine-tune
1163
            fc.train()
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1181
    """
1182
    return TranslatedLayer._construct(model_path, config)
1183 1184


1185
@dygraph_only
Z
Zeng Jinle 已提交
1186 1187 1188 1189 1190
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
1191
    assert isinstance(layer, Layer)
1192 1193 1194 1195 1196 1197 1198 1199 1200

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1201
        original_outputs = layer(*inputs)
1202 1203 1204 1205
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1206
        out_vars = [var for var in outputs]
1207

1208
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
1209
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
1210 1211 1212 1213 1214
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1215
    return original_outputs, program, feed_names, fetch_names, parameters
1216 1217 1218 1219


class TracedLayer(object):
    """
1220 1221
    :api_attr: imperative
    
1222 1223 1224 1225 1226
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1227 1228 1229 1230

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1231 1232

    All TracedLayer objects should not be created by constructor and should
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1244
        self._params = parameters
1245 1246 1247 1248 1249

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1250
            src_tensor = p.value().get_tensor()
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1274
        This method is the only allowed method to create TracedLayer object.
1275 1276 1277 1278
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1279
            layer (dygraph.Layer): the layer object to be traced.
1280 1281
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1282 1283

        Returns:
1284
            tuple: A tuple of 2 items, whose the first item is the output of
1285 1286
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1287

1288
        Examples:
1289 1290 1291
            .. code-block:: python:

                import paddle.fluid as fluid
1292
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
1293 1294 1295
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
1296 1297 1298
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
1299 1300 1301 1302 1303

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
1304
                    layer = ExampleLayer()
1305 1306 1307
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
1308 1309 1310 1311 1312 1313 1314 1315 1316

                    # run the static graph model using Executor inside
                    out_static_graph = static_layer([in_var])

                    print(len(out_static_graph)) # 1
                    print(out_static_graph[0].shape) # (2, 10)

                    # save the static graph model for inference
                    static_layer.save_inference_model(dirname='./saved_infer_model')
1317
        """
1318 1319 1320 1321
        assert isinstance(
            layer, Layer
        ), "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
            type(layer))
1322 1323
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1324 1325 1326 1327 1328 1329 1330
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1331
            build_strategy (BuildStrategy, optional): build strategy of
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
1343
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
1344 1345 1346
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
1347 1348 1349
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
1350 1351 1352 1353 1354

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
1355
                    layer = ExampleLayer()
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)

                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])

                    build_strategy = fluid.BuildStrategy()
                    build_strategy.enable_inplace = True

                    exec_strategy = fluid.ExecutionStrategy()
                    exec_strategy.num_threads = 2

                    static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                    out_static_graph = static_layer([in_var])
        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1371 1372 1373 1374 1375 1376 1377 1378
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
        ), "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
            type(build_strategy))
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
        ), "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
            type(exec_strategy))
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
1397
                feed_dict[name] = x.value().get_tensor()
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
    def save_inference_model(self, dirname, feed=None, fetch=None):
        """
1420 1421
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1422 1423

        Args:
1424
            dirname (str): the directory to save the inference model.
1425
            feed (list[int], optional): the input variable indices of the saved
1426
                inference model. If None, all input variables of the
1427 1428 1429 1430 1431 1432 1433 1434
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
1435
            None
1436 1437 1438 1439 1440

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
1441
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
1442 1443 1444
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
1445 1446 1447
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
1448 1449 1450 1451

                    def forward(self, input):
                        return self._fc(input)

1452 1453 1454
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')

1455
                with fluid.dygraph.guard():
1456
                    layer = ExampleLayer()
1457 1458
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
1459
                    static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1460 1461

                place = fluid.CPUPlace()
1462 1463
                exe = fluid.Executor(place)
                program, feed_vars, fetch_vars = fluid.io.load_inference_model(save_dirname,
1464
                                                    exe)
1465 1466 1467

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1468
        """
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
        check_type(dirname, "dirname", str,
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(feed, "feed", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(feed, list):
            for f in feed:
                check_type(f, "each element of feed", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(fetch, "fetch", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(fetch, list):
            for f in fetch:
                check_type(f, "each element of fetch", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")

1484
        from paddle.fluid.io import save_inference_model
1485 1486 1487 1488 1489

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1490
            return [all_vars[idx] for idx in partial_vars]
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1501
            save_inference_model(
1502 1503 1504 1505 1506
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone())