jit.py 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
__all__ = ['TracedLayer']
16

17
from .base import program_desc_tracing_guard, switch_to_static_graph
18
from .layers import Layer
19 20 21 22 23
from paddle.fluid import core
from paddle.fluid.framework import Program, Block, Variable, _dygraph_tracer, dygraph_only, _dygraph_guard, _current_expected_place, in_dygraph_mode
from paddle.fluid.executor import Executor, scope_guard
from paddle.fluid.compiler import CompiledProgram
import paddle.fluid.io as fluid_io
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


def _extract_vars(inputs, result_list):
    if isinstance(inputs, Variable):
        result_list.append(inputs._ivar)

    if isinstance(inputs, (list, tuple)):
        for var in inputs:
            _extract_vars(var, result_list)


def extract_vars(inputs):
    result_list = []
    _extract_vars(inputs, result_list)
    return result_list


@dygraph_only
50
def _trace(layer, inputs, feed_names=None, fetch_names=None):
51 52 53 54 55 56 57 58
    """
    Trace dygraph network into a :code:`Program`. The returned :code:`Program`
    can be run in static graph mode. This method would simply record all
    operators in the network with :code:`inputs` . Users should guarantee that
    the traced dygraph network is independent with input data, input shapes,
    and would not be changed between different batches. Otherwise, the traced
    result may be different.

59
    Args:
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
        layer(Layer): the layer to be traced.
        inputs(list): the input arguments of :code:`layer.forward()` method.
        feed_names(list(str), optional): the input variable names in the 
                traced :code:`Program` corresponding to :code:`inputs` . If it
                is None, the variable name of :code:`inputs` would be used. 
                It is suggested that users should set :code:`feed_names` 
                manually. Otherwise, the input variable names would be 
                different between different batches. Default None.
        fetch_names(list(str), optional): the output variable names in the 
                traced :code:`Program` corresponding to the output variables
                of :code:`layer.forward()` method. If it is None, the variable
                name of the outputs of :code:`layer.forward()` would be used.
                It is suggested that users should set :code:`fetch_names`
                manually. Otherwise, the output variable names would be
                different between different batches. Default None.
                
    Returns:
77
        A tuple of 4 items, whose first item is the outputs of 
78
        :code:`layer.forward()` method, and second item is the traced 
79 80
        :code:`Program`, and the third item is names of feed variables,
        and the fourth item is names of fetch variables.
81 82 83

    Examples:

84
        .. code-block:: python:
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

            import paddle.fluid as fluid
            from paddle.fluid.dygraph import FC, to_variable
            import paddle.fluid.dygraph.jit as jit
            import numpy as np

            class ExampleLayer(fluid.dygraph.Layer):
                def __init__(self, name_scope):
                    super(ExampleLayer, self).__init__(name_scope)
                    self._fc = FC(self.full_name(), 10)

                def forward(self, input):
                    return self._fc(input)

            with fluid.dygraph.guard():
                layer = ExampleLayer("example_layer")
                in_np = np.random.random([2, 3]).astype('float32')
                in_var = to_variable(in_np)
103
                out, program, _, _ = jit._trace(layer, inputs=[in_var],
104 105 106 107 108
                                         feed_names=['input'],
                                         fetch_names=['fc_out'])

    """
    assert isinstance(layer, Layer)
109 110 111 112 113 114 115 116 117 118 119 120 121

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    if feed_names is None:
        feed_names = []

    if fetch_names is None:
        fetch_names = []

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)
122 123 124
    if callable(feed_names):
        feed_names = feed_names(len(var_list))

125 126 127
    tracer.set_feed_vars(var_list, feed_names)

    with program_desc_tracing_guard(True):
128
        original_outputs = layer(*inputs)
129 130 131 132 133 134
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
        out_vars = [var._ivar for var in outputs]

135 136 137
        if callable(fetch_names):
            fetch_names = fetch_names(len(out_vars))

138 139 140 141 142 143 144 145 146
        tracer.set_fetch_vars(out_vars, fetch_names)
        tracer.set_name_prefix('t_')

        program_desc = tracer.create_program_desc()
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    return original_outputs, program, feed_names, fetch_names


class TracedLayer(object):
    """
    TracedLayer is a callable object which is converted from dygraph model. 
    Inside TracedLayer, the dygraph model is converted into a static graph
    model, and it would run the static graph model using 
    :code:`Executor` and :code:`CompiledProgram` . The static graph model 
    would share parameters with the dygraph model. 
    
    All TracedLayer objects should not be created by constructor and should 
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
            src_tensor = p._ivar.value().get_tensor()
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
        This method is the only allowed method to create TracedLayer object. 
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
            layer (paddle.fluid.dygraph.Layer): the layer object to be traced.
            inputs (list(Variable)): the input variables of the layer object. 

        Returns:
            A tuple of 2 items, whose the first item is the output of 
            :code:`layer(*inputs)` , and the second item is the created
            TracedLayer object. 
            
        Examples:

            .. code-block:: python:

                import paddle.fluid as fluid
                from paddle.fluid.dygraph import FC, to_variable, TracedLayer
                import paddle.fluid.dygraph.jit as jit
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
                    def __init__(self, name_scope):
                        super(ExampleLayer, self).__init__(name_scope)
                        self._fc = FC(self.full_name(), 10)

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
                    layer = ExampleLayer("example_layer")
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
                    out_static_graph = static_layer([in_var]) 
        """
        feed_func = lambda n: ['feed_{}'.format(i) for i in range(n)]
        fetch_func = lambda n: ['fetch_{}'.format(i) for i in range(n)]
        outs, prog, feed, fetch = _trace(layer, inputs, feed_func, fetch_func)
        traced = TracedLayer(prog, layer.parameters(), feed, fetch)
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
            build_strategy (BuildStrategy, optional): build strategy of 
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:

            .. code-block:: python:

                import paddle.fluid as fluid
                from paddle.fluid.dygraph import FC, to_variable, TracedLayer
                import paddle.fluid.dygraph.jit as jit
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
                    def __init__(self, name_scope):
                        super(ExampleLayer, self).__init__(name_scope)
                        self._fc = FC(self.full_name(), 10) 

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
                    layer = ExampleLayer("example_layer")
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)

                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])

                    build_strategy = fluid.BuildStrategy()
                    build_strategy.enable_inplace = True

                    exec_strategy = fluid.ExecutionStrategy()
                    exec_strategy.num_threads = 2

                    static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                    out_static_graph = static_layer([in_var])
        """
        assert self._compiled_program is None, "Cannot set strategy after run"
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x._ivar.value().get_tensor()
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
    def save_inference_model(self, dirname, feed=None, fetch=None):
        """
        Save the TracedLayer to an model for inference. The saved
        inference model can be loaded by C++ inference APIs. 

        Args:
            dirname (str): the directory to save the inference model.  
            feed (list[int], optional): the input variable indices of the saved
                inference model. If None, all input variables of the 
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
            The fetch variables' name list
        
        Return Type: 
            list(str)

        Examples:

            .. code-block:: python:

                import paddle.fluid as fluid
                from paddle.fluid.dygraph import FC, to_variable, TracedLayer
                import paddle.fluid.dygraph.jit as jit
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
                    def __init__(self, name_scope):
                        super(ExampleLayer, self).__init__(name_scope)
                        self._fc = FC(self.full_name(), 10) 

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
                    layer = ExampleLayer("example_layer")
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
                    static_layer.save_inference_model('./saved_infer_model')
        """

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

            return [all_vars[idx] for idx in feed]

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

            return fluid_io.save_inference_model(
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone())